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Movement trajectories as a window 
into the dynamics of emerging 
neural representations
Roger Koenig‑Robert 1,2,5, Genevieve L. Quek 1,5, Tijl Grootswagers 1,3,5 & Manuel Varlet 1,4*

The rapid transformation of sensory inputs into meaningful neural representations is critical to 
adaptive human behaviour. While non‑invasive neuroimaging methods are the de‑facto method for 
investigating neural representations, they remain expensive, not widely available, time‑consuming, 
and restrictive. Here we show that movement trajectories can be used to measure emerging neural 
representations with fine temporal resolution. By combining online computer mouse‑tracking and 
publicly available neuroimaging data via representational similarity analysis (RSA), we show that 
movement trajectories track the unfolding of stimulus‑ and category‑wise neural representations 
along key dimensions of the human visual system. We demonstrate that time‑resolved 
representational structures derived from movement trajectories overlap with those derived from M/
EEG (albeit delayed) and those derived from fMRI in functionally‑relevant brain areas. Our findings 
highlight the richness of movement trajectories and the power of the RSA framework to reveal and 
compare their information content, opening new avenues to better understand human perception.

The human brain’s capacity for transforming visual input into meaningful mental representations enables our 
species’ adaptive behaviour in complex and continuously changing environments. These representations propa-
gate rapidly along the visual hierarchy, enabling complex objects, like a face or a dog, to be categorised within 
just a few hundred milliseconds after light hits the retina. Early neural representations and their associated brain 
regions mainly appear to encode perceptual features of visual stimuli, while later representations in higher-level 
regions capture conceptual and semantic  associations1–3. The processes supporting such remarkably efficient 
object recognition develop rapidly during infancy, maturing to become highly automatic and consistent across 
individual brains and task  conditions4–6. While neuroimaging methods have been central to efforts to understand 
such visual processes, here we show that human movement trajectories are a powerful complementary means of 
gaining insight into the temporal dynamics of unfolding neural representations.

Computer mouse-tracking movement trajectories are a relatively recent development in behavioural 
 research7–10, wherein the cursor is continuously tracked while an observer selects between response options. 
This low-cost and widely available method has been especially useful for indexing non-explicit processes such 
as self-control, emotion, ambivalence, moral and subliminal  cognition11–15. Unlike discrete measures such as 
button-presses, movement trajectories have been argued to provide a window into the temporal dynamics of 
cognitive processes, revealing the emergence and duration of cognitive  phenomena7,10,16–19, rather than only the 
end-point of decisional and motoric processes. Yet, the extent to which movement trajectories index the continu-
ous unfolding of cognitive processes, such as the transformation of visual inputs into meaningful neural repre-
sentations, remains  controversial7,10,20. It is still highly debated whether movements, especially those performed 
under time constraints, can be continuously modified by cognitive processes once their execution has started. 
For instance, studies have suggested that certain changes in trajectories may not be visually  informed21, that early 
visual perception might not be penetrable by  cognition22, that the variability of movement outcomes might be 
mainly related to preparatory neural  activity23,24, and that only single motor plans (i.e., a single choice, instead 
of competition among choices) would be represented in the motor  cortex25, thus challenging the hypothesis that 
the timecourse of emerging neural representations can be captured via movement trajectories.

In this study, we leveraged representational similarity analysis  (RSA26,27)—which models information car-
ried by measurement units rather than activation in those units  themselves6,28,29—to reveal the time-varying 
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representational structures contained in movement trajectories and demonstrate their correspondence with 
those obtained from neuroimaging data. By virtue of their automaticity, rapid timecourse, and robustness to 
task demands, object representations are an ideal scaffold for probing the capacity of movement trajectories 
to meaningfully capture unfolding perceptual processes. We focus on two key organising principles in object 
vision—namely, faces vs. objects, and animals vs. inanimate objects—critical for social interactions and  survival30. 
Stimuli in these classes reliably evoke dissociable neural representations whose timecourse and underlying brain 
regions are well-characterised. At the same time, a subset of ambiguous or ‘lookalike’ stimuli challenge our robust 
object categorisation abilities, for example, inanimate objects that have face-like features (i.e., illusory faces or 
pareidolia). Such stimuli provide an intriguing glimpse into the whorl of perceptual and conceptual processes 
that converge into high-level categorisations, and are ideally suited to test the sensitivity of movement trajecto-
ries as they represent an intermediate class whose neural representations dissociate from those of unambiguous 
category members in predictable  ways31–34.

In two online experiments, observers categorised both unambiguous (Faces/Objects in Study 1, Animals/
Objects in Study 2) and ambiguous (Lookalike) category exemplars by moving the cursor to click on an upper 
left or right response box, as depicted in Fig. 1. We used stimuli from previously published  studies31–33 with 
publicly available neuroimaging data (M/EEG and fMRI). We show that time-varying representational struc-
tures in movement trajectories, as reflected in timepoint-by-timepoint representational dissimilarity matrices 
(RDMs), provide a meaningful, non-contemporaneous index of dynamically evolving neural representations in 
the human brain, which are not fully captured in end-point behavioural measures (e.g., explicit face ratings and 
movement execution times). By comparing movement trajectories over time to both theoretical models and M/
EEG neuroimaging representational structures, we found strong evidence that movement trajectories indeed 
capture (with a delay) image-wise and category-wise differences evident from the earliest stages of visual process-
ing through to stable semantic category structures. Furthermore, the observed representational overlap between 
movement trajectory and time-resolved M/EEG data was predicted by representational structures derived from 
neural activity in functionally-relevant brain areas as measured by fMRI. This work demonstrates that move-
ment trajectories can serve as a valuable tool for capturing the temporal dynamics of unfolding representational 
structures, and that movement trajectories can provide insights that complement and extend current behavioural 
and neuroimaging methods.

Results
We analysed mouse trajectory data from 174 online  observers35 as they performed a face vs. object categorisation 
task on the stimuli  from33 and 185 online observers as they performed an animal vs. object categorisation task 
on the stimuli  from31  and32 (Fig. 1a). Each trial automatically terminated 800 ms after stimulus presentation, or 
when the participant clicked on a response box. The short response deadline encouraged participants to begin 
their movement immediately after clicking the ‘Next’ button to initiate the trial, even though the stimulus itself 
did not appear until 200 ms after the trial was initiated (Fig. 1b). Despite this time pressure, analysis of mouse tra-
jectory endpoints showed that participants were accurate in categorising all three image categories (83.62, 80.91 
and 83.13% for face, lookalike, and object stimuli in the Face Study, respectively; and 83.52, 77.90 and 84.85% 
for animal, lookalike, and object stimuli in the Animal Study, respectively). Since our brief online experiment 
allowed for only 4 categorisations of each stimulus, we pooled the online categorisation  data36,37 by computing 
the group-mean movement trajectory for each image, obtained by averaging all trajectories for a given image 
firstly within each participant, and then across all participants.

Group-mean movement trajectories for each image (Fig. 1c) contained relevant information about stimulus 
category from a very early point (horizontal cursor position data given in Fig. 1d). Trajectories showed a slight 
initial tendency towards responding ‘FACE’ and ‘ANIMAL’, which could be caused by several factors (e.g., a bias 
towards animate  stimuli38,39 that affects participants’ interpretation of the task—treating it akin to a Go/No-Go 
face/animal task). Importantly, and despite this initial bias, trajectories for each category rapidly diverge from 
a very early stage of the movement. Specifically, trajectories for exemplars in the two unambiguous categories 
diverged from each other soonest (i.e., approximately 325 ms in both studies). In contrast, trajectories for ambigu-
ous (Lookalike) stimuli diverged from their ‘confusable’ categories comparatively later (around 400 ms), with this 
effect being more accentuated in the Animal Study. These qualitative patterns suggest that cursor movements were 
not ballistic in nature, but rather dynamically updated (i.e., at different points during the movement execution) 
to incorporate additional evidence supporting final categorisation response.

Representational structures in movement trajectories and M/EEG data
We used timepoint-by-timepoint representational dissimilarity matrices (RDMs)26 derived from movement 
trajectory data to reveal the time-resolved representational structure of observers’ categorisation movements. 
At each 1 ms timepoint, we calculated pairwise differences in mean horizontal cursor position for each pair of 
stimuli. We used the horizontal cursor position (as opposed to both horizontal and vertical coordinates, or time 
derivatives of these) as it was the critical dimension and most direct descriptor in our categorisation task (i.e., 
go left for OBJECT, go right for FACE/ANIMAL; see “Methods” for details). Movement RDMs for both studies 
evidenced clear task-related representational structures that evolved over the course of the movement. Overall 
dissimilarity between face/animal stimuli and other stimuli (lookalike and object) increased to reach maximum 
dissimilarity towards the end of the trials. More importantly, movement RDMs revealed early perceptual differ-
ences between lookalike stimuli and unambiguous object stimuli; lookalike trajectories stayed closer to trajec-
tories of the category they could be confused for (i.e., Face; Animal) for longer. Two-dimensional embeddings 
shown in Fig. 2b,e highlight this greater representational overlap between lookalike and face/animal stimuli 
compared to object and face/animal stimuli, with this effect being stronger in the Animal Study.
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Figure 1.  Mouse-tracking paradigm overview. (a) Stimuli. The Face Study used 32 face, 32 object, and 32 matched 
lookalike images (illusory faces) as  in33. The Animal Study used 9 animal, 9 object, and 9 matched lookalike images 
(objects that look like animals) as  in31  and32. In both studies, we added images to equate the number of exemplars 
in each response category (e.g., 32 extra face stimuli in the Face Study); these were excluded from the analysis. (b) 
Categorisation Task Sequence. The stimulus appeared 200 ms after the participant clicked on the ‘Next’ button to 
initiate the trial. Participants had 800 ms from stimulus onset to categorise the image by moving the cursor to one 
of the two response boxes. The cursor position was recorded continuously, resulting in a categorisation movement 
trajectory on every trial. Response box positions were swapped halfway through the task to minimise left/right bias. In 
both studies, we instructed participants to categorise lookalike stimuli as objects (i.e., the ground truth). (c) Group-
mean cursor trajectories for individual stimuli. At right: Individual trial data for three example participants in each 
study. (d) Mean horizontal cursor position for each stimulus, shown as a function of time. Since the horizontal axis was 
the relevant decision axis in our task (e.g., go left for OBJECT, go right for FACE/ANIMAL), time-varying horizontal 
position served as our dependent variable. For each image, we averaged horizontal position at each timepoint first 
within and then across participants in each study, and used these summary scores for further analyses.
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Figure 2.  Movement and M/EEG representational structures. The left column represents movement trajectory data 
(i.e., horizontal position) from 0 to 800 ms after stimulus presentation; the right column represents pre-existing M/
EEG data from 0 to 500 ms after stimulus presentation. (a,d) Selected timepoints of the RDM series derived from 
Movement (left) and M/EEG (right) data. RDMs reflect rank-ordered pairwise dissimilarity between images, i.e., 
pairwise horizontal position differences in movement data, pairwise 1-correlation values between MEG activation 
patterns, and pairwise decoding accuracies for EEG data. (b,e) Associated two-dimensional embeddings that reflect 
the degree of similarity between all stimuli at selected timepoints, computed using multidimensional scaling. For 
the movement data, embeddings were based on RDMs averaged across a 50 ms window centred on the indicated 
timepoint to maximise multidimensional variance. (c,f) Correlation with theoretical models. Correlation between the 
theoretical Face/Animal (task) model and Lookalike model (inset) and each RDM series. Shaded regions show 5th 
and 95th percentile correlation values from 10,000 permutations with random subject resampling with replacement 
to estimate inter-subject variability. Coloured dots indicate one-tailed significant differences from 0 for each model 
(p < 0.05); grey dots indicate two-tailed significant differences from 0 for between model differences (p < 0.05). For each 
study, the dominant model in the neural data mirrors that found in our trajectory data.
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To quantify the effects of stimulus category on movement trajectories, we correlated the RDM series derived 
from horizontal cursor position (Fig. 1a) with two theoretical models (Fig. 1c, inset). The first was a ‘ground truth’ 
Face/Animal model representing the actual categorisation task participants had to perform (where lookalike 
stimuli should be categorised as objects). The second was a Lookalike model which enabled us to test the hypoth-
esis that lookalike stimuli are perceived similarly to their confusable category (i.e., Face/Animal). Correlation 
with the Face model in the Face Study increased sharply after 300 ms, reaching asymptote at approximately 400 
ms, whereas the correlation with the Animal model in the Animal Study increased more gradually from 300 ms 
and reached asymptote at approx. 600 ms. Movement RDMs in both studies also correlated with the Lookalike 
model, confirming that movement trajectories effectively captured the perceptual ambiguity of lookalike stimuli. 
This correlation was stronger in the Animal Study and started even earlier than the correlation with the Animal 
model (see Fig. 2c,f, left column).

Notably, the model correlations for our trajectory data were highly similar to those found for the M/EEG data 
for these stimuli (Fig. 2c,f, right column). Both MEG RDMs in the Face Study and EEG RDMs in the Animal 
Study showed that the Lookalike model was a relevant predictor of neural responses, indicating that lookalike 
stimuli evoked neural responses with transient categorical ambiguity. The pattern of relative model dominance 
across the two studies suggests this effect was more pronounced in the Animal Study, where the Lookalike model 
was the dominant predictor for much of the neural response. In contrast, in the Face Study, the Face model pre-
dicted the MEG RDMs better than the Lookalike model. In line with the movement RDMs, correlation with the 
Animal model in the Animal Study also appeared slightly delayed compared to the Lookalike model, whereas cor-
relations with the two models in the Face Study seem to arise at the same time. A relevant point to note is that the 
MEG data  from33 were collected in the absence of an active categorisation task. As such, the strong concordance 
with the Face model in this data highlights the largely automatic nature of the neural processes supporting face/
object categorisation. EEG data  from32 were collected while participants performed either an animal vs. object 
task or a lookalike vs. object classification task. The EEG RDMs we use here are based on data from both tasks, 
since the RDM series varied only slightly as a function of task condition  (see32). In sum, regardless of the task, 
movement trajectories and time-varying neural responses showed remarkable similarities in the ways categorical 
patterns emerge. We next quantified these similarities by directly comparing their representational structures.

Representational similarity between movement trajectories and M/EEG data
We directly tested the evolving representational overlap between movement and M/EEG RDMs by performing a 
time-time correlation between the two RDM series that took account of their different timescales. It is important 
to note that correlations between movement trajectories and M/EEG data are not due to the similarities in their 
signal dynamics (i.e., signal shape or order) but rather to the temporally resolved differences between pairwise 
trajectories and M/EEG signals.

Figure 3 shows significant clusters of correlation between movement and M/EEG RDMs which appear shifted 
upwards from the diagonal (which represents identical movement and M/EEG times). This indicates that repre-
sentations reflected in movement trajectories lagged in time compared to those captured by M/EEG data, with 
significant correlations starting from about 70 ms and 300–350 ms for M/EEG and movement, respectively. 
Importantly, these clusters of significant correlation persisted even when we controlled for correlations driven 
by the Face/Animal model which represents the categorisation task performed by our participants.

Moreover, we found that clusters of significant correlation also persisted when controlling for representational 
structures derived from other conventional behavioural measures. For the Face Study, we used the face rating 
RDM  from33 (Fig. 3a). These face ratings (face-likeness of each image on a scale from 0 to 10) were completed by 
independent online observers (N = 20), see “Methods”  and33 for details. In the Animal Study, we used similarity 
judgements  from31 (Fig. 3a). Participants (N = 17) in this study were instructed to ‘arrange objects according to 
how similar they are’ and were free to choose the dimensions they considered the most relevant, see “Methods” 
 and31 for details. To confirm the complementarity of movement trajectories to conventional measures of process-
ing/response speed, we included a movement execution time RDM as an additional control model—computed 
as pairwise differences in the time at which participants’ cursor reached the response box. These behavioural 
models only partially explained the time-time representational correlations between movement and M/EEG 
data, with significant clusters of correlation remaining after controlling for these models, particularly within 
the first hundred milliseconds of M/EEG data after stimulus presentation. This clearly demonstrates the added 
value that movement trajectories can offer over discrete behavioural measures (e.g., ratings, reaction time) in 
terms of indexing early perceptual processing.

Image‑wise representational similarity between movement trajectories and M/EEG data
We next applied our time-time correlation approach to specific category-pairings within the full RDM (i.e., 
RDM subsets, Fig. 4), with the goal of examining representational overlap between movement and M/EEG 
data at the level of individual images. These subsets represent the intersection of two categories at a time (e.g., 
Lookalike × Object), thus capturing image-wise representational similarity correlations between movement and 
M/EEG RDMs that cannot be accounted for by broad representational differences between categories (as is the 
case in the full RDM). In the Face Study, significant correlation clusters were evident for all three RDM sub-
sets—including the unambiguous stimulus contrast (Face × Object), and both contrasts including the ambiguous 
stimuli (i.e., Lookalike × Face and Lookalike × Object, see left column in Fig. 4). In the Animal Study, significant 
clusters were found for the unambiguous stimulus contrast (Animal × Object) and for the ambiguous contrast 
Lookalike × Object, as seen in Fig. 4 (right column). No significant cluster was found for the Lookalike × Animal 
subset—an outcome which could be due to insufficient data when reducing RDMs to 9 × 9 image subsets and/
or higher similarity in the neural responses to animal and lookalike stimuli leaving insufficient variance (see 
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Fig. 2 and decoding accuracy  in32). Note that time-time correlations for the various subsets in both studies were 
virtually unchanged by controlling for the behavioural models (Fig. 4, second and fourth columns), demonstrat-
ing that movement trajectories are uniquely suited for capturing subtle image-level representational differences 
during the early stages of visual processing.

Interestingly, we found interpretable differences in the timing of representational overlap between movement 
and M/EEG data across the different subsets in both studies. In the Face Study (Fig. 4, left columns), time-time 
correlation for the unambiguous contrast (Face × Object) revealed overlap between our mouse trajectory data 
and early MEG representations (from about 100 ms) reflecting rapid and robust neural distinction between 
face and object stimuli. In contrast, for the two ambiguous subsets (Lookalike × Face and Lookalike × Object), 

Figure 3.  Representational overlap between movement trajectories and M/EEG data. (a) Control Model RDMs 
reflecting (i) the categorisation task, (ii) overall movement execution time, and (iii) existing behavioural data 
for the stimuli in each study, taken  from33 (face ratings)  and31 (stimulus similarity). (b) Time-time correlations 
between movement and M/EEG RDM series. White outlines denote significant correlation clusters based on 
10,000 permutations. For each study, we show the raw time-time correlation values (top left), correlation values 
controlled for the behavioural models (top right), correlation values controlled for the task model (bottom left), 
and correlation values controlled for both the task and behavioural models (bottom right). In both studies, we 
find representational overlap between movement trajectories and M/EEG responses that is not explained by 
these control models.
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Figure 4.  Time-time correlations between movement and M/EEG data for specific category-pairings subsumed 
within the full RDM. (a) Time-time correlation restricted to the unambiguous stimulus contrast (i.e., Face/
Animal × Object), where movement data show representational overlap with early M/EEG representations (from 
about 100 ms) that capture the rapid categorisation of these unambiguous category members. (b,c) Time-time 
correlation restricted to the ambiguous stimulus contrasts: Lookalike × Face/Animal and Lookalike × Object. 
Here movement data show representational overlap with comparatively later M/EEG representations, suggesting 
that lookalike stimuli are separated from unambiguous category members more slowly. Controlling for 
behavioural models leaves time-time correlations for the various subsets in both studies largely unchanged, 
highlighting the capacity of movement trajectories to capture subtle representational differences at the level of 
individual images. White outlines denote significant correlation clusters based on 10,000 permutations.
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representational structures in trajectory data correlated with comparatively later MEG representational struc-
tures. A similar pattern was observed in the Animal Study (Fig. 4, right columns), with movement represen-
tational structures overlapping with early EEG representational structures (from about 100 ms) for the unam-
biguous contrast (Animal × Object). For the ambiguous subset Lookalike × Object, representational correlation 
extended to later EEG representational structures, but notably, also exhibited an early onset in EEG time from 
about 100 ms, likely capturing the strong degree of resemblance between the Lookalike stimuli and their confus-
able category (Animal) in this study (see Lookalike model correlations with EEG data in Fig. 2f).

Region‑specific contribution to representational overlap between movement trajectories and 
M/EEG data
To inspect the functional contribution of different brain regions to the representational overlap observed between 
movement and M/EEG data, we performed a commonality analysis using pre-existing fMRI data (Fig. 5). Here we 
examined how much variance in the time-time movement-M/EEG correlation could be explained by each fMRI 
region of interest, when controlling for other regions. These analyses were conducted using the full RDMs while 
controlling for the task model in each study (i.e., the lower left panel for each study in Fig. 3). As seen in Fig. 5, 
the commonality results revealed that the strongest variance contributions came from the most functionally-
relevant brain regions for the categorisation task in both studies.

In the Face Study, we tested the four regions of interest  from33: the fusiform face area (FFA), the occipital face 
area (OFA), the lateral occipital cortex (LO), and the parahippocampal place area (PPA) (see RDMs in Fig. 5b, 
and “Methods” for details on ROI definitions). Although cluster-based permutation testing yielded significant 
and unique contributions of all four regions, the strongest contribution was found for FFA and then OFA, which 
are both critical brain regions whose activity dissociates strongly between faces and  objects40,41.

In the Animal Study, we tested the three regions of interest  from31: early visual cortex (EVC), posterior ventral 
occipitotemporal cortex (postVTC), and anterior ventral occipitotemporal cortex (antVTC) (see RDMs in Fig. 5c, 
and “Methods” for details on ROI definitions). We used the original fMRI RDMs  from31 averaged across the two 
tasks (animacy and appearance), since these only moderately differed from one another, as was also the case 
for the corresponding EEG RDMs  in32. Cluster based permutation testing revealed significant contribution to 
time-time movement-EEG correlations from all three regions, with the largest contribution arising for the most 
functionally-relevant brain region, antVTC, which is specialised in object  categorisation3,42. This commonality 
arose relatively late (starting from about 140 and 350 ms in EEG and movement times, respectively). In contrast, 
a significant contribution from EVC corresponded to very early representational overlap between movement and 
EEG responses (starting from about 70 and 120 ms in EEG and movement times, respectively). This is in line 
with large and transient contribution of EVC to early EEG data (about 100 ms) reported  in32, and more generally, 
with typical latencies observed along the visual  hierarchy1,2,6,43,44. It is quite remarkable that we capture disso-
ciations between such early visual responses, as it suggests that movement trajectories are capable of revealing 
early perceptual differences arising in primary visual regions and do so very rapidly after stimulus presentation.

Discussion
The results here establish movement trajectories as an effective and accessible means of indexing dynamically 
unfolding neural representations, and that the representational structures captured in these movements are 
distinct from those reflected in conventional behavioural measures focused on the end-point of perceptual 
and decisional processes. Our findings highlight the relevance of the representational similarity analysis (RSA) 
framework to reveal informational content in movement trajectories and evaluate its correspondence with both 
behavioural and neuroimaging data, as well as with theoretical models. These findings open new avenues for 
investigating dynamic processes underlying human perception and cognition using cost-efficient, browser-based 
mouse-tracking paradigms.

Our results demonstrate that movement trajectories can provide a sensitive index of unfolding neural rep-
resentations, even during the early stages of their formation. We provide strong evidence that categorisation 
movement trajectories are not ballistic, but rather dynamically integrate information contained in evolving visual 
representations. Our movement trajectories captured subtle time-varying representational differences between 
individual stimuli along two key dimensions within the human visual system—faces vs. objects and animals vs. 
objects. In our two studies, variability in online observers’ categorisation trajectories for face/animal, lookalike, 
and object stimuli showed meaningful correspondence with representational structure evident in unfolding M/
EEG responses to these stimuli, even as early as 70 ms after stimulus presentation. Importantly, the central claim 
here is that variability in movement trajectories is meaningfully related to variation in the neural responses to the 
same stimuli. Notably, our results showed that the largest contributions to movement-M/EEG representational 
correlations came from the most functionally relevant brain regions for face/animal and object categorisation 
along the visual  hierarchy40,47; namely, FFA and OFA (compared to LO and PPA) in the Face Study, and anterior 
VTC (compared to EVC and posterior VTC) in the Animal Study. The smaller but earlier contribution of EVC 
revealed in the Animal Study is particularly interesting, as it suggests that observers’ categorisation movements 
may even capture very early sensory processing at the beginning of the visual hierarchy. Together, these results 
demonstrate the suitability of movement trajectories as a proxy for unfolding visual representations in the brain, 
which opens new possibilities for disentangling how different stimulus features contribute to different processing 
stages underpinning human perception via cost-effective online experiments.

Beyond their relationship with neural measures, our results underscore the claim that movement trajectories 
themselves—even in relatively simple mouse-tracking paradigms as we use  herecf.48–50—are a rich behavioural 
measure that can afford insight into the dynamics of human perception and cognition that conventional discrete 
measures cannot  provide7,10,51. Here, we found that the timepoint-by-timepoint representations indexed via 
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Figure 5.  Movement-M/EEG-fMRI Commonality analysis. (a) Overview & ROIs. Commonality analysis probes the 
degree to which RDMs derived from the pre-existing fMRI data in different brain areas can uniquely account for the shared 
representational structure observed between the full RDM series for movement and M/EEG data (controlling for task). There 
were four ROIs in the Face Study (FFA, OFA, LO, PPA) and three ROIs in the Animal Study (EVC, posterior VTC, anterior 
VTC). (b) fMRI ROI commonality in the Face Study. The shared representational structure between trajectory and MEG data 
was most concordant with the RDM derived from BOLD activation in the face-selective regions (FFA & OFA). Contributions 
from LO and PPA were comparatively weaker and later. Note that commonality coefficients (ρ2) are often small in value (see 
for  instance41,45,46), as there are likely other sources of variance not accounted for in the models. Therefore, their statistical 
significance is often considered more important than their magnitude. (c) fMRI ROI commonality in the Animal Study. 
Interestingly, the very earliest correspondence between RDMs arising from neural responses and movement trajectories 
shared overlap with representations arising in EVC, with later correspondences better accounted for by representations in 
anterior VTC. White outlines denote significant correlation clusters based on 10,000 permutations.
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movement trajectories—in particular, the earlier and more subtle image-wise representations—were distinct from 
those captured in discrete behavioural indices that represent the culmination of many perceptual and decisional 
processes. In both studies, movement-M/EEG representational overlap was not accounted for by variation in the 
overall response speed (i.e., movement execution time). Neither was it explained by explicit face-likeness ratings 
(obtained  by33) in the Face Study, or by explicit stimulus similarity judgements (obtained  by31) in the Animal 
Study. Of particular relevance here is the fact that the early stages of our movement trajectories successfully cap-
tured the categorical ambiguity of lookalike stimuli in the Animal Study—a finding which was observed in the 
neural response to these  images32, but missing in the explicit similarity judgement  data31. These results provide 
strong evidence supporting the claim that movement trajectories are ideally suited to capture intermediate rep-
resentations in perceptual and cognitive  processes10,52. Our results confirm the ability of movement trajectories 
to index implicit and competitive cognitive processes that are otherwise blurred or already resolved by the time 
discrete explicit behavioural measures are obtained (e.g., button presses, ratings, and questionnaires)11–15,53–55.

Our findings underscore RSA as a powerful framework with which to reveal dynamically changing infor-
mation content in movement trajectories. Timepoint-by-timepoint representational structures extracted from 
movement trajectories via RDMs enabled us to track the evolving information content reflected in observers’ 
categorisation movements from immediately after stimulus presentation through to their final categorisation 
response. Correlating these representational structures with different theoretical models revealed the timecourse 
over which initially ambiguous category representations for lookalike stimuli are resolved. Abstracting away 
from measurement units also enabled us to evaluate the correspondence between information content reflected 
in behavioural and neuroimaging measures with very distinct timescales (i.e., M/EEG, fMRI). This work fol-
lows from prior studies that have used RSA to combine mouse-tracking data with human neuroimaging data, 
which have successfully revealed the relevance of specific brain areas to stereotype biases in face  perception56, 
culture-specific perception of facial emotion/contextual  associations57, and social  biases58. The current work goes 
a step further, leveraging RSA to quantitatively compare the dynamics of representational structures carried by 
movement and M/EEG data through a temporal generalisation approach.

This work provides compelling proof-of-concept that movement trajectories can be adopted as a sensitive 
index of dynamically evolving visual representations that have previously only been accessible via time-resolved 
neuroimaging methods (M/EEG). Where we have focused on the capacity of movement data to capture mean-
ingful variation in neural representations of faces, animals, and objects, our RSA-based approach has broad 
relevance for the study of dynamic processes in general, as it can be customised to probe the evolving represen-
tational geometry of any kind of stimulus about which observers can make a judgement. This could range from 
perceptual estimations of low-level stimulus features (e.g., Gabor orientation or spatial frequency) to semantic 
or affective judgements of images or words (e.g., “Is this item found indoors or outdoors?”, “Is this item positive 
or negative?”). By evaluating the correspondence between movement trajectories on a range of different tasks 
with both theoretical models and with the increasing number of publicly available EEG, MEG, ECoG, fMRI, 
fNIRS, EMG and eye-tracking datasets, we believe the approach holds enormous potential for answering diverse 
questions about human perception and cognition in future research.

Perspectives and limitations
While our results demonstrate the great potential of movement trajectories for studying visual representations, 
there are still outstanding questions that can be addressed in future work. Our results show a meaningful rela-
tionship between the representational structures in neuroimaging and movement data but the limits to which 
this relationship holds is currently not fully explored. For example, how well do movement trajectories capture 
the very early stages of neural representations? Are representations captured in neuroimaging and movement 
data exactly the same? What is the delay after which neural representations are observed in movement trajec-
tories? Is this delay constant? These are important questions that future research will need to address to better 
understand the exact relationship between neural and movement representational structures. Furthermore, 
beyond early automatic neural representations tested here, future research will also benefit from exploring later 
and more task-related dynamic processes, such as those involved in decision-making. In addition, it will also be 
important to compare different movement trajectory tasks, as well as classic decision-making models such as 
evidence accumulation  models59 to determine their contribution to movement-M/EEG correlations. Distin-
guishing neural representations in correct and incorrect trials would also be of interest to fully understand what 
information related to early automatic neural representations and later decisional processes is exactly captured 
in movement trajectories.

Conclusion
This work highlights critical advantages of movement trajectories for studying dynamic brain processes. They are 
as time- and effort-efficient as most explicit behavioural measures, while providing richer information, specifi-
cally the timecourse of covert perceptual and cognitive processes. Combined with RSA, online and open-access 
resources, movement trajectories offer a powerful, cost-effective, and widely accessible method to advance human 
behavioural and cognitive science.

Methods
Participants
Participants for the online mouse-tracking experiments were first-year psychology students from Western Sydney 
University, recruited via the SONA platform in exchange for course credit. We recorded data from 268 partici-
pants in the Face Study and 253 participants in the Animal Study. We removed trials on which less than 100 ms of 
cursor datapoints were recorded, or did not move at least 50 pixels. We further removed any participants with an 
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overall accuracy rate below 70%, where a trial was counted as ‘correct’ if the final cursor position was on the same 
side of the screen as the correct response option for that trial (35% of participants removed in the Face Study, 
27% of participants removed in the Animal Study). The final number of datasets retained for further analysis 
was 174 in the Face Study (141 females, age = 23.17 ± 7.94, right-handed = 158, native English speakers = 124) 
and 185 in the Animal Study (137 females, age = 22.71 ± 8.60, right-handed = 171, native English speakers = 138).

The study was approved by the Human Research Ethics Committee of Western Sydney University (H14498). 
All participants provided written informed consent prior to the study. The experiment was performed in accord-
ance with the Declaration of Helsinki and relevant guidelines and regulations for research involving human 
research participants.

Stimuli
The Face Study used 96 naturalistic colour images  from33, consisting of 32 face, 32 lookalike (illusory faces), 
and 32 object stimuli, all unsegmented from their surrounding backgrounds. Objects and lookalike stimuli 
were individually matched (see Fig. 1a, left column). The Animal Study used the 27 greyscale segmented images 
 from31  and32, consisting of 9 animal, 9 lookalike, and 9 object stimuli. These stimuli were individually matched 
across all three categories (see Fig. 1a).

Procedure
The online mouse-tracking categorisation experiments were hosted on  Pavlovia60 and written in JavaScript 
(jsPsych 6  libraries61) based on publicly available  code62 (https:// github. com/ mahil uthra/ mouse track ing_ exper 
iment). The experiment ran locally in a web browser on the participant’s own  computer35. Each trial began with 
a central fixation cross and a “Next” button at the bottom of the screen that the participant had to click to initi-
ate the trials sequence. This ensured the cursor was repositioned at the bottom of the screen at the beginning 
of every trial (see Fig. 1b). After the trial sequence began, the fixation cross remained present for 200 ms to 
promote movement readiness, before the target image appeared at fixation with two response boxes in the upper 
left and right corners of the screen. One of them contained the word “OBJECT” and the other “FACE” (Study 1) 
or “ANIMAL” (Study 2). The position of the two response boxes was swapped halfway through the experiment 
(i.e., after two blocks), with the initial position of response boxes counterbalanced across participants to avoid 
right/left movement biases. Participants had 800 ms to move the cursor to the correct response box, after which 
the trial ended automatically. Clicking on one of the response boxes also ended the trial. Cursor position was 
recorded throughout the 800 ms after trial initiation at the maximum sample rate of the local system (1000 Hz). 
To equalise the probability of object and face/animal responses, we augmented the original stimulus sets with an 
additional 32 faces in Study 1 and 9 animals in Study 2 (additional stimuli excluded from analyses). All 128/36 
images appeared in each block; there were four blocks in total, and participants could take self-paced rest breaks 
between each block as necessary.

Mouse‑tracking movement trajectory pre‑processing
We analysed mouse-tracking data in MATLAB using custom-developed in-house scripts (https:// osf. io/ q3hbp/). 
We considered all completed trials for analyses (both correct and incorrect categorisations) as they jointly rep-
resent the unfolding of categorical representations. Empty values were replaced with NaNs at the beginning of 
the mouse-tracking recordings (due to late movement onsets) and the end (due to response box clicks before 
800 ms). We then linearly interpolated the data to 1 ms intervals from 1 to 800 ms. For each of the 96 and 27 
images in the Face Study and Animal Study respectively, we averaged the horizontal and vertical position data 
at each timepoint, firstly across trials for each participant (4 trials per image, if all completed), and then across 
participants.

Representational similarity analysis (RSA)
We used RSA to relate the movement trajectory data to other experimental data via representational (dis)similar-
ity matrices (RDMs). Calculated as the pairwise dissimilarity between all stimuli, RDMs (96 × 96 and 27 × 27 in 
the Face and Animal Study, respectively) serve to abstract data away from original measurement units to capture 
its information content. RSA enabled us to test the representational overlap between movement data, M/EEG 
data, fMRI data, theoretical models, and control behavioural models.

Movement RDMs
We calculated an RDM for every timepoint following stimulus presentation until the end of the trial (i.e., 800 
ms), computed as the absolute difference in cursor horizontal position between each pair of stimuli. Since the 
horizontal axis is the relevant decision axis for our task, the resulting RDM provided a time-varying index of 
face/animal vs. object categorisation. In line with previous research using online  data35, RDMs were computed on 
cursor horizontal position after averaging across all participants to compensate for a high level of noise inherent 
to online data with fewer trials.

M/EEG RDMs
For the Face Study, we used individual participant MEG RDMs between 0 and 500 ms from stimulus onset, taken 
 from33. MEG RDMs were obtained from 22 participants using a 160-channel whole-head KIT MEG system. The 
MEG task consisted of the presentation (200 ms) of the 96 visual stimuli (24 repeats of each stimulus). In each 
trial, images were tilted by 3° (left or right), and participants had to report the tilt direction. MEG data were 
down-sampled to 200 Hz, and PCA was applied for dimensionality reduction (retaining PCs explaining 99% 

https://github.com/mahiluthra/mousetracking_experiment
https://github.com/mahiluthra/mousetracking_experiment
https://osf.io/q3hbp/
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of variance). MEG RDMs were constructed by taking 1-correlation (Spearman) between the MEG activation 
patterns for each pair of stimuli at each time point (i.e., every 5 ms).

For the Animal Study, we used individual participant EEG RDMs between 0 and 500 ms from stimulus 
onset, taken  from32. EEG data were obtained from 30 participants using a 128-channel active electrode system. 
Participants performed two tasks in alternating blocks, responding yes/no to either: “Does this image depict 
a living animal?” (Animacy task) or “Does this image look like an animal?” (Appearance task). EEG data were 
down-sampled to 250 Hz, high-pass filtered at 2 Hz, and 50 Hz notch filtered while artifacts were removed using 
ICA. EEG RDMs were obtained using temporal searchlight decoding analyses. At each timepoint, an LDA clas-
sifier was trained and tested on discriminating between activation patterns associated with each pair of images 
using leaving-one-run-out cross-validation procedure. RDMs were constructed using the decoding accuracy 
as an index of neural dissimilarity at every timepoint (i.e., every 4 ms), separately for each task, and for the 
pooled data of both tasks. Here we used the latter RDM series since visual object representations emerging in 
the brain milliseconds after stimulus presentation are largely automatic and independent of the behavioural task 
used, with key object categories being observed in neuroimaging data whether or not those are explicitly tested 
 behaviourally6. The (non-task specific) variance targeted here (as often in the object recognition literature) was 
therefore more objectively captured by combining the two tasks.

fMRI RDMs
For the Face Study, we used neuroimaging data  from33. Functional MRI recordings from 16 participants were 
acquired using a 3T Siemens Verio MRI scanner and a 32-channel head coil. A 2D T2*-weighted EPI acquisition 
sequence was used: TR = 2.5 s, TE = 32 ms, FA = 80°, voxel size: 2.8 × 2.8 × 2.8 mm. The fMRI task was analogous to 
the MEG task described above, save that stimuli were presented for 300 ms followed by a grey screen to complete 
a 4 s trial. All stimuli were shown once per run, and each participant completed 7 runs. Data were slice-time 
corrected and motion-corrected using AFNI. An independent functional localiser experiment using a different 
set of images was performed to define the category-selective regions: FFA, OFA, LO and PPA. fMRI RDMs were 
built by taking 1-correlation (Spearman) between the BOLD signal for each pair of stimuli (96 × 96) in each of 
the four category-selective areas.

For the Animal Study, we used neuroimaging data  from31. Functional MRI recordings from 17 participants 
were acquired using a 3T Philips scanner with a 32-channel head coil. Functional images were recorded using 
a T2*-weighted EPI with acquisition parameters: TR = 2 s, TE = 30 ms, FA = 90°, voxel size: 3 × 3 × 3 mm. Par-
ticipants performed animacy and animal appearance tasks for 12 runs each (task order counterbalanced across 
participants). fMRI RDMs were built by taking condition-wise parameter estimates per participant and image 
runs. Correlations (Pearson’s r) were computed using bootstrap sampling (for further details  see31). Briefly, in 
each iteration (n = 100), data were partitioned into random 2 subsets and the 27 × 27 correlation matrices were 
averaged across iterations and converted into dissimilarity matrices (1-Pearson’s r) for each task (animacy and 
appearance). In our analyses, we averaged RDMs for both tasks, as done  in32 since these only moderately dif-
fered from one another.

Theoretical models
We used two theoretical models that differentially assigned the ambiguous stimuli in our experiments to either 
their true category or the category for which they could be confused (see Fig. 2). The Face/Animal model repre-
sented the ground truth for our categorisation tasks (i.e., ambiguous stimuli grouped with Objects). The Looka-
like Model represented the perceptual similarity between stimuli (i.e., ambiguous stimuli grouped with Faces/
Animals). These binary theoretical models were correlated (Spearman ρ) with both the movement and M/EEG 
RDM series, yielding a time-resolved correlation for each model with each dataset.

Control behavioural RDMs
To clarify the degree to which correlations between movement and neural RDMs could be explained by discrete/
explicit behavioural measures, we built two behavioural control models for each Study (see Fig. 3a). For both 
studies, we constructed an Execution Time RDM, calculated as the pairwise differences in the time taken in mil-
liseconds to reach the categorisation response box, therefore, using only trials where a response box was reached 
(87.4 and 85.5% in the Face Study and Animal Study, respectively). For the Face Study, we used the Face Ratings 
RDM  from33 that was based on pairwise dissimilarities in face-likeness ratings (“Rate how easily you can see a 
face in this image on a scale of 0–10”). For the Animal Study, we used the Similarity RDM  from31 that was based 
on participants’ behavioural judgements of image similarity (observers saw all the test images simultaneously 
and had to “arrange the objects according to how similar they are”,  see31 for details).

Movement‑M/EEG time‑time representational correlation
We calculated the (Spearman) correlation between time-resolved movement and M/EEG RDMs at every time-
point combination, resulting in 500 ms (M/EEG time) × 800 ms (movement time) maps presented in Figs. 3 and 
4. This temporal generalisation approach  (see63 for a review) allowed us to identify sustained and repeated overlap 
between movement and M/EEG representational structures and latencies along each dimension. We calculated 
time-time correlation on the full RDM (96 × 96 and 27 × 27 in the Face Study and Animal Study, respectively) to 
reflect representations of the full stimulus set (see Fig. 3) and on specific subsets of the RDMs (32 × 32 and 9 × 9) 
to focus on image-wise representations (see Fig. 4). We used partial correlation with the Task Model (i.e., Face/
Animal) as covariate to control for representational structures in the full RDM directly resulting from the face/
animal vs. object mouse-tracking categorisation (e.g., go left for FACE, go right for OBJECT). Partial correlation 
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was also used with control behavioural models as covariates to control for representational similarity explained 
by more conventional behavioural measures.

Commonality analysis
We used commonality analysis to test the contributions of each fMRI ROI to time-time movement-M/EEG 
 correlations45,64—FFA, OFA, LO and PPA in the Face Study, and EVC, posterior VTC, and anterior VTC in the 
Animal Study. This method has successfully been used in conjunction with RSA to compare how different predic-
tors in the form of neuroimaging methods, models, and tasks explain shared  variance41,45,46,65. fMRI RDMs are 
not time-resolved, since BOLD responses are very slow. Thus, the single RDM for each fMRI ROI was used for 
all movement-M/EEG correlation timepoint combinations (all fMRI RDMs present in Fig. 5). For a given  ROIi, 
the commonality was calculated as the difference between the movement-M/EEG partial correlation controlling 
for all ROIs except the given  ROIi (Mov, M/EEG,  ROIi+1,  ROIi+2,  ROIi+3), and the movement-M/EEG partial cor-
relation controlling for all ROI including the given  ROIi (Mov,  ROIi+1,  ROIi+2,  ROIi+3,  ROIi+4):

The statistical significance of commonality coefficients (ρ2) is often considered more important than their 
magnitude. Commonality coefficients often have small  values41,45,46, as other sources of variance are not accounted 
for in the models.

Statistics
Confidence intervals for the correlations of movement and M/EEG RDMs with the theoretical models in Fig. 2 
were estimated using jackknife resampling. We selected participants with random replacement from the sample 
and recalculated the group-level correlations 10,000 times. These correlations values and their difference between 
the two models were used to estimate one-tailed significant differences from 0 at α = 0.05 (blue and red dots) and 
two-tailed significant differences from 0 at α = 0.05 (grey dots), respectively. For time-time correlations between 
movement and M/EEG RDMs (Figs. 3, 4, 5), we used cluster-based permutation testing to control for multiple 
 comparisons66. For each iteration (n = 10,000), we sign-permuted the time-time maps at the participant level 
and tested each time-time point against 0 using one-sample t-test. We set a cluster threshold at α = 0.05, and took 
the largest sum of the t-values from each cluster value to construct the null distribution. Clusters with a larger 
cluster-sum statistic than 95% of the null distribution were deemed significant. For all statistical tests, the M/
EEG participants’ data served as the source of variance rather than the movement data. The latter was only ever 
considered at the group-average level, since online data that tend to be noisy at the individual participant level 
become highly reliable when averaged across many  participants35.

Data availability
Mouse-tracking data are available at: https:// osf. io/ q3hbp/.

Code availability
MATLAB code to produce all results and figures are available at: https:// osf. io/ q3hbp/.
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