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Application of a hybrid algorithm 
of LSTM and Transformer based 
on random search optimization 
for improving rainfall‑runoff 
simulation
Wenzhong Li , Chengshuai Liu *, Caihong Hu *, Chaojie Niu , Runxi Li , Ming Li , Yingying Xu  & 
Lu Tian 

Flood forecasting using traditional physical hydrology models requires consideration of multiple 
complex physical processes including the spatio-temporal distribution of rainfall, the spatial 
heterogeneity of watershed sub-surface characteristics, and runoff generation and routing 
behaviours. Data-driven models offer novel solutions to these challenges, though they are hindered by 
difficulties in hyperparameter selection and a decline in prediction stability as the lead time extends. 
This study introduces a hybrid model, the RS-LSTM-Transformer, which combines Random Search 
(RS), Long Short-Term Memory networks (LSTM), and the Transformer architecture. Applied to the 
typical Jingle watershed in the middle reaches of the Yellow River, this model utilises rainfall and 
runoff data from basin sites to simulate flood processes, and its outcomes are compared against those 
from RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models. It was evaluated against RS-LSTM, 
RS-Transformer, RS-BP, and RS-MLP models using the Nash–Sutcliffe Efficiency Coefficient (NSE), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Bias percentage as metrics. At a 1-h 
lead time during calibration and validation, the RS-LSTM-Transformer model achieved NSE, RMSE, 
MAE, and Bias values of 0.970, 14.001m3/s, 5.304m3/s, 0.501% and 0.953, 14.124m3/s, 6.365m3/s, 
0.523%, respectively. These results demonstrate the model’s superior simulation capabilities and 
robustness, providing more accurate peak flow forecasts as the lead time increases. The study 
highlights the RS-LSTM-Transformer model’s potential in flood forecasting and the advantages of 
integrating various data-driven approaches for innovative modelling.

Keywords  Deep learning, Flood forecasting, Rainfall-runoff, RS-LSTM-transformer, Random search 
optimization, The middle reaches of the Yellow River

In recent years, the intensification of global climate change and human activities has resulted in an increase in 
unpredictable extreme weather events such as floods, droughts, and storms1,2. Among these events, the impact of 
flood disasters has surpassed national boundaries and become a global concern3–5. The frequency, intensity, and 
scale of flood disasters continue to rise, posing significant risks and threats to human society, the economy, and 
the environment. Therefore, accurate flood prediction and timely implementation of corresponding protective 
measures have become crucial6–8. The simulation and analysis of rainfall-runoff processes play a vital role in flood 
forecasting and watershed water resources management9, especially for long-term predictions10. However, due to 
the presence of multiple complex physical processes, including spatiotemporal variations in rainfall-runoff trans-
formation, spatial heterogeneity of watershed land surface characteristics, and routing behavior of runoff11–13, 
flood processes exhibit nonlinearity, non-stationarity, spatiotemporal variability, and complex mechanisms of 
runoff formation14. This complexity poses challenges in rainfall-runoff simulation, making it a challenging task.

In the past few decades, various methods and models have been developed to simulate rainfall-runoff pro-
cesses in flood forecasting, including physical models, conceptual models, and data-driven models15,16. Physical 
and conceptual models, also referred to as process-based models, employ empirical and analytical equations 
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derived from physical phenomena17–19. These traditional hydrological models simulate rainfall-runoff and 
other hydrological processes by incorporating physical mechanisms or concepts, offering valuable insights into 
understanding watershed runoff20–22. Nevertheless, their practical application is limited due to the extensive 
requirement of hydrological and land surface data, as well as the need for accurate understanding of the runoff 
generation process23–25.

In contrast, data-driven models have the ability to capture the relationship between meteorological data and 
runoff without relying on explicit knowledge of the physical behavior of hydrological systems26. These models 
are capable of extracting intrinsic connections from large datasets and learning the corresponding relation-
ships among variables27. Consequently, they can simulate highly nonlinear and non-stationary relationships in 
hydrological systems28.

With the advancement of technology, data-driven models have gained increasing attention in the era of artifi-
cial intelligence and big data, and they have been widely applied in hydrology for runoff simulation29. Specifically, 
artificial neural networks (ANN) have shown high accuracy in modeling complex rainfall-runoff processes30,31, 
and perform comparably to physical models32. Research has also found that compared to commonly used regres-
sion models, ANN can provide more accurate predictions of runoff33. Yan et al. have scientifically predicted 
mid to long-term runoff by integrating a combination of different climatic factors into an improved BP model34. 
Though, ANN also has limitations, such as a lack of memory20,35, as it lacks an internal mechanism to handle 
sequential data, such as floods. This means that ANN cannot effectively capture temporal dependencies. In addi-
tion to ANN, other methods such as support vector machines (SVM), adaptive neuro-fuzzy inference systems 
(ANFIS), and multilayer perceptron (MLP) can be used to address modeling and optimization problems in flood 
forecasting36–38. Gao et al. have utilized a hybrid model combining the Soil and Water Assessment Tool (SWAT) 
with a Multilayer Perceptron (MLP) for runoff prediction, demonstrating high efficiency39.

Recurrent neural networks (RNNs) have been demonstrated to accurately and effectively handle time series 
data, addressing the limitations of artificial neural networks (ANNs) in this aspect40, which renders them as an 
efficient approach for simulating intricate dynamic hydrological processes15. In the late 1990s, a more modern 
architecture of RNN called Long Short-Term Memory (LSTM) was proposed41. As a significant advancement in 
the field of deep learning, LSTM addresses the issue of vanishing or exploding gradients that traditional RNNs 
face when dealing with long sequences by introducing gate mechanisms and memory cells. It captures and 
remembers the temporal dynamics of model inputs and processes data in sequential order, allowing for better 
capturing of long-term dependencies42. Currently, LSTM has been widely applied in various fields such as natural 
language processing, stock market prediction, and speech recognition43,44.

In recent years, there has been significant progress in the application of LSTM-based methods in flood fore-
casting, making them important technologies for river, reservoir, and urban flood prediction45–47. Prior research 
has highlighted the distinctive capabilities of LSTM methods in simulating rainfall-runoff processes48. Analysis 
of historical flood data and meteorological factors allows LSTMs to accurately predict flood trends, significantly 
aiding flood prevention efforts49,50. Man et al. has developed an enhanced LSTM model, markedly improving 
the accuracy of peak daily runoff predictions51. Yao et al. have devised a dynamic, highly accurate composite 
runoff model combining Adaptive Weighting Module (AWM), Convolutional Neural Networks, Gated Recur-
rent Units, and LSTM52. Despite these advancements, LSTM models require high-quality, substantial data, and 
hyperparameter optimization remains crucial for optimal simulation results53.

The introduction of attention mechanisms has been a significant breakthrough in the field of neural networks, 
providing an effective solution to the selective focus problem in information processing48. By automatically 
learning the intrinsic correlations and importance of data, attention mechanisms allow models to selectively 
focus on relevant parts for the task at hand. This enables better capturing of the relationships and important 
information among inputs and facilitates more in-depth processing. The advent of the Transformer model in 
2017 gained considerable recognition due to its support for parallel computation, fast training capabilities, and 
effective modeling of both short-term and long-term dependencies. It has shown promising results when applied 
to time series data analysis54. Nonetheless, to achieve better time series predictions for different tasks, researchers 
in the field have made various improvements to the Transformer model55–57. These improvements underscore 
the Transformer model’s predictive prowess across diverse domains. Recent investigations have highlighted the 
superiority of the Transformer model over LSTM in long-term hydrological forecasting58,59. Yet due to the self-
attention mechanism employed in both the encoder and decoder of the Transformer, it has high computational 
space complexity and weak perception of local information features. This makes the model susceptible to the 
influence of outliers, which needs further optimization considerations60. Despite this, the Transformer model 
exhibits great potential in the field of hydrological forecasting and warrants continued exploration and applica-
tion, similar to LSTM.

In this study, we explore the application of the RS-LSTM-Transformer coupled model in the field of flood 
prediction models. It focuses on the Jingle River watershed in the middle Yellow River, China, as a representa-
tive case. We developed the RS-LSTM-Transformer hybrid flood forecasting model by modifying the internal 
structure of the Transformer model and integrating it with LSTM and the RS random search algorithm. This 
model was validated using 98 real flood events. Performance metrics such as Nash–Sutcliffe Efficiency (NSE), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Bias were employed to evaluate the model’s 
performance, with comparisons drawn against RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models. The 
RS-LSTM-Transformer hybrid model aims to address significant challenges in simulating peak flow errors and 
enhancing the robustness of flood predictions, thus providing a scientific basis for flood control and mitigation 
in the watershed.
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Methods
RS algorithm
Randomized Search (RS) algorithm was proposed in 2012 as a more efficient alternative to traditional Grid 
Search algorithm for exploring hyperparameter space. Unlike grid search, RS introduces randomness into the 
search process, enabling a more efficient exploration of the hyperparameter space61. In order to achieve optimal 
model performance, RS was utilized to optimize the parameters of the LSTM-Transformer model, as well as 
the parameters of the LSTM, Transformer, BP, and MLP models for comparison. The framework for parameter 
optimization using the RS algorithm mainly comprises three steps:

Step 1: Determine the search space for each model’s parameters and set initial parameter values. Preliminary 
experiments were conducted through manual parameter tuning to identify key parameters that significantly 
impact the models, considering the large number of parameters and the need for efficiency and fairness. The pre-
liminary results revealed that the number of attention heads is crucial for LSTM-Transformer and Transformer, 
while the number of neurons plays a key role in LSTM, BP, and MLP models. Moreover, common adjustable 
parameters including time steps, batch size, and the number of cells were selected for all five models.

Step 2: The RS algorithm was employed to search for and optimize the selected parameters for each of the five 
models. NSE was utilized as the performance evaluation metric to assess the models’ performance and identify 
the optimal parameter combinations for each model.

Step 3: Construct the model with the best performance using the optimal parameter combinations obtained 
from Step 2.

As shown in Fig. 1, the framework outlines the process of parameter optimization for the five models using 
the RS algorithm. C1 to C5 represent the optimal parameter combinations for different models.

Figure 1.   The RS optimization algorithm was employed to search for optimal parameter combinations in a 
comparative framework that included LSTM-Transformer, LSTM, Transformer, BP, and MLP models. Through 
experimental methods, the framework identified both key parameters and the best parameter combinations.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11184  | https://doi.org/10.1038/s41598-024-62127-7

www.nature.com/scientificreports/

Improved transformer
In the field of flood forecasting, it has been observed that the original Transformer model has limitations when 
applied to multivariate time series data. The traditional Transformer model is based on an encoder-decoder archi-
tecture with attention mechanisms54. In translation tasks, positional encoding is utilized to capture the positional 
information of data points, which is crucial for accurate translation. Moreover, the decoder is responsible for 
decoding and generating information from the encoded data. However, for flood time series data, which involves 
predicting future values using multiple variables as inputs, the significance of positional encoding diminishes, 
and there is no requirement for parallel computation using a decoder structure. To better adapt the Transformer 
model to the task of flood forecasting, several improvements have been implemented. Firstly, positional encod-
ing and the decoder part have been removed since positional encoding has minimal impact on flood time series 
data. Secondly, the internal structure of the model has been adjusted by incorporating convolutional layers and 
global average pooling structures to effectively capture local features in the time series. Lastly, a fully connected 
layer has been employed to generate the forecasting results.

The improved Transformer model retains the multi-head scaled dot-product attention mechanism from the 
original Transformer. This attention mechanism involves mapping a query (Q) and a set of key-value pairs (K-V) 
to generate an output. The output is calculated as the weighted sum of values (V), with the weights determined 
by the similarity between the query and each value. The outputs of h scaled dot-product attentions are then fused 
together to generate the final output, where each attention output is referred to as a head. As shown in Fig. 2, it 
illustrates the structure of the multi-head scaled dot-product attention.

(1) Scaled Dot-Product Attention.

(2) Multi-Head Scaled Dot-Product Attention.

where Wi
Q ∈ Rdmodel×dk, Wi

K ∈ Rdmodel×dk, Wi
V ∈ Rdmodel×dk, WO ∈ Rhdv × dmodel, h represents the number of attention 

heads, dk = dmodel/h, d denotes the dimension of the vectors, and T denotes the transpose of a matrix.

RS‑LSTM‑transformer
In our improved Transformer model, we had integrated an LSTM layer in the input section to facilitate feature 
extraction and reconstruction of time series data. The LSTM layer effectively utilizes current data features and 
leverages its gate mechanism to determine whether to retain or forget previous features. As illustrated in Fig. 3, 
the integration leads to the establishment of an LSTM-Transformer model. The LSTM-Transformer model 
consists of several components: a single-layer LSTM with hidden units, multiple encoding layers (Encoders), 
and an output layer. The encoding layers include a multi-head scaled dot-product Attention, residual connec-
tions (Add), normalization (Norm), and convolutional layers with two one-dimensional convolutions (Conv1d). 
The convolutional layers are utilized to extract deep features from the data, reducing the number of trainable 
parameters through weight sharing and sparse connections, thereby enhancing forward propagation efficiency. 
Additionally, a Dropout layer is incorporated to prevent overfitting of the model. The output layer incorporates 
a Global Average Pooling layer to transform the vectorized data into a one-dimensional representation by tak-
ing the average across all dimensions. Subsequently, the data passes through a Dense layer for the final output. 
Finally, the output results are concatenated with the LSTM layer and passed through another Dense layer for the 
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Figure 2.   Multiple head scaling point product attention structure.
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ultimate output. We employed the RS optimization algorithm to construct the optimal RS-LSTM-Transformer 
model with the best parameters.

Case study
As one of the largest rivers in China, the Yellow River has a vast watershed with complex and variable hydrologi-
cal characteristics. Factors such as climate change have made flooding in the Yellow River a complex and serious 
problem. In particular, there have been significant changes in the underlying surface properties in the middle 
reaches of the Yellow River in the past 50 years.

As illustrated in Fig. 4, the Jingle watershed was selected as the representative research area for this study. 
Located in the northwest of Shanxi Province, China, the Jingle watershed is the second-largest tributary of the 
Yellow River in its middle reaches. The Jingle River originates from Shenchixian County, Xinzhou City, Shanxi 
Province, with a total length of 83.9 km. The average slope of the main stream is 6.7‰, and the watershed area is 
2799 km2, passing through Ningwuxian County and Jinglexian County in Shanxi Province. The Jingle watershed 
is located in the Loess Plateau region of the middle reaches of the Yellow River and has a semi-humid and semi-
arid continental monsoon climate. The average annual temperature in the watershed ranges from 3 °C to 12 °C, 
decreasing from south to north. The average annual precipitation is 538 mm, with large interannual variations 
and uneven spatial distribution. The average annual maximum peak discharge is 596 m3/s, with the measured 
maximum peak discharge reaching 2267 m3/s. The Jingle watershed is one of the areas prone to flood disasters 
in the middle reaches of the Yellow River.

The Jingle Hydrological Station, serving as the control station for the Jingle watershed, is located at approxi-
mately 111°55’ east longitude and 38°20’ north latitude. In this study, we collected hourly flow data from the 
Jingle Hydrological Station from 1971 to 2013, as well as hourly rainfall data from 14 other stations. These data 
cover the complete processes of 98 flood events. Among them, the first 78 floods were used for model calibration, 
while the remaining 20 floods were used for model validation. As shown in Table 1, the statistical characteristics 
of 98 flood events in the Jingle River watershed are detailed, with key features including Total Rainfall, Rainfall 
Duration, Rainfall Center, and Peak Discharge. The data indicate significant variations in rainfall duration, peak 
discharge, and rainfall center among events, highlighting the complexity of the rainfall-runoff process and the 
challenges in effectively modeling it.

Figure 3.   The structural diagram of the hybrid model combining LSTM and the Transformer with improved 
architecture.
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Experiments
Model environment settings and data processing
The experiments conducted, encompassing the current and subsequent ones, were carried out within the param-
eters outlined in Table 2.

First, we preprocessed the flood element data into a sliding window format and define an appropriate time 
step. By sliding the window along the time series, we extracted the data within each window as input features for 
the model. He input flood data can be represented as U = [Q,P], where the runoff data matrix is Q = [Q(t-T-i), 
Q(t-T-i + 1),… Q(t-T)]T, and the rainfall data matrix is P = [P1, P2,…,P13], Pj = [pj(t-T-i), pj(t-T-i + 1),…, pj(t-T)]T, 
(j = 1,2,…,13)(T represents the lead time, i denotes the time step) , The input shape is [(None,i,14)]. Here, Q(t-T) 

Figure 4.   The position and station distribution, as well as the river water system distribution, in the Jingle 
watershed in the middle reaches of the Yellow River, (a) depicts the location of the watershed, (b) illustrates the 
topographic variations within the watershed, while (c) presents a detailed hydrological network of the watershed 
(The map was created using ArcMap 10.8 software, and the drawing boundaries are sourced from https://​www.​
gpsov.​com/​cn2/).

Table 1.   Statistical Characteristics of 98 Flood Events in the Jingle River watershed, 1971–2013.

Flood events Initial date Total rainfall (mm) Rainfall duration (h) Rainfall center Peak discharge (m3/s)

1 1 July 1971 8.86 36 Ninghuabao 164.50

2 23 July 1971 63.40 69 Chunjingwa 261.21

3 31 July 1971 10.44 12 Dongzhai 286.00

4 7 August 1971 21.07 42 Ninghuabao 184.14

5 15 August 1971 7.60 16 Chunjingwa 145.00

6 27 August 1971 15.71 36 Chunjingwa 112.00

… … … … … …

93 23 September 2008 70.49 88 Oidongzi 132.00

94 10 August 2010 70.50 24 Songjiaya 67.00

95 11 July 2011 41.88 24 Dujiacun 54.35

96 26 July 2012 40.57 41 Ninghuabao 134.00

97 30 July 2012 41.95 41 Chashang 61.90

98 17 July 2013 29.91 32 Jingle 74.40

https://www.gpsov.com/cn2/
https://www.gpsov.com/cn2/
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represents the discharge at the current time, and Q(t-T-i) represents the discharge at historical times; p1(t-T), 
p2(t-T), …, pj(t-T) represent the precipitation at the first to j-th rainfall stations.

Next, we normalized the data using the max–min normalization method, scaling the values to fit within the 
range of (0,1). This normalization process helps improve the convergence speed and stability of the deep learning 
model, mitigates gradient propagation issues, enhances the generalization capability of the model, and optimizes 
the parameter updating process. Finally, we applied inverse scaling to the predicted data from the model to restore 
their physical meaning and interpretability, obtaining the final predicted discharge results.

RS‑LSTM‑transformer model building process
In the flood forecasting process, we employed a sliding window approach to perform rolling forecasts of runoff 
at different lead times. The sliding window moves along the time axis until it reaches the end of the dataset. 
The input variables consist of antecedent rainfall and runoff features. The LSTM-Transformer flood forecasting 
model is utilized to capture the nonlinear relationship between rainfall and runoff, and the RS optimization 
algorithm is employed to construct an optimal LSTM-Transformer model with the best parameters, resulting 
in the final output forecast.

As shown in Fig. 5, it illustrates the detailed schematic diagram of the LSTM-Transformer flood forecasting 
model, depicting the prediction process. Equations (4) and (5) represent the format of the input and output data 
for the model, and the specific process from input to output is as follows:

(1)	 Data Input: The flood input data is represented as U = [Q, P].
(2)	 LSTM Layer: The LSTM layer incorporates additional data features O and produces the vector UG = [QG, 

PG, OG]; The output shape is [(None, 1, 50)].
(3)	 Multi-Head Attention Layer: The multi-head attention layer maps the input to multiple subspaces. The 

output shape is [(None,1,50)].
(4)	 Residual & Normalization: The original input is added to the output from the previous step to prevent 

gradient explosion. The output shape is [(None,1,50)].
(5)	 Convolutional Layers and Dropout Layer: Instead of fully connected layers, two one-dimensional convo-

lutional layers are utilized for non-linear mapping. Dropout is applied to mitigate overfitting. The output 
shape is [(None,1,50)].

(6)	 Global Average Pooling and Fully Connected Layer: Global average pooling reduces the dimensionality of 
the data, while regularization is applied to the entire network structure to prevent overfitting. The output 
is obtained through a fully connected layer. The output shape is [(None,1,16)].

(7)	 Concatenate Feature Fusion and Fully Connected Layer: The output from the LSTM layer is concatenated 
with the output from the previous step, and the final result is obtained through a fully connected layer. The 
output shape is [(None,1)].

Model parameters comparison and optimization
Before training the model, it is crucial to establish appropriate hyperparameters based on experimental settings62. 
Through preliminary experiments, we identified five parameters that significantly influence the training per-
formance of the LSTM-Transformer model: attention head dimension, number of heads, fully connected layer 
dimension, number of encoding blocks, and LSTM layer neuron count. For comparative analysis, we also 
included the LSTM, Transformer, BP, and MLP models, utilizing NSE as the function. The RS algorithm was 
employed to identify the best hyperparameters. To enhance training efficiency, we focused on discussing a sub-
set of key parameters. As shown in Table 3, it displays the parameter configurations for each model. In the RS 

(4)U =











Q(t − T − i) p1(t − T − i) · · · p13(t − T − i)
Q(t − T − i + 1) p1(t − T − i + 1) · · · p13(t − T − i + 1)

...
...

. . .
...

Q(t − T) p1(t − T) · · · p13(t − T)











(5)Qoutput =













Q(T)

Q(T + 1)

...
...
...
...
...
...

Q(T + n)













Table 2.   The environment.

CPU GPU RAM

AMD Ryzen 7 4800H NVIDIA RTX 3070 8 GB 16 GB

OS Complier Library

Widows 10 × 6 Python 3.7.10 Tensorflow 2.4.0
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algorithm, we set the number of random samples (n_iter) to 50, the number of cross-validation folds (cv) to 5, 
and the random seed (random_state) to 5. By employing these settings, we successfully determined the optimal 
combination of hyperparameters for the LSTM-Transformer model, resulting in exceptional performance.

Comparison between different model benchmarks
To comprehensively evaluate the performance of the LSTM-Transformer model, we selected LSTM, Transformer, 
BP, and MLP as benchmark models. These models have been widely utilized in time series forecasting and 

Figure 5.   Detailed schematic diagram of the LSTM-Transformer flood forecasting model.

Table 3.   Model parameter setting.

\ LSTM-transformer LSTM Transformer BP MLP

Common parameters Number of heads = [8256]
Number of cells = [16,256] Number of cells = [16,256] Number of cells = [16,256] Number of cells = [16,256] Number of cells = [16,256]

Shared parameters
Time steps = [1, 12]
Batch size = [24,128]
Learning rate = 0.001
Dropout = 0.1

Other parameters

Number of encoding 
blocks = 4
Attention head dimen-
sion = 32
Fully connected layer dimen-
sion = 64

Number of hidden layers = 1

Number of encoding 
blocks = 4
Attention head dimen-
sion = 64
Fully connected layer dimen-
sion = 64

Number of hidden layers = 1 Number of hidden layers = 2
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extensively studied and validated. To ensure fairness and reliability, the RS algorithm was employed to optimize 
the hyperparameters of these benchmark models. During the comparison analysis, both the benchmark models 
and the LSTM-Transformer model were assessed at identical lead times (T = 1, 2, 3, 4, 5, 6 h). Evaluation metrics 
were calculated for all models to quantify their prediction accuracy, stability, and fitting capability.

LSTM is a specialized type of RNN that overcomes the gradient vanishing problem and effectively addresses 
long-term nonlinear dependencies41. In the field of hydrology, flood processes often exhibit complex nonlinear 
and time-varying characteristics. The memory cells and forget gates within LSTM enable the model to auto-
matically select and retain important historical information, thereby enhancing the accuracy and reliability of 
flood discharge forecasting. Gated Recurrent Unit (GRU) models, possessing a structure akin to LSTM but with 
less complex computations and a reduced number of parameters, are employed as benchmark models as well63. 
Therefore, LSTM and GRU are used as benchmark models.

Among all Artificial Neural Networks (ANNs), Backpropagation Neural Network (BP) is a powerful algo-
rithm widely applied in flood forecasting64. Based on the error backpropagation algorithm, the BP model is a 
feedforward neural network that can capture nonlinear relationships and temporal features in flood processes 
through training and learning from historical flood data65. Therefore, BP is employed as a benchmark model.

Multilayer Perceptron (MLP) models are feedforward neural networks with multiple hidden layers capable 
of effectively handling nonlinear problems66. Flood processes are influenced by complex interactions among 
multiple factors, and the combination of multiple hidden layers and the introduction of nonlinear activation func-
tions in MLP models allow for better capturing of these complex relationships67. Hence, MLP is also employed 
as a benchmark model.

Performance evaluation criteria
In this study, the performance of the model’s predictions was evaluated using the Nash Sutcliffe efficiency (NSE), 
root mean square error (RMSE), mean absolute error (MAE), and bias as evaluation metrics. The mathematical 
expressions for these metrics are as follows:

In the equations, Q and Qi the discharge of the simulated and observed hydrographs, respectively.Q and Qi 
represent the mean of the discharge of the simulated and observed hydrographs, respectively. i represents the 
i-th moment, n is the data points number;

NSE values range from − ∞ (no fit) to 1 (perfect fit); RMSE spans from 0 (perfect fit) to + ∞ (no fit). MAE, the 
average absolute error, describes the difference between observed data and simulation outcomes. Bias measures 
the deviation of predictions from actual values, with a range from − 100% to 100%, where closer to 0 indicates 
smaller deviations53. However, these model indicators have limitations; for example, RMSE quantifies error size 
but is overly sensitive to large errors, obscuring the model’s normal performance. MAE indicates average error 
levels but does not distinguish error direction, lacking the ability to display model biases. Therefore, model 
evaluations should integrate multiple indicators such as NSE, RMSE, MAE, and Bias for a comprehensive per-
formance analysis68.

Results and discussion
Comparison of overall flood forecasting effects
As illustrated in Fig. 6, it presents observed and estimated hydrographs of the RS-LSTM-Transformer, RS-LSTM, 
RS-Transformer, RS-BP, and RS-MLP models, representing five different models, during the calibration and 
validation periods for lead times of 1h, 3h, and 6h. It can be observed that the predicted discharge hydrographs 
closely match the observed discharge hydrographs.

As shown in Table 4, it presents a statistical evaluation of the forecasting performance of the five models at 
lead times of 1h, 3h, and 6h. Upon comparing the results, it is clear that the RS-LSTM-Transformer model exhib-
its the best forecasting performance at a lead time of 1h. At 1h of lead time, the NSE, RMSE, MAE, and Bias% 
during the calibration and validation periods are 0.970, 14.001 m3/s, 5.304 m3/s, 0.501% and 0.953, 14.124 m3/s, 
6.365 m3/s, 0.523%, respectively, indicating that the predictions are very close to actual values. At 6h of lead time, 
the accuracy of the RS-LSTM-Transformer model decreases; the corresponding values for NSE, RMSE, MAE, 
and Bias% during the calibration and validation periods are 0.892, 35.522 m3/s, 24.828 m3/s, 8.896% and 0.875, 
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35.674 m3/s, 26.677 m3/s, 9.958%. Compared to the RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models, 
the RS-LSTM-Transformer model consistently outperforms them in terms of various forecasting performance 
evaluation metrics. This demonstrates its superior capability in capturing the non-linear relationship between 
rainfall and runoff. As shown in Supplementary Tables 1 and 2, the performance of each model under initial 
parameter settings and trial-and-error tuning methods is displayed. A comparison with Table 4 reveals the clear 
superiority of using the RS optimization algorithm for hyperparameter tuning across models, as opposed to 
initial settings and random trial-and-error methods.

As shown in Fig. 7, The scatter plots in Fig. 7 compare the observed and predicted values for different lead 
times (T = 1 h, 3 h and 6 h) during five model validation periods. It can be observed that compared to the 
RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models, the scatter plots and fitting lines of the RS-LSTM-
Transformer hybrid model are closer to the 1:1 line. This indicates that the RS-LSTM-Transformer model has 
smaller deviations between predicted and observed values, outperforming other models at the same lead time 
and better reflecting the relationship between predicted and observed discharge. Therefore, the performance of 
the RS-LSTM-Transformer model in runoff forecasting is superior to that of other models.

However, each model shows several outliers at T = 3 and T = 6 h, mostly centered at high discharge points. By 
comparing the model-predicted discharge points with the observed values, two reasons for this phenomenon 
were identified: firstly, the models exhibit abnormal responses under the influence of sudden changes in rainfall 
and runoff data; secondly, as the lead time increases, the model predictions show a lagging effect, resulting in a 
significant discrepancy between the lagged high discharge points and the contemporaneous observed discharge, 
which is manifested as outliers in the graph.

Figure 6.   Comparison of overall flood forecasting results between the calibration period and validation period 
for five models within different lead times of 1, 3, and 6 h.

Table 4.   Performance comparison of five models in runoff prediction during calibration and validation 
periods (Lead times = 1 h, 3 h, and 6 h).

Lead time(h) Model

Calibration Validation

NSE RMSE/(m3·s−1) MAE/(m3·s−1) Bias% NSE RMSE/(m3·s−1) MAE/(m3·s−1) Bias%

1 h

RS-MLP 0.909 25.574 16.852 1.130 0.908 26.323 17.321 1.144

RS-BP 0.905 28.012 18.012 0.970 0.901 28.125 18.311 0.972

RS-Trans-
former 0.925 18.327 10.147 0.781 0.920 19.524 11.128 0.816

RS-LSTM 0.949 15.745 8.393 0.615 0.943 16.125 8.669 0.681

RS-LSTM 
-Transformer 0.970 14.001 5.304 0.501 0.953 14.124 6.365 0.523

3 h

RS-MLP 0.865 34.102 27.382 7.101 0.861 39.102 28.312 7.124

RS-BP 0.872 35.524 27.008 7.401 0.862 36.174 28.705 7.512

RS-Trans-
former 0.901 27.058 19.037 5.982 0.882 28.211 20.155 6.332

RS-LSTM 0.926 21.001 14.005 5.605 0.915 21.358 14.053 5.580

RS-LSTM 
-Transformer 0.948 18.024 10.854 4.072 0.932 19.108 10.633 4.105

6 h

RS-MLP 0.761 78.285 63.757 21.857 0.751 80.124 64.135 22.151

RS-BP 0.788 71.207 59.278 20.001 0.783 72.258 61.117 20.855

RS-Trans-
former 0.843 52.570 43.877 12.195 0.832 55.845 45.844 14.102

RS-LSTM 0.861 42.003 33.005 11.003 0.859 42.102 33.185 11.384

RS-LSTM 
-Transformer 0.892 32.522 24.828 8.896 0.875 35.674 26.677 9.958
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Moreover, a clear observation from Fig. 7 and Table 4 reveals that the accuracy of predictions from all five 
models decreases as the lead time increases. From panels (a), (b), to (c) of Fig. 7, the correlation coefficient (R2) 
for the RS-LSTM-Transformer model is 0.973, 0.942, and 0.903 at lead times of 1 h, 3 h, and 6 h, respectively. 
The data points predicted by each model, including the RS-LSTM-Transformer, are more dispersed. This is due 
to a larger time interval between the inputs and outputs in the training set reduces the data correlation, leading 
to decreased prediction accuracy of machine learning models.

As depicted in Fig. 8, the Taylor diagrams and violin plots compare various models during the validation 
period at Jingle Station. In panels 8(a) and 8(b), the implemented models are further compared using Taylor 
diagrams and violin plots. The Taylor diagrams clearly show that the RS-LSTM-Transformer model has a standard 
deviation closest to the observed values, the highest correlation, and the lowest squared errors, followed by the 

Figure 7.   Scatter plots of observed and predicted discharge under different lead times for five models in the 
validation period.

Figure 8.   Comparison of Taylor Diagrams and Violin Plots for Various Models During the Validation Period at 
Jingle Station.
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RS-LSTM and RS-Transformer models. The violin plots vividly demonstrate that the distribution of predicted 
flow points by the RS-LSTM-Transformer model is closest to the actual measurements, while the RS-MLP model’s 
distribution is the most divergent, especially visible in the distribution of predicted peak values. All these charts 
validate the test statistics provided in Table 4, indicating that the RS-LSTM-Transformer model outperforms 
others in short-term flood forecasting tasks.

Comparison of single‑event flood forecasting effectiveness
As shown in Fig. 8, in order to evaluate the performance of five models in flood forecasting, we conducted 
model validation on two typical flood events during the verification period. The two events, referred to as Flood 
1 (Fig. 9a–c) and Flood 2 (Fig. 9d–f), represent different characteristics. Flood 1 is a single-peak flood event 
with a relatively low peak discharge, while Flood 2 is a double-peak flood event with a higher peak discharge. 
By comparing the rainfall-runoff hydrographs and scatter plots in Fig. 9, we further analyzed the differences in 
the model predictions for these two flood events at different lead times (T = 1 h, T = 3 h and T = 6 h), aiming to 
gain deeper insights into the performance of different models. The dispersion of data points in the scatter plots 
and the distance between the fitted line and the 1:1 line in Fig. 9 provide visual indications of the magnitude of 
errors between the observed and predicted discharge under different lead times and different models.

Based on the observation of the rainfall-runoff graph in Fig. 9a, it can be observed that when the lead time is 
1 h, the predicted flow process lines of the five models closely match the measured flow process line. However, 
there are some fluctuations in the RS-MLP and RS-BP models during the lower discharge stages before the peak 
discharge. In comparison, the RS-Transformer and RS-LSTM models perform better, with the RS-LSTM-Trans-
former model exhibiting the best stability. At lead times of 3 h and 6 h (Fig. 9b,c), the predictive performance of 
all five models decreases, and the differences gradually become apparent.

We primarily analyzed these five models in terms of the stability, lagging effect, and underestimation of 
peak discharge in predicted results. From a stability perspective, we compared the fluctuation levels of the 
simulation results of the RS-MLP and RS-BP models to the observed values. We found that when the lead time 
increased from 1 to 3 h, the fluctuation level of these two models also increased. Additionally, when the lead 
time was extended to 6 h, both models exhibited significant fluctuations before and after the peak discharge. 
The RS-Transformer model also showed fluctuations under a 6-h lead time. In comparison, the RS-LSTM and 
RS-LSTM-Transformer models have largely overcome this issue, with their predicted flood hydrographs display-
ing minor fluctuations but overall exhibiting stable performance69. However, when the lead time reached 6 h, 
the performance of the RS-LSTM model was inferior to that of the RS-LSTM-Transformer model. Regarding 
the lagging effect in the models’ prediction results, the RS-Transformer, RS-LSTM, and RS-LSTM-Transformer 
models performed well, while the other two models showed noticeable lag. Concerning the underestimation of 
peak discharge, the predicted values of all models were generally lower than the observed values in most flood 
forecasting processes. However, the RS-LSTM-Transformer model more accurately predicted the peak discharge 
compared to the LSTM model, showing closer agreement with the actual flood process. This suggests that the 
RS-LSTM-Transformer model is more sensitive to rainfall and runoff processes.

As the lead time increases, the forecasting performance of all models deteriorates, and there is an increasing 
tendency to underestimate peak discharge and lag. This is because as the lead time lengthens, the correlation 
between the input data and the target discharge data decreases, making it more challenging to accurately learn 
and extract flood data features. Compared to other models, the RS-LSTM-Transformer model exhibits smaller 

Figure 9.   Comparative analysis of observed discharge and prediction results of RS-LSTM-Transformer, 
RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models (flood 1 : event 19,980,711, flood 2: event 20,030,729).
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overall prediction bias at different lead times and achieves the best performance in flood forecasting and rainfall-
runoff simulation.

Additionally, when comparing the prediction results of two flood events with different characteristics (single-
peak shape and lower peak discharge vs double-peak shape and higher peak discharge) at lead times of 1, 3, and 
6 h, as shown in Fig. 9a–f, all models perform worse in simulating the flood event with a double-peak shape and 
higher peak discharge. This is due to the involvement of complex nonlinear and spatiotemporal variations in the 
rainfall-runoff process. For the flood event with a double-peak shape and higher peak discharge, its formation 
mechanism may involve more environmental factors and hydrological processes, introducing more uncertainty 
and stochastic factors that make its characteristics harder to capture by current models. From the predicted 
results of the peak discharge for Flood Event 1 (slightly below 500 m3/s) and the two peaks in Flood Event 2 
(one slightly above 1200 m3/s and the other slightly below 200 m3/s), it can be observed that the RS-MLP model 
is more sensitive to high-flow flood processes, while the RS-BP model provides more accurate predictions for 
low-flow peak floods.

Finally, comparing the performances of RS-Transformer and RS-LSTM in terms of peak magnitude and lag, 
it is found that LSTM can more accurately predict the peak magnitude, while the Transformer model is closer to 
the actual situation in terms of lag. When employing machine learning in flood forecasting models, it is common 
to encounter challenges such as the underestimation of peak flows and delays in forecasts. Previous studies have 
identified these issues with single models like LSTM in flood prediction tasks70. However, the hybrid RS-LSTM-
Transformer model has markedly improved these shortcomings. The RS-LSTM-Transformer model effectively 
combines the features of both LSTM and Transformer. LSTM excels at capturing long-term dependencies and 
temporal patterns within sequences, while Transformer enhances the model’s ability to discern dependencies 
between different positions in the sequence. Consequently, the RS-LSTM-Transformer model more accurately 
captures temporal patterns and dependencies in flood flow forecasting, leading to improved predictive perfor-
mance. Therefore, the RS-LSTM-Transformer model can more accurately capture the temporal patterns and 
dependencies in flood discharge forecasting, thereby improving the prediction performance.

Model performance evaluation
Robustness evaluation
Four evaluation metrics, namely NSE, MAE, RMSE, and Bias, were employed in the study to evaluate the predic-
tive performance of the models. As shown in Fig. 10, it illustrates the trends of these evaluation metrics during the 
validation period, with model type and lead time as the x–y axes and the model evaluation metrics as the z-axis.

Comparative analysis through subfigures 10(a), (b), (c), and (d) clearly demonstrates that under the same 
forecast horizons, the RS-LSTM-Transformer model excels across all evaluation metrics—NSE, MAE, RMSE, 
and Bias—highlighting its superior performance in simulating rainfall-runoff. The predictive accuracy of all 
five models declines as the lead time extends, illustrating the impact of lead time on model precision. Figure 10 
collectively showcases the higher robustness of the RS-LSTM-Transformer model in long-term forecasting. 
Although its accuracy decreases over time, the decline is relatively gradual. In contrast, the RS-BP and RS-MLP 
models display a steeper drop in performance indicators, particularly when the lead time period exceeds four 
hours, as dramatically evident in subfigure 10(d), underscoring their limitations in long-term predictions. The 
development of the RS-LSTM-Transformer model represents a novel endeavor in the field of flood forecasting 
using deep learning, showcasing its effectiveness in flood prediction and simulation. In the future, adjustments 
to the model structure to reduce training time and the incorporation of supplementary methods should be 
considered to enhance both the accuracy and stability of the predictions.

Comparison of model training efficiency
As shown in Fig. 11, it presents the training time statistics for five models (RS-LSTM-Transformer, RS-LSTM, 
RS-Transformer, RS-BP, and RS-MLP) employed in rainfall-runoff simulation experiments with a 1-h lead time. 
The left plot illustrates the distribution characteristics of training time consumption, while the right plot sum-
marizes the maximum, minimum, and average training times. In general, the models can be ranked in descend-
ing order of training time as follows: RS-LSTM-Transformer > RS-Transformer > RS-LSTM > RS-BP > RS-MLP, 
primarily influenced by the complexity of the model structure. Despite a slight increase in training time for 
RS-LSTM-Transformer compared to RS-Transformer, the former exhibits a more concentrated distribution of 
training time results.

This phenomenon arises from incorporating the LSTM layer into the input part of the Transformer in the 
RS-LSTM-Transformer model. The LSTM layer initially processes the input data and selects important infor-
mation to pass on to the subsequent Transformer layer. As a result, the amount of information and complexity 
that the Transformer needs to handle is reduced, potentially improving the training efficiency of the model and 
facilitating convergence, leading to more stable training results.

Universality of the RS‑LSTM‑transformer model
To assess the versatility of the RS-LSTM-Transformer model, we conducted a study forecasting flood events in 
the Guxian watershed in Luohe river using the RS-LSTM-Transformer and compared its performance with the 
LSTM-Transformer and Transformer models. The Guxian watershed in the Luo River, along with the Jingle water-
shed, features different climates, land uses, and hydrological characteristics. Supplementary Figs. 2, 3, and Table 3 
provide a comparison of flood forecasting results for the RS-LSTM-Transformer model in the Guxian watershed 
of the Luo River, demonstrating superior performance compared to the Jingle watershed of the Yellow River. In 
the Guxian watershed, at 1 h of lead time, the calibration and validation periods for the RS-LSTM-Transformer 
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showed NSE, RMSE, MAE, and Bias values of 0.991, 2.489 m3/s, 2.102 m3/s, 0.445% and 0.989, 4.128 m3/s, 4.068 
m3/s, 0.487% respectively, indicating highly accurate predictions.

Conclusions
We proposed a hybrid model, the RS-LSTM-Transformer, to improve rainfall-runoff process simulation. This 
model, which incorporates the framework of the Transformer model, includes an LSTM layer and tunes its 
parameters using the Randomized Search Optimization technique. The effectiveness of the model is vali-
dated through 98 measured flood instances. For lead times ranging from 1 to 6 h, the RS-LSTM-Transformer 

Figure 10.   Robustness evaluation results of RS-LSTM-Transformer, RS-LSTM, RS-Transformer, RS-BP, and 
RS-MLP models.

Figure 11.   Comparison of Training Efficiency and Time Consumption for LSTM-Transformer, LSTM, 
Transformer, BP, and MLP Models.
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outperformed the RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models, consistently exhibiting superior 
performance. It achieved an NSE exceeding 0.875 during the validation phase, with RMSE, MAE, and Bias 
maintained below 36 m3/s, 27 m3/s, and 10%, respectively. As the lead time increases, the predictive accuracy 
of various models diminishes. Yet, the RS-LSTM-Transformer model exhibits a modest downward trend, high-
lighting its robustness and stability.

In general, the RS-LSTM-Transformer model achieves promising flood forecasting results in the Jingle water-
shed of the dynamic Yellow River, which is characterized by rapid changes in underlying surface conditions. 
This highlights its potential in predicting extreme flood events. The RS-LSTM-Transformer model significantly 
enhances the accuracy and stability of flood forecasting through its hybrid architecture. The application of 
random search techniques has effectively resolved the challenges of parameter selection in machine learning 
models. However, the performance of the model depends on high-quality data, and it faces challenges related to 
computational resource demands and limited interpretability.

In this study, several pressing issues remain to be addressed, particularly how to further reduce forecast 
uncertainty and enhance model accuracy and stability over longer forecast horizons. One potential direction for 
future research could involve integrating physics-based models with deep learning techniques. By incorporating 
environmental factors such as soil moisture, evaporation, and temperature, a more robust forecasting system 
could be developed. Additionally, we plan to test the model’s transferability across different hydro-meteorological 
conditions to establish algorithmic robustness.

Data availability
The datasets analyzed during the current study are not publicly available but are available from the correspond-
ing author on reasonable request.
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