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Using optical coherence 
tomography to assess luster 
of pearls: technique suitability 
and insights
Yang Zhou 1,2*, Lifeng Zhou 1, Jun Yan 3, Xuejun Yan 3 & Zhengwei Chen 2

Luster is one of the vital indexes in pearl grading. To find a fast, nondestructive, and low-cost grading 
method, optical coherence tomography (OCT) is introduced to predict the luster grade through the 
texture features. After background removal, flattening, and segmentation, the speckle pattern of the 
region of interest is described by seven kinds of feature textures, including center-symmetric auto-
correlation (CSAC), fractal dimension (FD), Gabor, gray level co-occurrence matrix (GLCM), histogram 
of oriented gradients (HOG), laws texture energy (LAWS), and local binary patterns (LBP). To find 
the relations between speckle-derived texture features and luster grades, four Four groups of pearl 
samples were used in the experiment to detect texture differences based on support vector machines 
(SVMs) and random forest classifier (RFC)) for investigating the relations between speckle-derived 
texture features and luster grades. The precision, recall, F1-score, and accuracy are more significant 
than 0.9 in several simulations, even after dimension reduction. This demonstrates that the texture 
feature from OCT images can be applied to class the pearl luster based on speckle changes.

Pearls and their products are popular gems because of their natural characteristics. The yield of Chinese pearls 
is dominant worldwide, and more than 90% of the products are from the Chinese jewelry  industry1. The price of 
a pearl depends on its color, shape, luster, surface perfection, and more, and the price is highly related to grad-
ing based on the above index. Therefore, pearl grading is paid close attention. However, it still relies on manual 
operation. Manual inspection is time-consuming, and the grading errors are due to subjective deviation. Hence, 
the fast and nondestructive grading method has been taken as the critical point.

Machine vision has the advantages of accuracy, consistency, repeatability, and low cost. Cao et al. proposed 
a method for automated shape grading of pearls by the ratio of the long axis to the short axis of the  pearl2. Zhou 
and Ma found defects in pearls based on the shape and texture features of defect  regions3. Vigorelli et al. instigated 
the distinction between natural and cultivated pearls by X-ray micro-tomographic and electron microscope 
 analysis4. Gordon et al. measured the nacre thickness of round pearls by micro-radiography5. Zhu et al. presented 
a new real-time method to measure and grade the pearl color using a CCD  camera6. Nevertheless, the electron 
microscope is not a nondestructive method, and after the X-ray radiation, the color of the pearl fades, leading 
to value  loss7.

In recent years, spectroscopy-based methods have been introduced to pearl grading, the reflectance of pearls 
and their peak was recorded, and then the pearl color was  classified8. The decaying rate of the fluorescence spectra 
was related to the nacre characteristic and disclosed the type of  treatments9. The UV-visible spectra were used as 
input to the artificial neural network, and the origin, species of the mollusk, color donor, possible color enhance-
ment, and donor color were predicted by a trained  network10,11. With the help of a hyper-spectral camera, the 
spatial information combined with spectra was acquired, and feature extraction and quantification approaches 
were used to predict the color, glossiness, and thickness of  nacre12.

Luster, sometimes called glossiness, is decided by the combined effect of specular and diffuse reflection at the 
visible  band13. The luster of pearls could depend on the different  CaCO3 phases in their structures, and luster 
is one of the most important indexes for pearl grading. Even if it was measured or evaluated by UV-Vis spec-
troscopy by getting the color scales from spectra, the roundness of the surface causes an unstable measurement 
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compared to the flat  surface14,15. Due to the solid specular reflection on the surface of pearls, resulting in CCD 
saturation, the traditional machine vision approach cannot accurately evaluate glossiness. Hence, the industry’s 
nondestructive and rapid perdition of pearl luster is still a technical challenge.

Optical Coherence Tomography (OCT) can get a depth-resolved image of the pearl surface and already has 
many applications for peal inspection. The thickness measurement of nacre is a typical successful case, and OCT 
has become the national standard in China for the index of nacre. With the help of a high penetration depth 
device, the nucleus can also be observed through light penetrating the nacre. At the same time, it is easy to clas-
sify pearls into beaded and non-beaded categories. Meanwhile, cracks, crevices, or blemishes in the nacre and 
nucleus were  detected16–19. Based on the above feature of OCT, our research group has applied it to inspect the 
internal defect of pearls by proposing a fully automated algorithm for defect  classification20. The spectroscopic 
OCT allows spectroscopic measurements at the subsurface range of pearls, and it was used to classify authen-
tic and artificial pearls in the NIR spectral  range21. To overcome the drawbacks of 2D images or mechanical 
methods, our team also proposed an automated grading method of pearl roundness based on 3D OCT data and 
designed a new digital rating index for roundness  classification22. The polarization-sensitive optical coherence 
tomography (PS-OCT) was used for pearl classification, and the difference between real and fake pearls was 
found in the Mueller matrix figured out from the OCT  image23. By performing connected region labeling, fresh 
and saltwater pearls were classified. Moreover, the internal defects in pearls were detected by reviewing the M00 
element  chart23. OCT has become an effective method for monitoring micro-structure change and has more 
application prospects in the pearl industry.

Many automated image processing methods have been proposed for different OCT applications. We aim to 
relate the feature extracted from the OCT image to the luster variation. However, there is no inevitable correla-
tion between changes in the cluster and morphology. The luster feature belongs to one kind of optical property. 
Different  CaCO3 phases of pearl cause contrast or refractive index (RI) differences, which correlate with the 
underlying luster characteristic. For morphological features, speckle is often regarded as noise. Nevertheless, for 
optical features, the speckle may contain information on nacre structure. Schmitt et al. proved that the ‘inherent’ 
speckle is consistent, located in the same region in repeated OCT images, and regarded as a specific aggregate 
 texture24, it manifests optical features as an optical signature based on structural changes. To quantitatively ana-
lyze these signatures, objective features were extracted as a digital index to make the decisions for luster level, 
among which texture features provide a quantitative evaluation to speckle patterns with many successful cases 
in the medical  area25. Textures in pearl OCT images are not uniform because of grayscale variation. The previ-
ous research findings on texture have inspired us to believe that a combination of texture descriptors might be 
a more useful tool to reveal the change of speckles to the luster.

This study aims to (1) investigate the capability of OCT to classify the luster index of pearls accurately and 
(2) propose a flowchart for extracting different texture features from OCT images and aching automated clas-
sification of pearls based on luster. The study’s results will supplement automated pearl grading techniques for 
academic and industry applications.

Results
The typical OCT images of pearl were shown in Fig. 1, and the ROI region after flattening and segmentation was 
also displayed in Fig. 1c. From Fig. 1a, we found it difficult to discriminate the luster of pearls by native eyes, 
and the texture features were worth investigating for the speckle patterns. From Fig.1b, the fitted edge coincided 
with the actual surface of the nacre, and then the ROI, after flattening and segmentation, was the demanded 
target for the following texture analysis.

The data set of pre-processed pearl OCT images was split into train and test groups by the ratio of 8/2, result-
ing in the two groups being 92 and 24, respectively. All 237 features were used for building the SVMs and RFC 
models, while the hyperparameters of two classifiers were randomized and searched under 50,000 iterations. As 
a result, the optimal kernel, gamma, and C values of SVMs were ‘rbf,’ 0.002, and 2.6, while the optimal criterion, 
max features, and number of RFC were ‘gini,’ 10 and 25, respectively.

Figure 1.  (a) the original OCT image of pearl (b) rough edge and fitted edge (c) ROI after segmentation.
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For another prospect to feature selection, principal component analysis (PCA) was applied to get the main 
principal components or directions in the feature space that account for the most variance, and the high dimen-
sional data was projected to low dimensional space, which was considered as dimension reduction. The scatter 
of all the samples on the first two principal components that explained the most variance was plotted in Fig. 2, 
in the components space, different luster groups were clustered at different positions, and it had the potential 
to find an interface among the groups. In the prediction, the scores of the first 6 components were used as the 
input of SVMs and RFC, where those 6 components accounted for more than 90% variance. Table 1 shows the 
luster grading result from two classifiers based on all 237 features and scores after PCA. The experiment under 
each setting was run ten times, and the average, maximum, and minimum values of Precision, Recall, F1-Score, 
and Accuracy were listed.

From Table 1, the accuracy of each prediction reached more than 90%, indicating that the texture features 
were related with the luster changes. The performance of RFC was slightly better than that of RFC because 
the SVMs aimed to find a classification hyperplane causing higher sensitivity to feature data distribution. The 
RFC established a multi-level decision tree to achieve optimal generalization performance that did not require 
outlier handling and had better adaptability under different distributions. After dimension reduction by PCA, 
the predictive performance of SVMs was slightly decreased. Nevertheless, the predictive performance of RFC 
remains essentially unchanged, indicating that the RFC had better generalization ability. Overall, there was no 
significant difference in predictive performance between the two classifiers, and the experiment results proved 
the feasibility of applying OCT technology to pearl luster grading.

Following this, the sequential feature selector removes features individually to find the feature contributions. 
The mask of selected features was plotted and shown in Fig. 3. From Fig. 3a–r, 10–90% of all the features were 
select classifier scores, and the distribution of feature type was illustrated.

The FD value almost had no contribution to luster classification during the feature selection. However, the 
rest of GLCM, LBP, Gabor, HOG, Laws, and CSAC were related to the luster changes of the pearl OCT image. 
The amount of LBP, GLCM, and Gabor features was reduced rapidly, and the amount of HOG, Laws, and CSAC 
features showed a slight decrease to illustrate that the HOG, Laws, and CSAC played an essential role in the 
classification of speckle patterns. The roles of LBP, GLCM, and Gabor existed when 10% or 20% of features were 
selected, and some of them still affected classification.

Figure 2.  The distribution on the first two principal components (a) train set (b) test set.

Table 1.  The prediction results of SVMs and RFC.

Experiment

Precision Recall F1-score Accuracy

Max Min Avg Max Min Avg Max Min Avg Max Min Avg

SVMs_train_all 1 0.98 0.99 1 0.98 0.99 1 0.98 0.99 1 0.98 0.99

SVMs_test_all 1 0.92 0.95 1 0.90 0.94 1 0.89 0.93 1 0.92 0.94

RFC_train_all 1 1 1 1 1 1 1 1 1 1 1 1

RFC_test_all 1 0.90 0.94 1 0.91 0.95 1 0.90 0.94 1 0.92 0.94

SVMs_train_PCA 0.99 0.95 0.97 0.99 0.95 0.97 0.99 0.94 0.97 0.99 0.95 0.97

SVMs_test_PCA 1 0.92 0.97 1 0.90 0.96 1 0.91 0.96 1 0.92 0.96

RFC_train_PCA 1 1 1 1 1 1 1 1 1 1 1 1

RFC_test_PCA 1 0.91 0.97 1 0.91 0.96 1 0.91 0.96 1 0.92 0.97
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Discussion
At the point of a fast and nondestructive method for pearl luster grading, we only found that UV reflectance 
spectroscopy combined with a neural network was used to predict the luster of pearl  samples10,11. In the report, 
only a few samples were tested, and it only showed that no predictive model was 100% accurate for luster grad-
ing. It was the first time we had used the OCT technique for pearl luster grading, and our research provided a 
new idea for classifying pearl glossiness.

Due to the characteristics of OCT devices and the material themselves, speckle has always existed, and it is 
often considered a type of noise that is routinely  removed26. However, our research is from another perspec-
tive. The speckle contains information of material relevance and can be divided into two categories: stochastic 
speckle and inherent speckle. The stochastic speckle is random and caused by multiple scatter of light. It was 
removed by averaging OCT scans during the image acquisition. By contrast, inherent speckle was caused by 

Figure 3.  The result of feature selection. 10–90% of features were selected for SVMs and RFC.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11126  | https://doi.org/10.1038/s41598-024-62125-9

www.nature.com/scientificreports/

multiple scattering effects when light penetrated through the nacre of pearl, which was related to the material 
characteristic and was consistent in repeated tests. Cumulatively, the inherent speckle generated the specific 
texture features that might be correlated with luster changes. The texture can reflect subtle changes in optical 
properties and provide a potential tool for pearl luster grading, which was the fundamental idea of our research.

The speckle pattern was digitized with the help of texture features, and the machine learning algorithms 
achieved satisfying accuracy. The core investigation opened a new technique view for pearl grading and made 
up for the deficiency from other additional methods described in the introduction section. Compared with our 
previous study, the OCT technique performed an alternative way to grade the pearl luster. For the RBG camera, 
with the limitation of the dynamic range, it was not easy to calibrate the amount of light reflected from the pearl 
surface. Similarly, any spectroscopy-based measure also had saturation, and the luminous flux was affected by 
some factors, such as shape, variety, treatment, etc. Nevertheless, the OCT image provided a direct approach to 
reveal the subsurface structure, essentially, the tomographic image was constructed by light changes, which cor-
related more with glossiness/luster. Recently, OCT has been introduced to the pearl industry for nacre thickness 
measurement, treatment analysis, and inter-defect inspection. Unfortunately, finding a relation between the OCT 
image and pearl luster was difficult, which prompted us to use texture features in luster grading and expanded 
the application scope of OCT technology.

The OCT device was expensive a few years ago, making it only affordable in the research scenarios. Nev-
ertheless, the low-cost OCT device gradually emerged and was promoted into the pearl industry. Compared 
with the traditional 2D machine vision, we used 3D tomographic images to characterize the luster of pearls by 
which more features were extracted. It took 2 S for image workflow in a routine laptop, which was acceptable in 
an actual application. Also, to increase the speed of parallel processing based on GPU devices, computational 
efficiency would be improved based on increased equipment costs.

In recent decades, deep learning networks have been widely applied in classification tasks, and the network 
needed large amounts of known samples for  training27. We also used our feature data set to train a deep network 
and found that the perdition accuracy of the trained net for the test set was over 95%. Compared with SVMs or 
RFC, the performance was almost at the same level, and the net might have been severely over-fit. Our feasibil-
ity study did not have enough samples due to the limited funding, so we were unsure if the deep network was 
suitable for our study.

We also tried to use some new methods for small sample clarification. With very little supervision from 
labeled data, few-shot learning was one of the typical  ones28. In the original, the few-shot classifier could rec-
ognize new categories from very few labeled examples, while a few examples trained classifiers in each class, 
and the tanning procedure was decomposed into the meta-learning phases where transferable knowledge was 
learned based on different strategies. One of the few-shot classifiers was introduced to our luster grading based 
on those texture features. In detail, we modified the classic two-branch Relation Network (RN) by canceling the 
embedding module and directly inputting the extracted texture feature to perform a few-shot  clarification29. We 
constructed the 4-way 5-shot learning (4 grades and 5 samples in each grade) with 5 query images per call for 
each iteration of the training, and an independent test set was randomly selected for validation. Unfortunately, 
the prediction accuracy only reached a little more than 90%, worse than that of SVMs or RFC.

However, deep learning methods required many labeled training samples, and acquiring labeled samples took 
much work. The few-shot clarification was designed because the testing domain categories differed from the 
training domain sample categories. In contrast, the training domain images often had only a few labeled samples. 
In contrast, our application’s training and testing domain had four of the same grades/categories. Hence, the 
critical approach used in our trying was meta-learning. Classifying accurately with only a few labeled samples 
by multiple mete learning steps was extremely difficult. From another perspective, although the classification 
accuracy was slightly lower, the effectiveness of the proposed method for pearl luster classification has been 
verified through the comparison of multiple methods.

Methods
Pearl sample and image acquisition
A low-cost spectral domain OCT (Lumedica OQ Labscope) with a central wavelength of 840 nm was used. The 
axial resolution and lateral resolution were 7 μm and 15 μm, respectively. The refractive index of the pearl was 
around 1.53 on average, and the lateral resolution was changed to about 11 μm in the pearl sample. Then, the 
B-scan images were acquired with a resolution of 512 × 512 pixels. Total of 116 OCT images were acquired from 
the pearl samples provided by Zhejiang Fangyuan Testing Group Co. Ltd. The pearl samples comprised seawater-
nucleated pearls, freshwater-nucleated-free pearls, and freshwater-nucleated pearls. The seawater pearls included 
Nanyang white pearls, Nanyang gold pearls, and Japanese Akoya pearls, and the freshwater pearls included Zhuji 
freshwater nucleated pearls and Edison nucleated-free pearls. All of them were typical products in the Chinese 
or World market. The pearls’ luster was divided into four groups (A, B, C, and D group), and each of the four 
labels was assigned to one OCT image. The criteria of classification were the National recommended standards 
of China (Cultured pearl grading, GB/T 18781-2023) based on the brightness, sharpness, and uniformity of 
reflection. The varieties of these samples were distributed among seawater and freshwater pearls on behalf of 
typical Chinese pearls.

Automated target location
The segmentation step was to locate the central part of the nacre layer of pearl as the target for cluster analysis. 
However, the size and roundness of the pearls were diverse, causing uncertainty about the location of the nacre, 
so background removal, flattening, and segmentation were suggested. The μ+2 × σ value, where μ and σ were 
the mean and variance of the grayscale of the top 30 rows, was used as a hard threshold for denoising. Then, the 
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Canny edge operator was performed to get the rough edge between the nacre layer and the background. Fol-
lowing, the rough edge was fitted by the polynomial, while the pixels above the fitted edge were removed as the 
background. Then, the pixels in each column of the pearl target were shifted up and down to make all the points 
of the fitted edge lay on a horizontal line. Finally, the region with 128 × 128 pixels at the middle upper part of 
the flattened image was cropped as the region of interest (ROI) for texture analysis.

Digitalize luster index
The OCT image’s texture was formed by pixels with different greyscale levels, there were different descriptors for 
characterizing those spatial relationships (listed in Table 2). Each target was characterized by a heterogeneous 
feature array of 237 elements that provided a potential relationship with luster change.

CSAC
The speckle pattern in the OCT image varied locally, and the center-symmetric auto-correlation (CSAC) method 
could reflect the local intensity variations caused by local structure  variation30,31. The definition of CSAC was 
based on the relationships between each pixel and its 3 × 3 neighboring pixels. Six CSAC indicators were figured 
out for each OCT image, including grayscale texture covariance (SCOV), local variance (VAR), between-pair 
variance (BVAR), within-pair variance (WVAR), variance ratio (SVR), and normalized SCOV (SAC), which 
had different focuses on gray-level variation or intensity variance with the advance of invariant under linear 
gray-level shifting. For each 3 × 3 neighboring domain, there were 6 CSAC values, and the means and standard 
deviations of SCOV, VAR, BVAR, WVAR, SVR, and SAC of all the domains in one ROI were contributed to the 
feature array with 12 elements.

FD
The fractal dimension (FD) was one of the critical indicators for the fractal. It strongly correlated with rough-
ness, and there were several methods for figuring out the FD. The traditional one, the differential box-counting 
method (BCM) by the number of boxes covering an ROI, was used in our  experiment32.

Gabor
Gabor filters were widely applied in texture-related applications and could serve to feature the pattern of speck-
les as the indicator. It had the advantages of invariance to rotation, translation, or scale. It was fit for noise-like 
deformation, which had potential relationships with pearl luster change. Therefore, a combination set of 5 scales 
of wavelengths and eight orientations of 2D Gabor filters was applied to  ROI33. The wavelength of the carrier was 
in the range of [2 4 8 10 12], while the filter’s orientation in degrees was in the range of [0 45 90 135 180 225 270 
315]. Each combination’s means and standard deviations were derived, and 80 Gabor features were obtained.

GLCM
The gray level co-occurrence matrix (GLCM) discovered the relationship between adjacent grayscale  levels34, 
and probability density functions were calculated based on its spatial histogram of the OCT image, the entropy, 
energy, correlation, and inertia (contrast) at the distance of 1-10 between grayscales and 0◦, 45◦, 90◦, and 135◦ 
direction were extracted for describing the contrast, grayscale distribution. A total of 40 combinations of GLCM 
feature maps were figured out, and each map’s means and standard deviations were used to create a feature array 
with 80 elements.

HOG
The histogram of oriented gradients (HOG) was generated by gradients at different regional orientations. The 
gradients in all cells of all blocks were calculated, and then the HOG feature was figured out from orientation-
based histogram bins, which were invariant to scale rotation or translation  operations35. The ROI with 128 × 128 
pixels was regarded as one block, and the size of the cell and the number of orientation histogram bins were set 

Table 2.  The texture features used in the following investigation.

Feature type Indexes

Fractal dimension (FD) FD value [1]

Gray level co-occurrence matrix (GLCM) Means of the map [2–41]
Standard deviations of the map [42–81]

Local Binary Patterns (LBP) Means of LBP cells [82–95]
Standard deviations of LBP cells [96–109]

Gabor filters Means of each combination [110–149]
Standard deviations of each combination [150–189]

histogram of oriented gradients
(HOG)

Bin average of all cells [190–197]
Bin standard deviations of all cells [198–206]

laws texture energy
 (LAWS)

Means of filtered image [207–215]
Standard deviations of filtered image [216–224]

center-symmetric auto-correlation
 (CSAC)

Means of 6 CSAC values [225–230]
Standard deviations of CSAC values [231–237]
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at [4,4] and 9, respectively. A total of 1024 histograms was obtained, and then the bin average and bin standard 
deviations of all the cells were the input of the feature array with 18 elements.

LAWS
A set of different convolution kernels which could reveal different texture properties defined as laws texture 
energy (LAWS), where these 2D kernels were derived by multiplying the 1D masks with fixed window size (L5L5 
was excluded), such as L3=[1 2 1], E3=[− 1 0 1], S3=[− 1 2 − 1], L5=[1 4 6 4 1], E5=[− 1 − 2 0 2 1], S5=[− 1 0 2 
0 − 1], and R5=[1 − 4 6 − 4 1], where L, E, S, R masks were related to grayscale, edge features, spots and ripple 
patterns,  respectively36. The 9 mask combinations of L5E5/E5L5, L5S5/S5L5, L5R5/R5L5, E5S5/S5E5, E5R5/
R5E5, E5E5, S5R5/R5S5, S5S5 and R5R5 were selected, and the means and standard deviations of filtered image 
with 18 elements were generated.

LBP
Local Binary Patterns (LBP) encoded the local grayscale relationship of the neighboring pixels into a binary 
 array37. The sensitivity of LBP to illumination was low, and it was one of the typical indicators for local patterns 
due to different configuration parameters and capture machines. The ROI was also regarded as an LBP cell and 
a wide range of parameters was studied, using several neighbors of 4, 8, 12, and 16 and a filter radius ranging 
from 1 to 5. There were 14 neighbor/radius combinations, including 4/1, 4/2, 8/1, 8/2, 8/3, 12/1, 12/2, 12/3, 12/4, 
16/1, 16/2, 16/3, 16/4 and 16/5. The means and standard deviations of LBP cells with 28 elements were generated.

Pearl grading based on its luster
A total of 237 features were considered as the input of support vector machines (SVMs), and random forest clas-
sifier (RFC), two of the typical supervised classifiers, were used to predict the luster level of the pearl. In order 
to avoid over-fitting, the type of kernel, corresponding kernel coefficient of ‘rbf,’ ‘poly,’ ‘sigmoid,’ regularization 
term for SVMs, the number of trees, and max features at each split for RFC were randomized searched by strati-
fied 5-fold cross-validated to get those optimized parameters. The number of iterations was set at 50,000 in our 
experiment, enough to traverse a sufficient number of parameters within the setting range.

Sequential feature selection (SFS) methods evaluated seven kinds of features, and the SFS was running in 
backward mode. In each epoch, the sequential feature selector got the best features individually to form a feature 
set in a greedy style. The removal was based on the result from the cross-validation of the classifier. It started with 
all the features set and greedily removed the best features from a subset. The selection stopped when the desired 
number of features was acquired. The classifier’s performance was evaluated based on the confusion matrix, and 
then the F1 score, recall, precision, and accuracy were derived.

From another prospect, decomposition was another style to compress the data. The Principal Component 
Analysis (PCA) was used to decompose the feature matrix into a set of orthogonal components under maximum 
variance. The PCA was regarded as a transformer that learns components in its fit method from train feature data. 
It projected feature data on these components and reduced the dimension of the feature data. Our experiment’s 
feature set comprised 237 features projected on the six dimensions that explained the most variance. Hence, the 
dimension of classier input was reduced from 237 to 6, improving the speed of the prediction. Finally, the low 
dimensional data of the train set was used to train the SVMs and RFC, then the luster of the test set was predicted 
by the trained classifiers, and their performance was also compared.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author (Y.Z.) 
upon reasonable request.
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