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Strategies for multi‑case 
physics‑informed neural networks 
for tube flows: a study using 2D 
flow scenarios
Hong Shen Wong 1,3, Wei Xuan Chan 1,3, Bing Huan Li 2 & Choon Hwai Yap 1*

Fluid dynamics computations for tube‑like geometries are crucial in biomedical evaluations of vascular 
and airways fluid dynamics. Physics‑Informed Neural Networks (PINNs) have emerged as a promising 
alternative to traditional computational fluid dynamics (CFD) methods. However, vanilla PINNs often 
demand longer training times than conventional CFD methods for each specific flow scenario, limiting 
their widespread use. To address this, multi‑case PINN approach has been proposed, where varied 
geometry cases are parameterized and pre‑trained on the PINN. This allows for quick generation 
of flow results in unseen geometries. In this study, we compare three network architectures to 
optimize the multi‑case PINN through experiments on a series of idealized 2D stenotic tube flows. 
The evaluated architectures include the ‘Mixed Network’, treating case parameters as additional 
dimensions in the vanilla PINN architecture; the “Hypernetwork”, incorporating case parameters 
into a side network that computes weights in the main PINN network; and the “Modes” network, 
where case parameters input into a side network contribute to the final output via an inner product, 
similar to DeepONet. Results confirm the viability of the multi‑case parametric PINN approach, with 
the Modes network exhibiting superior performance in terms of accuracy, convergence efficiency, 
and computational speed. To further enhance the multi‑case PINN, we explored two strategies. 
First, incorporating coordinate parameters relevant to tube geometry, such as distance to wall and 
centerline distance, as inputs to PINN, significantly enhanced accuracy and reduced computational 
burden. Second, the addition of extra loss terms, enforcing zero derivatives of existing physics 
constraints in the PINN (similar to gPINN), improved the performance of the Mixed Network and 
Hypernetwork, but not that of the Modes network. In conclusion, our work identified strategies crucial 
for future scaling up to 3D, wider geometry ranges, and additional flow conditions, ultimately aiming 
towards clinical utility.
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The simulation of fluid dynamics in tube-like structures is a critical aspect of biomedical computational engi-
neering, with significant applications in vascular and airway fluid dynamics. Understanding disease  severity1, 
perfusion and transport  physiology2, and the biomechanical stimuli leading to the initiation and progression 
of diseases relies on accurate fluid dynamics  computations3. Traditionally, this involves extracting anatomic 
geometry from medical imaging and performing computational fluid dynamics simulations, but this process, 
although efficient, still demands computational time ranging from hours to  days4. and the procedure is repeated 
for anatomically similar geometries, leading to an inefficient repetitive computational expenditure. Hastening 
fluid dynamics simulations to enable real-time results can enhance clinical adoption and potentially generate 
improvements in disease evaluation and decision-making.

In recent years, physics-informed neural networks (PINNs) have gained attention for approximating the 
behavior of complex, non-linear physical systems. These networks incorporate the underlying physics and gov-
erning equations of a system, allowing them to approximate solutions with good  accuracy5. However, vanilla 
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PINN requires individual training for each new simulation case, such as with variations in geometry, viscosity 
or flow boundary conditions, causing it to be more time-consuming than traditional fluid dynamics simulations.

Several past studies have provided strategies for resolving this limitation. Kashefi et al.6 proposed a physics-
informed point-net to solve fluid dynamics PDEs that were trained on cases with varied geometry parameters, 
by incorporating latent variables calculated from point clouds representing various geometries. Ha et al.7 devel-
oped a hypernetwork architecture, where a fully connected network was used to compute weights of the original 
neural network, and showed that this could retain the good performance of various convolutional and recurrent 
neural networks while reducing learnable parameters and thus computational time. Felipe et al.8 developed 
the HyperPINN using a similar concept specifically for PINNs. Additionally, a few past studies have attempted 
to use parameterized geometry inputs in PINNs for solving fluid dynamics in tube-like structures of various 
 geometries9,10, as demonstrated through 2D simulations.

In essence, by pre-training the PINN network for a variety of geometric and parametric cases (multi-case 
PINN), the network can be used to generate results quickly even for unseen cases, and can be much faster than 
traditional simulation approaches, where the transfer of results from one geometry to another is not possible. 
In developing the multi-case PINN, strategies and architectures proposed in the past for vanilla PINN are 
potentially useful. For example, Shazeer et al. used a “sparse hypernetwork” approach, where the hypernetwork 
supplies only a subset of the weights in the target network, thus achieving a significant reduction in memory and 
computational requirements without sacrificing  performance11. A similar approach called DeepONet merges 
feature embeddings from two subnetworks, the branch and trunk nets, using an inner  product12,13. Similar to 
hypernetworks, a second subnetwork in DeepONet can take specific case parameters as input, enhancing adapt-
ability across diverse scenarios. Further, the gradient-enhanced PINN (gPINN) has previously been proposed 
to enhance performance with limited training samples, where additional loss functions imposed constraints on 
the gradient of the PDE residual loss terms with respect to the network  inputs14.

However, the relative performance of various proposed networks for calculating fluid dynamics in tube-like 
structures is investigated here. We used a range of 2D tube-like geometries with a narrowing in the middle as 
our test case and investigated the comparative performance of three common PINN network designs for doing 
so, where geometric case parameters were (1) directly used as additional dimensions in the inputs to vanilla 
PINN (“Mixed Network”), (2) input via hypernetwork approach (“Hypernetwork”), or (3) inputs via partial 
hypernetwork similar to DeepONet (“Modes Network”).

To enhance the performance of multi-case tube flow PINN, we further tested two strategies. First, in solving 
fluid dynamics in tube-like structures, tube-specific parameters, such as distance along the tube centerline and 
distance from tube walls are extracted for inputs into the PINN network. This is likely to enhance outcomes as 
such parameters have a direct influence on fluid dynamics. For example, locations with small distance-to-wall 
coordinates require low-velocity magnitude solutions, due to the physics of the no-slip boundary conditions, 
where fluid velocities close to the walls must take on the velocities of the walls. Further, the pressure of the fluid 
should typically decrease with increasing distance along the tube coordinates, due to flow energy losses. Addi-
tionally, we investigated enhancing our multi-case PINN with  gPINN14.

Our PINNs are conducted in 2D tube-like flow scenarios with a narrowing in the middle. As such, they are 
not ready for clinical usage, but they can be used to inform future work on 3D multi-case PINN with more 
realistic geometries and flow rates.

Method
Problem definition
In this study, we seek the steady-state incompressible flow solutions of a series of 2D tube-like channels with a 
narrowing in the middle, in the absence of body forces, where the geometric case parameter, � , describes the 
geometric shape of the narrowing. The governing equations for this problem are as follows:

with fluid density ρ = 1000 kg/m3, kinematic viscosity ν = 1.85  m3/s, p = p(x) is the fluid pressure, x =
(
x, y

)
 is the 

spatial coordinates and u = u(x, � ) = [ u(x, � ), v(x, �)]T denotes the fluid velocity with components u and v in two 
dimensions across the fluid domain Ω and the domain boundaries Ŵ . A parabolic velocity inlet profile is defined 
with R as the radius of the inlet, and umax = 0.00925 ms. prescribed. A zero-pressure condition is prescribed at 
the outlet. � is a n-dimensional parameter vector, consisting of two case parameters, A and σ , which describe the 
height (and thus severity) and length of the narrowing, respectively, given as:

(1)∇ · u = 0, x ∈ �, � ∈ R
n

(2)(u · ∇)u = −
1

ρ
∇p+ ν∇2

u, x ∈ �, � ∈ R
n

(3)u = 0, at x = Ŵwall

(4)p = 0, at x = Ŵoutlet

(5)u = umax ∗

(
1−

y2

R2

)
, v = 0, atx = Ŵinlet
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where R is the radius of the channel at a specific location, and R0 and µ are constants with values 0.05 m and 0.5 
respectively. The Reynolds number of these flows is thus between 375 and 450.

Network architecture
In this study, we utilize PINN to solve the above physical PDE system. Predictions of u and p are formulated as a 
constrained optimization problem and the network is trained (without labelled data) with the governing equa-
tions and given boundary conditions. The loss function L(θ) of the physics-constrained learning is formulated as,

where W and b are weights and biases of the FCNN (see Eq. 11), Lphysics represents the loss function over the 
entire domain for the parameterized Continuity and Navier–Stokes equations, and LBC represents the boundary 
condition loss of the u prediction. ωphysics and ωbc are the weights parameters for the terms. A value of 1 is used 
for both as the loss terms are unit normalized. Loss terms can be expressed as:

where N  is the number of randomly selected collocation points in the domain or at the boundaries, and Vkg, Vm 
and Vs are the unit normalization of 1 kg, 0.1 m and 10.811 s respectively corresponding to the density ρ , inlet 
tube diameter 2 R0 and inlet maximum velocity umax.

Training of the PINN was done using the Adam  optimizer15, using a single GPU (NVIDIA Quadro RTX 
5000). A feedforward fully connected neural network (FCNN), f  , was employed in this work where the sur-
rogate network model is built to approximate the solutions, ŷ =

[
u(x, �), v(x, �), p(x, �)

]T . In the FCNN, the 
output from the network (a series of fully connected layers), ŷ(ψ ; θ ), where ψ represents the network inputs, 
was computed using trainable parameters θ , consisting of the weights Wi and biases bi , of the i-th layer for n 
layers, according to the equation:

where Φ i represents the nodes of the i th layer in the network. The Sigmoid Linear Unit (SiLu) function, α , is used 
as the activation function and partial differential operators are computed using automatic  differentiation16. All 
networks and losses were constructed using NVIDIA’s Modulus framework v22.0917, and codes are available at 
https:// github. com/ WeiXu anChan/ Modul usVas cular Flow.

Mixed network, hypernetwork and modes network
Three network architectures are investigated, as shown in Fig. 1. The number of learnable parameters in each 
NN architecture was kept approximately the same ( ±0.1% difference) for comparison. In the Mixed Network 
approach, ψ consist of both x and � , and only one main FCNN network, f m , is used to compute the velocity 
and pressure outputs.

In the Hypernetwork approach, x is input into the main FCNN network, f m , while � is input into a FCNN 
hypernetwork, f h , which is used to compute the weights and biases ( θm ) of f m . This can be mathematically 
expressed as:

(6)R(x) = R0 − Ae
− (x−µ)2

2σ2

(7)L(θ) = ωphysicsLphysics + ωbcLBC

θ∗ = argminW ,b(L(θ))

(8)Lphysics =
1

V−2
s Ndomain
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(10)ŷ
(
ψ ; θ

)
= Wn{Φn−1 ◦Φn−2 ◦ . . . ◦Φ1}

(
ψ
)
+ bn

Φ i = α(Wi(Φ i−1)+ bi), for 2 < i < n− 1

(11)ŷ = f m(x, �; θm)

(12)ŷ = f m(x; θm)

https://github.com/WeiXuanChan/ModulusVascularFlow
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where θh are the trainable parameters of f h.
In the Modes Network, a hypernetwork, f h , outputs a series of modes, ℳ. Its inner product with the main 

network ( f m ) outputs, q, is taken as the final output of the network to approximate flow velocities and pressures, 
expressed as:

where θh and θm are, again, the trainable parameters of f h and f m , respectively. This formulation is previously 
proposed as the  DeepONet12,13.

The NN architecture is trained for an arbitrary range of geometric parameters, � = {A,σ} , where A varies 
between 0.015 and 0.035 and σ varies between 0.1 and 0.18. A total of 16 regularly spaced (A) and logarithmically 
spaced ( σ ) combinations are selected, and the performance of the three NN architectures is evaluated for the 16 
training cases, as well as an additional 45 untrained cases. This is illustrated in Fig. 2.

A batch size of 1000 was employed, with 3840 batch points in each training iteration, resulting in a total of 
3.8 million spatial points per epoch. The individual batch points used within each training step are compiled 
in Table 1.

Computational fluid dynamics and error analysis
CFD ground truths of the training and prediction cases were generated using COMSOL Multiphysics v5.3 with 
the same boundary conditions set for the PINN. Mesh convergence was achieved by incrementally increasing 
the mesh size until the wall shear stress magnitude differed by approximately 0.5% compared to a finely resolved 
mesh, totalling around 1 million 2D triangular elements for each case model, shown in Fig. 3. Wall shear stress 
vector ( −−→WSS ) was calculated as:

θm = f h(�; θh)

(13)

M = f h(�; θh)

q = f m(x; θm)

ŷi =

B∑

j=1

qjMji for i = 1, 2, 3

(14)
−−→
WSS = µ

∣∣∣∣∣

(
∇�v + (∇�v)T

2

)
n̂

∣∣∣∣∣

Figure 1.  Schematic for the three different neural network architectures. (A) The “Mixed network” where the 
main network, f m , takes in both coordinate parameters, x, and case (geometric) parameters, λ, to compute 
outputs variables, ŷ , where hyperparameters, θm , are optimized during training. (B) The “Hypernetwork” where 
f m is coupled to a side hypernetwork, f h , which takes λ as inputs and outputs θm in f m , and hyperparameters 
for the hypernetwork, θh , are optimized during training. (C) The “Modes network” where f h outputs a modes 
layer, M , that is multiplied mode weights output by f m , q , to give output variable, ŷ.
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where µ is the shear viscosity of the fluid, (∇�v) is the gradient velocity tensor and n̂ is the unit surface normal vec-
tor. The accuracy of the PINN was quantified using relative norm-2 error, ε , expressed as a percentage difference:

Figure 2.  Illustration of the set of training and validation cases for multi-case training across a range of tube 
geometries with varying narrowness, A and narrowing length, σ . Individual training cases are indicated by 
black “ ” and validation cases are indicated by red “ ”. The loss function is optimized with the training set and 
the accuracy of the network is evaluated with the validation set.

Table 1.  Batch points used per training iteration for each boundary condition imposed.

Region of interest Boundary condition Batch points

Inlet Inlet profile (Eq. 5) 160

Outlet Outlet pressure (Eq. 4) 160

Top wall No-slip wall velocity (Eq. 3) 160

Bottom wall No-slip wall velocity (Eq. 3) 160

Interior Incompressible Navier–Stokes residuals 3200

Figure 3.  Maximum wall shear stress obtained for a 2D tube flow with narrowing (A = 0.035 and σ = 0.10) 
across various mesh densities. The values are presented as a percentage difference relative to the highest tested 
density.
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This error was evaluated for the output variable y on N  random collocation points.

Tube‑specific coordinate inputs, TSC
In the context of flows in a tube-like structure, we propose the inclusion of tube-specific coordinate parameters, 
referred to as TSCs. These additional variables, derived from the coordinates, are introduced as inputs into the 
PINN (as part of coordinate inputs, x , in Fig. 1, with the same resolution as x ). 8 different TSCs were added: 
(1) “centerline distance”, c = (−1, 1) , which increases linearly along the centerline from the inlet to the outlet, 
(2) “normalized width”, Ln = (−1, 1) , which varies linearly across the channel width from the bottom and top 
wall, (3) dsq = 1− L2n , as well as multiplication combinations of the above variables, (4) c2 , (5) L2n , (6) c × dsq , 
(7) c × Ln and (8) Ln × dsq.

Gradient‑enhanced PINN, gPINN
In many clinical applications, obtaining patient-specific data is challenging, and the ability to train robustly with 
reduced cases would be beneficial. Therefore, we tested the use of gPINN, where the gradient of loss functions 
with respect to case inputs is added as additional loss functions for training. This aims to improve training robust-
ness and reduce the number of training cases  needed14. The addition of this derivative loss function is denoted 
as Lderivative , is hypothesized to enhance the sensitivity of the network to unseen cases close to the trained cases. 
This potentially allows for effective coverage of the entire case parameter space with fewer training cases. The 
approach involves additional loss functions:

where  ωderivative is the weight parameter of the derivative loss function, RGE and RBC are the residual loss of the 
governing equation and boundary conditions, respectively, and N is the number of randomly selected colloca-
tion points in the domain.

Results
Advantages of tube‑specific coordinate inputs
We first test the use of a vanilla FCNN on a single narrowing case, to assess the accuracy, sensitivity to network 
size, and utility of the TSC inputs. Results are shown in Table 2 and Fig. 4 for the single narrowing test case where 
A = 0.025, σ = 0.134. Figure 4A illustrates the successful convergence of the loss function during the training 
process, while Table 2 shows that, in comparison with CFD results, errors in velocities and errors are reasonably 
low. Figure 4B further demonstrates a visual similarity between network outputs and CFD simulation results. It 
should be noted that absolute errors in the y-direction velocity are not higher than those of other outputs, but 
as errors are normalized by the root-mean-square of the truth values, and because the truth flow field has very 
low y-direction velocities, the normalized y-direction velocity errors, εv , were higher. Accuracy and training can 
likely be enhanced with dynamic adjustment of weightage for the different loss functions and adaptive activation 
 functions18,19, but such further optimizations are not explored here.

Previous studies have reported that accurate results are more difficult without the use of hard boundary 
 constraints9, where the PINN outputs are multiplied to fixed functions to enforce no-slip flow conditions at 
boundaries. In our networks, no-slip boundary conditions are enforced as soft constraints in the form of loss 
function while reasonable accuracy is achieved. We believe that this is due to our larger network size enabled by 
randomly selecting smaller batches for processing from a significantly larger pool of random spatial points (1000 
times the number of samples in a single batch). The sampling and batch sample selection are part of the NVIDIA 

(15)ε =

√∑N
i=1

∣∣y
PINN

− y
CFD

∣∣2
√∑N

i=1

∣∣y
CFD

∣∣2
× 100%

(16)L(W , b) = ωphysicsLphysics + ωbcLBC + ωderivativeLderivative

(17)Lderivative =
1

Ndomain

Ndomain∑

i=1

dRGE

d�

∣∣∣∣
Ω

+
1

NŴ

NŴ∑

i=1

dRBC

d�

∣∣∣∣
Ŵ

Table 2.  Comparison of relative L2 error and computational expense for narrowing case with A = 0.025 and 
σ = 0.134, using various neural network depth size as well as a smaller NN when employing “local coordinates 
inputs”. NN—neural network; TSC—tube-specific coordinate inputs; εu, εv, εp—relative L2 error for U velocity, 
V velocity and pressure respectively.

NN size
[Layer x Neurons] No. of hyperparameters εu εv εp Approx. computational time (min) GPU usage (GB)

4 × 384 without TSC 445,443 0.51% 2.63% 0.16% 135 1.87

4 × 512 without TSC 790,531 0.33% 2.26% 0.14% 150 2.36

4 × 1024 without TSC 3,153,923 0.18% 1.39% 0.11%  > 300 4.39

4 × 256 with TSC 200,707 0.36% 2.37% 0.12% 100 1.62
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Modulus framework. The soft constraint approach does not perform as well as the hard constraint approach, but 
hard boundary constraints are difficult to extend to Neumann constraints and implement on complex geometry 
and may pose difficulty for future scaling up.

As expected, Table 2 results demonstrate that increasing the network width while maintaining the same depth 
decreases errors significantly but at the same time, increases requirements for GPU memory and computational 
time. Interestingly, incorporating TSC inputs leads to significant improvements in accuracy and a reduction of 
computational resources needed. The network incorporating TSC with a width of 256 produces a similar accu-
racy as the network without TSC with twice the width (512) and takes approximately 50% less time to train. The 
reduction in time is related to the reduced network size, such that the number of trainable parameters is reduced 
from 790,531 to 200,707. Further, training converges data shows that with the TSC, losses could converge to be 
lower, and converge faster than the network without TSC with twice the network size.

Next, using the Mixed Network architecture, we train 16 case geometries and evaluate accuracy on a valida-
tion set comprising 45 unseen case geometries, as depicted in Fig. 2 and summarized our findings in Table 3. 
Again, the network with TSC, having a smaller width of 856, demonstrates statistically comparable accuracy to 
the network without TSC with an approximately 50% greater width of 1284, despite having more than halved 
the number of trainable parameters, and reduced training time by approximately 20%.

Figure 4.  (A) Comparison of convergence for total aggregated loss plotted against time taken in minutes for 
training the narrowing case with A = 0.025 and σ = 0.134, using various neural network depth sizes as well as 
a smaller NN when employing “local coordinates inputs”. (B) Illustration of the flow results for single case 
training using 4 × 256 neurons with LCIs, show a good match between predictions from neural network and 
computational fluid dynamics (CFD) results. (C) Comparison of convergence for total aggregated loss plotted 
against time taken in minutes for multi-case training across various a range of narrowing severity, A and 
narrowing length, σ , using the Mixed Network.(A) Single Case Training. (B) Fluid Flow – Single Case Training, 
4 x 256 Neurons with LCI. (C) Multi-Case Training.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11577  | https://doi.org/10.1038/s41598-024-62117-9

www.nature.com/scientificreports/

The superior accuracy provided by TSCs suggests that flow dynamics in tube-like structures are strongly cor-
related to tube-specific coordinates, and the network does not naturally produce such parameters without deliber-
ate input. Due to these observed advantages, we incorporated TSCs in all further multi-case PINN investigations.

Comparison of various multi‑case PINN architectures
We conducted a comparative analysis to determine the best network architecture for multi-case PINN training for 
tube flows. We design the networks such that the number of trainable parameters is standardized across the three 
network architectures for a controlled comparison. Two experiments are conducted, where the trainable param-
eters are approximately 2.2 million and 0.8 million. The network size parameters are shown in Table 4, while the 
results are shown in Table 5. We investigated L2 errors for velocities, pressures, and wall shear stresses (WSS).

From Table 5, it can be observed that with a larger network size (2.2 million trainable parameters), the Modes 
network has the lowest relative L2 errors, averaged across all testing cases, of between 0.4 and 2.1%, which is 
significantly more accurate than the Mixed network and the Hypernetwork. Results indicate that the percentage 
errors of the spanwise velocity, v , are higher than those in the streamwise velocity, u , due to the larger amplitude 
of u . As such, errors in WSS are aligned to errors in u rather than v. However, when a smaller network size (0.8 
million trainable parameters) is used, the Hypernetwork displayed the highest accuracy, followed by the Mixed 
network and then the Modes network.

Table 3.  Comparison of relative L2 error and computational expense for multi-case training across various a 
range of narrowing severity, A and narrowing length, σ using various neural network depth sizes, as well as a 
smaller NN when employing “local coordinates inputs”. NN—neural network; LCI—local coordinate Inputs; 
εu, εv, εp—relative L2 error for U velocity, V velocity and pressure respectively. Error data are presented as 
mean ± standard deviation. * p < 0.05 compared to “4 × 856 with TSC”.

NN size
[Layer x Neurons] No. of hyperparameters εu (n = 45) εv (n = 45) εp (n = 45)

Approx. computational time 
(min) GPU usage (GB)

4 × 1070 without TSC 3,443,263 3.2 ± 1.8%* 7.4 ± 2.3%* 11.2 ± 6.3%* 450 4.54

4 × 1284 without TSC 4,956,243 1.4 ± 0.7% 3.9 ± 1.4% 4.4 ± 2.6% 500 5.30

4 × 1712 without TSC 8,806,531 1.2 ± 0.7%* 3.7 ± 1.8%* 3.4 ± 1.9%*  > 700 6.87

4 × 856 with TSC 2,211,907 1.5% ± 0.6% 4.5 ± 1.1% 5.6 ± 2.5% 400 4.18

Table 4.  Details of NN architecture size and number of hyperparameters. NN—neural network.

NN architecture ℳain NN size Secondary hypernetwork size No. of hyperparameters

Mixed 856, 856, 856, 856 – 2,214,475

Hypernetwork 256, 256, 256, 256 32, 32, 32, 32, 32, 10 2,215,275

Modes 851, 851, 851 32, 32, 32, 32, 32, 10 2,217,282

Downsized Mixed 516, 516, 516, 516 – 808,575

Downsized Hypernetwork 256, 256, 256, 256 32, 32, 32, 32, 32, 3 808,303

Downsized Modes 513, 513, 513 32, 32, 32, 32, 32, 3 807,296

Table 5.  Comparison of relative L2 error and computational expense for multi-case training across various 
a range of narrowing severity, A and narrowing length, σ using different neural network architectures with 
approximately 2.2 million hyperparameters for each. Repeat comparison was done but with “downsized” NN 
sizes for each architecture, standardized to approximately 0.8 million hyperparameters. NN—neural network; 
εu, εv, εp, εWSS_mag—relative L2 error for U velocity, V velocity pressure and wall shear stress magnitude. Error 
data are presented as mean ± standard deviation. Differences in errors across the three network types are all 
significant (p < 0.05).

NN architecture ℳixed Hypernetwork ℳodes Downsized mixed Downsized hypernetwork Downsized modes

εu (n = 45), % 1.5 ± 0.6 0.8 ± 0.4 0.4 ± 0.2 2.1 ± 1.5 0.9 ± 0.4 5.2 ± 3.7

εv (n = 45), % 4.5 ± 1.1 3.6 ± 0.8 2.1 ± 0.5 6.0 ± 2.4 4.2 ± 1.2 12.4 ± 5.4

εp (n = 45), % 5.6 ± 2.5 2.3 ± 1.2 1.2 ± 0.5 8.0 ± 6.3 2.2 ± 1.2 13.1 ± 7.5

εWSS_mag (n = 45), % 1.5 ± 0.7 1.3 ± 0.6 1.0 ± 0.5 1.9 ± 0.8 1.3 ± 0.6 5.4 ± 3.7

Computational Time, mins 500 Above 2000 300 300 Above 2000 150

GPU memory usage, GB 4.18 21.7 3.64 2.66 20.98 2.34
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These results are also observable in Fig. 5, which illustrates the convergence of loss functions under various 
network training. Specifically, Fig. 5A demonstrates that the Modes network exhibits the swiftest convergence 
with the lowest total aggregated loss. This was followed by the Hypernetwork, which has the next lowest con-
verged loss but has a very slow slower convergence rate. The mixed network exhibits the highest converged loss 
but shows a moderate convergence speed. In contrast, Fig. 5B demonstrates the convergence patterns when there 
is a smaller number of trainable parameters. Although the order in the speed of convergence remains consistent, 
the Modes Network now has the highest converged aggregated loss. This highlights the necessity of a sufficiently 
large network size for the effectiveness of the Modes Network.

Another advantage of the Modes Network is that it takes up the lowest GPU memory and training time 
(Table 5). Further, although the Hypernetwork was more accurate than the Mixed Network, the training time 
and GPU memory required was several times that of the Mixed Network. The Hypernetwork consumes at least 
13 times more memory than the Modes Network, and several times longer to converge.

Figures 6 and 7 show the distribution of relative L2 errors across the geometric parameter space for the three 
networks. Training geometric cases are indicated as black triangles while testing cases are indicated as red dots. 
It can be observed that the geometric parameter spaces in between training cases have good, low errors similar 
to errors of training cases, demonstrating that the multi-case PINN approach of training only in some cases 
is feasible and can ensure accuracy in unseen cases. The results further demonstrate that cases with larger A 
parameters tend to have larger errors. This is understandable as larger A corresponds to more severe narrowing 
and a flow field with higher spatial gradients.

The results suggest that the Modes network has the potential to be the most effective and efficient network; 
however, a sufficiently large network size is necessary for accuracy.

Utilizing gradient‑enhanced PINNs (gPINNs)
We test the approach of adding derivatives of governing and boundary equations with respect to case parameters 
as additional loss functions, and investigate enhancements to accuracy and training efficiency, using the networks 
with approximately 2.2 million trainable parameters. The networks are trained with the original loss functions 
until convergence before the new derivative loss function is added and the training restarted.

The convergence plot is illustrated in Fig. 9, while the results are shown in Table 6. Results in Fig. 8 indicate 
that this approach generally led to small-magnitude improvements in velocities and pressure errors, most of 
which are statistically significant. Significant improvements are the most evident for the Mixed network, where 
all output parameters significantly improve. This is followed by the Hypernetwork, where the streamwise velocity, 
u and pressure errors significantly improve. However, for the Modes network, error reduction is not evident, and 
the accuracy of the spanwise velocity, v deteriorated. Imposing the additional loss functions causes a roughly 
double increase in training time and a 3–4 times increase in GPU memory requirements for the Mixed and 
Modes networks.

In summary, the derivatives loss function yielded improvements for the Mixed Network and Hypernetwork 
but did not show improvements for the Modes Network.

Figure 5.  (A) Comparison of convergence for total aggregated loss plotted against time taken in minutes 
for multi-case training across various a range of narrowing severity, A and narrowing length, σ , between the 
three different neural network architectures. (B) Repeat comparison was done but with smaller NN sizes 
for each architecture, standardized to approximately 0.8 million hyperparameters, compared to 2.2 million 
hyperparameters in (A). (A) Architecture Comparison with Approx. 2.1 million Hyperparameters. (B) 
Architecture Comparison with Approx. 0.8 million Hyperparameters.
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Discussion
In this study, we investigated three common training strategies for multi-case PINN applied to fluid flows in 
tube-like structures. Additionally, we investigated the use of gPINN and TSC to enhance these networks. While 
our algorithms are not ready for biomedical applications, they lay the groundwork for future work in scaling up 
to 3D complex geometries with more clinically relevant flows. If successful, this approach could offer substantial 
advantages over the traditional CFD approach.

Traditional CFD simulations are required for every new vascular or airway geometry encountered, and even 
though this is currently a well-optimized and efficient process, a minimum of several tens of minutes is required 
for meshing and simulating each case. Much of this simulation process is repetitive, such as when very similar 
geometries are encountered, but the same full simulation is required for each of such cases and transfer learning 
is not possible without machine learning. In contrast, multi-case PINN enables a single learning process for a 
range of geometries, avoiding redundant computations and potentially providing real-time results. Real-time 

Figure 6.  Color contour plot of relative L2 error of (A) U velocity, (B) V velocity and (C) pressure from multi-
case training across various range of narrowing severity, A and narrowing length, σ , between the three different 
neural network architecture with 2.2 million hyperparameters. (A) U relative L2 error. (B) V relative L2 error. 
(C) P relative L2 error.
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capabilities could encourage clinical adoption, enhance clinical decision-making, and facilitate faster engineer-
ing computations, ultimately contributing to increased result sample sizes for demonstrating the clinical impact 
of biomechanical factors.

Similar to previous  investigations9,10, one key motivation for adopting multi-case PINN is its ability to pre-
train on a small series of cases, allowing real-time results for unseen cases close to the trained cases. In the 
original form, PINN is case-specific, the training time required for single cases far exceeds that required for 
traditional CFD simulations, for results with similar  accuracy20. There is thus no reason for using PINN to solve 
such single cases, unless inverse computing, such as matching certain observations in the flow field is  required21. 
At present, using our trained PINN to solve 2D tube flows only yields small advantages compared to conventional 
CFD of steady 2D flows, but in future when the 3D version of the multi-case PINN is available, this advantage 
can become more pronounced.

When comparing the Mixed, Modes and Hypernetworks, we designed our study to utilize various extents of 
hyperparameter networks, with the Hypernetwork approach representing the fullest extent, the Mixed network 

Figure 7.  Colour contour plot of relative L2 error plot of (A) U velocity, (B) V velocity and (C) pressure from 
multi-case training across various range of narrowing severity, A and narrowing length, σ , between the three 
different neural network architecture with a reduced number of hyperparameters (0.8 million). (A) U relative L2 
error. (B) V relative L2 error. (C) P relative L2 error.
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representing the minimum extent, and the Modes network falling in between. Results show that the hypernet-
work can yield better results than the Mixed network when the number of trainable parameters for both networks 
is retained. This agrees with previous investigations on the Hypernetwork approach, where investigators found 
that a reduced network size to achieve the same accuracy is  possible7,8. However, the hypernetwork approach 
requires a large GPU memory, because the links between the hyperparameter network and the first few layers 
of the main PINN network result in a very deep network with many sequential layers, and the backward differ-
entiation process via chain rule requires the storage of many more parameters. The complexity of this network 
architecture also resulted in long training times and slower convergence.

In comparison, the Modes Network reduces complexity, resulting in faster training times and faster con-
vergence. This approach aligns with the “sparse hypernetwork” approach, where the hypernetwork supplies 
only a subset of the weights in the main network, which corroborates our observations of significantly reduced 
memory and computational requirements without sacrificing  performance11. The good performance of the 
Modes Network suggests that the complexity in the Hypernetwork is excessive and is not needed to achieve 
the correct flow fields. The Modes network also has similarities to reduced order PINNs, such as proposed by 
Buoso et al.22 for simulations of cardiac myocardial biomechanics. Buoso et al. use shape modes for inputs into 
the PINN and utilize outputs as weights for a set of motion modes, where all modes are pre-determined from 
statistical analysis of multiple traditional simulations. Our Modes Network similarly calculates a set of modes, 
q in Eq. (14), and used PINN outputs as weights for these modes to obtain flow field results. The difference, 
however, is that we determined these modes from the training itself, instead of pre-determining them through 
traditional CFD simulations.

Another important result here is the improved accuracy provided by tube-specific coordinate inputs when 
simulating tube flows. This not only accelerates convergence rates and reduces computational costs, but it also 
leads to improved accuracies as well. An explanation for this is that the tube flow fields have a strong correlation 
to the tube geometry and thus tube-specific coordinate inputs, and having such coordinates directly input into 
the PINN allows it to find the solution more easily. For example, in laminar tubular flow, flow profiles are likely 
to approximate the parabolic flow profile, which is a square function of the y-coordinates, and as such multipli-
cative expressions are needed for the solution. By itself, the fully connected network can approximate squares 
and cross-multiplication of inputs, but this requires substantial complexity and is associated with approximation 
errors. Pre-computing these second-order terms for inputs into the network can reduce the modelling burden 
and approximation errors, thus leading to improved performance with smaller networks. The strategy is likely 
not limited to tube flows, for any non-tubular flow geometry, coordinate parameters relevant to that geometry 
are likely to improve PINN performance as well. In our experiments with the simple parameterized 2D narrow-
ing geometries, tube-specific coordinates can be easily calculated, however, for more complex tube geometries, 
specific strategies to calculate these coordinates are needed. Such computations will likely need to be in the form 
of an additional neural network because derivates of the coordinates will need to be computed in the multi-case 
PINN architecture.

Our investigation of the gPINN framework featuring the gradient of the loss functions shows its usefulness for 
the Mixed Network and Hypernetwork but not the Modes Network. In the Hypernetwork and Mixed network, 
this gPINN modifies the solution map, reducing loss residuals for cases close to the trained cases by enforcing a 
low gradient of loss across case parameters. In the Modes Network, solutions are modelled in reduced order, as 
they are expressed as a linear finite combination of solution modes, and consequently already exhibit smooth-
ness across case parameters. This is thus a possible explanation for why the Modes Network does not respond to 
the gPINN strategy. Further, the Modes Network shows an excessive increase in losses when the loss function 
derivatives were added during the training (Fig. 9), which may indicate an incompatibility of the reduced order 
nature of the network with the gPINN framework, where there are excessive changes to the solution map in 
response to adjusting this new loss function.

Table 6.  Relative L2 error and computational expense for multi-case training with approximately 2.2 million 
hyperparameters for each NN architecture with derivative of governing equations and boundary conditions, 
gPINN, as an additional loss term. *,†,‡ P < 0.05 when comparing each respective NN architecture with and 
without additional derivative loss terms (gPINN). NN—neural network; εu, εv, εp, εWSS_mag—relative L2 error for 
U velocity, V velocity, pressure and wall shear stress magnitude. Error data are presented as mean ± standard 
deviation.

NN architecture ℳixed Hypernetwork ℳodes

εu (n = 45), % 1.4 ± 0.5* 0.7 ± 0.3† 0.4 ± 0.2

εv (n = 45), % 4.2 ± 1.1* 3.5 ± 0.8 2.5 ± 0.8‡

εp (n = 45), % 5.1 ± 2.1* 2.2 ± 1.2† 1.2 ± 0.4

εWSS_mag (n = 45), % 1.5 ± 0.6* 1.2 ± 0.6† 1.0 ± 0.5

Computational Time, mins 1000 Above 3500 600

GPU memory usage, GB 13.5 21.9 12.2
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Conclusion
The results suggest the feasibility of employing unsupervised PINN training through the multi-PINN approach 
to generate real-time fluid dynamics results with reasonable accuracies compared to CFD results. Our findings 
suggest that the most effective strategy for multi-case PINN in tube-like structures is the Modes Network, par-
ticularly when combined with tube-specific coordinate inputs. This approach not only provides the best accuracy 
but also requires the least computational time and resources for training. It is important to note that our inves-
tigations are confined to time-independent 2D flows within a specific geometric parameter space of straight, 
symmetric channels without curvature and a limited range of Reynolds numbers. Despite these limitations, our 
results may serve as a foundation for future endeavors, scaling up to 3D simulations with time variability and 
exploring a broader spectrum of geometrical variation.

Figure 8.  Colour contour plots of relative L2 error plot of (A) U velocity, (B) V velocity and (C) pressure 
from multi-case training across various ranges of narrowing severity, A and narrowing length, σ , between the 
three different neural network architectures with 2.2 million hyperparameters, after adding the derivatives of 
governing equations and boundary conditions wrt. case parameters as additional loss functions. (A) U relative 
L2 error. (B) V relative L2 error. (C) P relative L2 error.
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Figure 9.  Comparison of convergence for total aggregated loss plotted against the time taken in minutes 
for multi-case training with approximately 2.2 million hyperparameters for the three different PINN 
methodologies. The derivative of governing equations and boundary conditions (gPINN) is added as an 
additional loss term after the initial training is converged, and noticeable spikes in loss are observed.
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