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Bifurcation analysis and soliton 
solutions to the doubly dispersive 
equation in elastic inhomogeneous 
Murnaghan’s rod
S. M. Rayhanul Islam 

The doubly dispersive (DD) equation finds extensive utility across scientific and engineering domains. 
It stands as a significant nonlinear physical model elucidating nonlinear wave propagation within the 
elastic inhomogeneous Murnaghan’s rod (EIMR). With this in mind, we have focused on the integration 
of the DD model and the modified Khater (MK) method. Through the wave transformation, this model 
is effectively converted into an ordinary differential equation. In this paper, the goal of our work is 
to explore new wave solutions to the DD model by using the MK scheme. These solutions provide 
extremely helpful insights into the operation of the system. The three-dimensional (3D) plot and two-
dimensional (2D) combined plot via the impacts of the parameters are provided for various parameters 
in this manuscript. We also discussed the dynamical properties of the model, which are accomplished 
through the bifurcation analysis, and also found the Hamiltonian function. This research makes a 
substantial contribution to the area by increasing our understanding of wave solutions in the DD, 
introducing novel investigation tools, and carrying out an in-depth investigation of the bifurcation and 
stability aspects of the system. As a direct result of this research, novel openings have been uncovered 
for further investigation and application in the various disciplines of science and engineering.

Keywords  Doubly dispersive equation, Modified Khater method, Bifurcation analysis, Wave solutions, and 
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The study of nonlinear evolution equations (NLEEs) has therefore become an exciting and pivotal topic in 
contemporary research in the last three decades. NLEEs have become a focal point of research due to their 
significance in understanding nonlinear, tangible phenomena. These equations serve as vital tools for analyzing 
and describing a wide range of nonlinear phenomena encountered in various fields, including nonlinear optics1,2, 
optical fibres3,4, communication systems5, fluid dynamics6–9, biology10, plasma physics11, and other scientific 
disciplines. It is important to look for traveling wave solutions and solitons because they help us understand 
how complex nonlinear properties work. By employing NLEEs, researchers can unravel the intricate dynamics 
and physical properties underlying these phenomena.

Understanding wave solutions of NLEEs is crucial for grasping the underlying physical mechanisms of 
the natural phenomena that NLEEs represent. These solutions offer significant insights into the structural 
characteristics of NLEEs, which are extensively employed in optical fibers, plasma physics, mathematical physics, 
and engineering applications. Various wave solutions, such as lump waves, dark waves, periodic waves, bright 
waves, solitary waves, and soliton waves, elucidate the phenomena modelled by NLEEs. In recent decades, soliton 
and solitary wave solutions have been extensively investigated by researchers across various nonlinear scientific 
fields. As a result, numerous mathematicians, physicists, and engineers have developed several reliable models 
to carry out progressive wave approximations for these nonlinear processes and have succeeded in identifying 
solutions using a variety of analytical and numerical methods. Among many techniques, some efficient and 
powerful schemes are the new Kudryashov12, the generalized projective Riccati equations13, the extended 
simple equation14, the Bernoulli sub-ode15, the ( w/g)-expansion16, the unified and improved F-expansion17, the 
Galarkin18,19, the Khater II20, the He’s variational iteration21, the extended Khater22, the direct algebraic23,24, the 
modified Khater25, the generalized rational26, the modified direct algebraic27, the novel generalized Kudryashov28, 
the extended simplest equation29, the generalized exponential function30, the Bernoulli sub-equation31, and 
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various other methods. Due to this study, considerably more attention has been given to solutions, structures, 
interactions, and other properties of methods, and various significant results have been successfully obtained.

Solitons exhibiting the capability to either divide or merge when they interact are termed bifurcation solitons. 
The significance of a soliton lies in its integrability, denoting the soliton’s ability to be integrated within the 
nonlinear equation even when faced with initial local disturbances. This results in a solution characterized 
by a collection of solitons and linear dispersive waves. A notable nonlinear physical model that describes the 
propagation of nonlinear waves in elastic inhomogeneous circular cylinders, often known as Murnaghan’s rods, 
is the DD model32. Understanding wave propagation in nonlinear elastic substances is greatly aided by this study. 
Seismology, acoustics, introscopy, analysis of unexpected destruction, long-distance energy transmission, vibro-
impact treatments of hard materials, and non-destructive testing methods, particularly for pipelines, are just a 
few of the many domains in which this adaptable equation has found use. Additionally, it helps in understanding 
the internal structure and physical characteristics of different solids, including brass, steel, glass, and polymers, as 
well as describing phenomena like shock waves, tsunamis, and solitons. This model has been useful in analysing 
the propagation of strain waves in EIMR when dealing with elastic inhomogeneous media. In this investigation, 
we employ the elegant auxiliary equation approach to explore novel and precise wave solutions for the DD 
model. This particular model emerges from nonlinear two-directional long-wave models utilized in describing 
longitudinal waves within nonlinear dynamic elasticity. In this paper, we investigate the wave solutions to the DD 
model, which is derived from nonlinear two-directional long-wave models for longitudinal waves in nonlinear 
dynamic elasticity33–37 given by,

where u(x, t) denotes the strain wave function, ρ denotes the density, ε denotes the small parameters, q = B
Q 

and a = M
Q  denotes the scale factors, and γ denotes the poisson parameter. Various formulations of the DD 

model have been developed, tailored to the specific assumptions about the medium involved. For instance, 
in the presence of isotropic media or weak dispersion, these equations can be simplified. Among the research 
conducted, investigations have focused on the EIMR, employing generalized DDs. For instance, Cattani et al.33 
have explored the wave solutionsof the DD model by using the extended sinh-Gordon equation expansion 
(EsGEE) and the modified exp(− φ(ζ))-expansion function (MEEF) methods. Dusunceli et al.34 have inspected the 
wave solutions of the DD model through the improved Bernoulli sub-equation function (IBsEF) method. Ahmed 
et al.35 have investigated the DD model for finding wave solutions through the improved modified extended 
tanh-function technique. Using the extended Kudryashov and Bernoulli-Riccati approaches, obtaining wave 
solutions of the DD model by Ozisik et al.36. Alquran and Al-Smadi37 recently investigated the DD model and its 
bidirectional wave solutions using modified rational sine–cosine (MRSC) and sinh-cosh functions (SCF), along 
with unified methods. Their work focused on exploring various solutions, particularly single-wave propagation 
patterns derived from the proposed model. Alharthi et al.38 have examined wave solutions of the DD model 
using the modified generalized exponential rational function method and the Jacobi elliptical finder method. 
Rehman et al.39 investigated wave solutions of the DD model, which characterizes nonlinear wave propagation 
in the EIMR, employing the Sardar sub-equation method. Younas et al.40 developed exact solutions for the DD 
model utilizing the new extended direct algebraic and generalized Kudryashov methods. Rathinavel et al.41 
explored wave solutions of the DD model for wave propagation in a nonlinear EIMR, employing the F-expansion 
technique. Abourabia and Eldreeny42 inspected wave solutions to the DD model using the commutative hyper-
complex algebraic scheme. Asjad et al.43 found wave solutions to the DD model via the direct algebraic extended 
technique. Yel44 determined the traveling wave solutions of the DD model in nonlinear dynamic elasticity 
through the sine–Gordon expansion scheme. Ibrahim et al.45 have examined the optical solitons for the DD 
using the Sardar sub-equation, which explains the flow of shallow water in a small-amplitude surface system. 
Separately, Eremeyev and Kolpakov46 employed a numerical approach to study nonlinear wave propagation in 
EIMR, demonstrating successful prediction of solitary wave formation and comprehensive property analysis. 
Additionally, Eremeyev et al.47 analyzed harmonic wave propagation in EIMR using the same model, deriving 
analytical solutions for dispersion relations and investigating material parameter influences on wave propagation.

As we can see, many methods have been discovered to serve NLEEs to obtain exact traveling wave solutions. 
Among them, Khater method is an analytical method to obtain solitary wave solutions of the NLEEs through 
these techniques48 in 2017. A few months letter, Bibi et al.49 have considered this method and applied to the 
nonlinear Sharma Tasso-Olever equation for exploring exact solutions. In 2018, Khater et al.50 have inspected 
the wave solutionsto the higher order nonlinear Sasa-Satsuma equation in mono mode fibers through the new 
auxiliary equation method, but the potential scholar invalidated some solutions of this method, which have been 
discussed in Refs.51–53. At the same time, El-Ganaini and Zayed gave us the correct form some of the solutions 
in Ref.54. After that, Khater introduced the modified Khater method, which is extension of the Khater method. 
It is applied to the Schwarzian Korteweg-de-Vries equation and (2 + 1)-Ablowitz-Kaup-Newell-Segur equation 
to obtain exact solutions55,56. However, we have considered modified Khater method in this paper and apply it 
to the model described in Section “Mathematical analysis”.

It is evident from an inspection of prior works by different researchers on the DD model that the MK 
techniques have not been previously employed, nor have wave solutionsbeen derived using this approach, and 
also did not discuss the impact of the parameters. Furthermore, none of these previous authors conducted the 
bifurcation analysis and demonstrated paths to stable solutions for the wave variable, which none of the previous 
authors discussed. This observation underscores the gap in the existing research literature that our study aims 
to address.
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The main goal of this study is to generate wave solutions for the DD model using the MK scheme and 
also examining the influence of parameters. Additionally, we will also clarify the characteristics of the soliton 
pulse, offering both graphical and physical explanations within the context of the DD model. We discussed the 
bifurcation analysis of the model through the planar dynamical system. The Hamiltonian function is found and 
also drawn the phase portrait to identify the nature of the obtained solutions.

The rest of this paper is designed as follows: we have done the mathematical analysis in Sect. “Mathematical 
analysis” including applying the MK scheme to the DD model, and comparison between our solutions and pre-
vious literatures in the same section. The graphical and physical interpretation some solutions of the DD model 
and the implications of parameters are also discussed in Sect. “Graphical and physical explanations some of the 
solutions”. The bifurcation analysis of the model is constructed in Sect. “Bifurcation analysis of the DD model”. 
Finally, we offered a comprehensive conclusion to summarize our findings in Sect. "Conclusion".

Mathematical analysis
This section introduces the MK method applied to the DD model, leading to the establishment of comprehensive 
wave solutions. By delving into the abundant wave solutions of the DD model, we aim to elucidate their pivotal 
role in modern science and engineering across various wave phenomena. Now, through the wave transforma-
tion as,

Now, switching Eq. (2.1) into Eq. (1.1) to obtain ODE (more details in Refs.33–37), yields,

The linear wave transformation features a scalar ω , which signifies the wave speed. As indicated in Eq. (2.2), 
the wave speed is represented by ω2 . Upon scrutinising the solution of Eq. (2.2), it becomes evident that two 
distinct values of ω consistently coexist. As a result, the propagation of the DD model manifests as symmetric 
bi-directional waves in motion37.

Now, balancing the term φ′′ and φ2 in Eq. (2.2), gives N = 2 . The general solution takes the form

where c0, c1 and c2 are constants but c2  = 0 and the function f (ξ) satisfies the first order auxiliary equation 
f ′(ξ) = 1

ln(d)

{

�d−f (ξ) + µ+ σdf (ξ)
}

 . Relieving Eq. (2.3) into the Eq. (2.2), we get the algebraic equations and 
solve them, yields the solution sets:

When incorporating the provided estimates from (2.4) into the equation mentioned in (2.3), the resultant 
outcome is as follows:

When µ2 − 4�σ < 0 and σ  = 0,
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When µ2 + 4�2 < 0, σ �= 0 and σ = −�,

and

When µ2 + 4�2 > 0, σ �= 0 and σ = −�,

and

When µ2 − 4�2 < 0 and σ = �,
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and

When µ2 = 4�σ ,
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When µ = σ = K and � = 0,

When µ = (�+ σ),

When µ = −(�+ σ),

When � = 0,

When σ = µ = � �= 0,

When � = µ = 0,

When σ = � and µ = 0,

Under certain conditions, namely � = σ = 0 , � = µ = K and = 0 , and σ = 0 , when the constants are sub-
stituted, constant solutions are obtained. However, these solutions are not presented here as they lack physical 
significance. The solution of the Eq. (1.1) with the mentioned method does not exist when µ = σ = 0.

When incorporating the provided estimates from (2.5) into the equation mentioned in (2.3), the resultant 
outcome is as follows:
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When µ2 + 4�2 < 0, σ �= 0 and σ = −�,
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When µ = σ = K and � = 0,

When µ = (�+ σ),

When µ = −(�+ σ),

When � = 0,

When σ = µ = � �= 0,

When � = µ = 0,

When σ = � and µ = 0,

The solution of the Eq.  (1.1) with the mentioned method do not exists when µ = σ = 0 , � = σ = 0 , 
� = µ = K and σ = 0 , and σ = 0.

Comparison
Alquran and Smadi37 have inspected ten wave solutions of the DD model using the MRSC and SCF, and unified 
approaches. Cattani et al.33 have constructed fifteen solutions of the DD model through the EsGEE and MEEF 
techniques. Dusunceli et al.34 have constructed ten solutions of the DD model by using the IBsEF technique. 
But, in our present paper, we employed the MK scheme and independently uncovered ninety-two solutions from 
the DD model. These solutions are expressed as the rational function solution, exponential function solution, 
trigonometric function solution and hyperbolic function solution. As a result, both methods have a common 
solution of the DD model, whose solutions does not shown in this manuscript. Finally, we can say that the solu-
tions obtained in our research differ from those reported in Refs.33,34,37.

Graphical and physical explanations some of the solutions
The DD model provides a variety of novel wave solutions expressed in exponential, trigonometric, and hyperbolic 
functions such as tanh, coth, sec, cos, tan, and cot, along with their combinations. These solutions encompass 
periodic-wave solutions, kink waves, combinations of kink and multi-solitons, periodic lumps, and periodic 
solitons. In the following section, we delve into the physical interpretations of these derived solutions, examine 
the effects of the parameters, conduct a bifurcation analysis of the model, and perform numerical simulations 
with various parameter values.

Some 3D wave profiles of the attained solutions
A lot of parameters are involved in Eq. (1.1). Due to this, in order to illustrate the 3D wave profiles of the 
selected solutions, we will graphically depict the results by changing the values of the parameters related to the 
solutions obtained in this sub-section. It is important to note that we have constructed trigonometric, hyperbolic, 
exponential, and rational wave solutions to the DD model in a variety of ways. By setting numerous individual 
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values to the derived solutions, the soliton profile for each solution is formed. The structural composition of the 
aforementioned solutions is characterized by the propagation of wave profiles organized alphabetically according 
to the w type. Figure 1 illustrates the behavior of u5(x, t) as it evolves under varying parameter values and specific 
coefficients. On the other hand, Fig. 2 represents the bell shape wave structure of the solution u73(x, t) as it 
evolves under varying parameter values and specific coefficients. Bell-shaped wave profiles refer to a particular 
shape of waveforms or curves that resemble the form of a bell. These profiles typically exhibit a central peak or 
maximum point with gradually decreasing amplitudes on both sides. Bell-shaped wave profiles are fundamental 
in understanding various natural and scientific phenomena.

Impact of the parameters some of the attained solutions
The DD model constitutes a nonlinear partial differential equation characterized by a second-order temporal 
derivative. Its application has been directed towards examining strain wave propagation within Murnaghan’s 
rod, particularly concerning scenarios involving elastic inhomogeneous media. This model has been 
involved lot of important parameters such as ρ denotes the density, ε denotes the small parameters, q = B

Q 
and a = M

Q  denotes the scale factors, γ  denotes the poisson parameter and others. In this paper, we have 
used the MK scheme on mentioned model and constructed different types of solutions for Murnaghan’s 
rod including lot of parameters. In this sub-section, we will discuss the impact of parameters on the 
stated model by using the two-dimensional combined chart. As a result, we analyze the parameter values: 
χ = −1,Q = −0.2, a = −0.1, γ = 0.02,µ = 0.1, � = 0.3, σ = 0.4, q = −5.1, η = 0.3, ε = 4, ρ = 0.1 , In Fig. 3a, 
the behavior of the solution |u1(x, t)| is depicted, specifically focused on the parameter χ and its influence. This 
solution exhibits a periodic waveform. Furthermore, Fig. 3b–e illustrate the impact of various parameters on 
the solution |u1(x, t)| both contributing to periodic waveform profiles. These profiles highlight the occurrence of 
periodic wave phenomena, particularly noteworthy in the context of Murnaghan’s rod. Analyzing Fig. 3b–e reveals 
a reduction in the amplitude of the waveform as parameters γ ,µ, ε and η are decreases. Conversely, Fig. 3a and f 
show an increase in waveform amplitude with decreasing values of parameter χ and ρ . For the Fig. 4, we analyze 
the parameter values: χ = 0.21,Q = 2, a = 1, γ = 1,µ = 2, � = 0.1, σ = 0.2, q = 5.1, η = 0.3, ε = 0.2, ρ = 0.01 , 
In Fig. 4a–f, the behavior of the solution |u5(x, t)| is depicted, specifically focused on the various parameters 
χ γ ,µ, ε, ρ and η and its influence. This solution exhibits an alphabetically w-shape waveform. These profiles 
highlight the occurrence of w-shape wave phenomena, particularly noteworthy in the context of Murnaghan’s 
rod. Figure 5a–f represents the bell shape wave profile of the solution |u73(x, t)| for selecting the parameters 
χ = 0.21,Q = 2, a = 1, γ = 1,µ = 0, � = −0.1, σ = 0.2, q = 5.1, η = 0.3, ε = 0.2, ρ = 0.01 and also displayed 
the influence of the various parameters χ γ ,µ, ε, ρ and η . This solution exhibits a bell shape waveform. These 

Figure 1.   Representation of the three-dimensional wave profiles of the solution u5(x, t) for the selected 
parameters Q = 2, a = 1, � = 0.1, q = 5.1, σ = 0.2 . (a) χ = 0.21, γ = 1,µ = 2, ε = 0.2, η = 0.3, ρ = 0.01 ; (b) 
χ = 0.21, γ = 5,µ = 2, ε = 0.2, η = 0.3, ρ = 0.01 ; (c) χ = 0.21, γ = 1,µ = 3, ε = 0.2, η = 0.3, ρ = 0.01 ; (d) 
χ = 0.21, γ = 1,µ = 2, ε = −0.1, η = 0.3, ρ = 0.01 ; (e) χ = 0.21, γ = 1,µ = 2, ε = 0.2, η = 0.3, ρ = 0.01 ; 
(f): χ = 0.21, γ = 1,µ = 2, ε = 0.2, η = 0.3, ρ = 0.05.
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profiles are also effective the occurrence of bell shape wave phenomena, particularly noteworthy in the context 
of Murnaghan’s rod. Analyzing from the figures, it can be seen that the nature of the wave profile changes for the 
particular values of the selecting parameters χ γ ,µ, ε, ρ and η . Finally, Fig. 6a–c represents the nature of the wave 
profiles of the selected solutions for different time. It can be seen that the behaviors of the wave profiles changes 
with changes of the time. The solutions derived from the DD model are highly valuable as they find applicability 
in explaining diverse physical phenomena, including but not limited to shock waves, tsunamis, and solitons.

Bifurcation analysis of the DD model
In this study, we investigate the novel dynamics of the DD model via Eq. (1.1) using concepts from bifurcation 
theory. By introducing the variables X = φ and Y = X′ , Eq. (2.2) can be transformed into a planar dynamical 
system with the following form:

This phase plane representation corresponds to the familiar phase plane linked to wave solutions of the DD 
model. Using the Hamilton canonical equations X′ = ∂H

∂Y  and Y ′ = − ∂H
∂X  , the Hamiltonian function comes from 

the system (3.1) as

If Q = ω2ρ , the system has only one equilibrium point (EP) as (0, 0) . On the other hand, if Q  = ω2ρ , then 
the system has two EP such as (0, 0) and 

(

2(ω2ρ−Q)
qηε , 0

)

 . Note that qηε  = 0 . For the point (0, 0) , the characteristics 

roots are 
√

2(ω2ρ−Q)
εχ(ω2ρ−γ a)

 and −
√

2(ω2ρ−Q)
εχ(ω2ρ−γ a)

 , provided that ω2ρ  = γ a . If the value of 2(ω2ρ−Q)
εχ(ω2ρ−γ a)

 is grater than 

zero, then the eigenvalues are the real and opposite sign. So, the EP (0, 0) is unstable saddle. If 2(ω2ρ−Q)
εχ(ω2ρ−γ a)

< 0 , 
then the eigenvalues are purely imaginary and the given EP is stable center or ellipse. On the other hand, for 

another point 
(

2(ω2ρ−Q)
qηε , 0

)

 , the characteristics roots are 
√

2(Q−ω2ρ)
εχ(ω2ρ−γ a)

 and −
√

2(ω2ρ−Q)
εχ(ω2ρ−γ a)

 , provided that 

ω2ρ  = γ a . If the value of 2(ω2ρ−Q)
εχ(ω2ρ−γ a)

 is grater than zero, the eigenvalues are real and opposite sign and thus the 

(3.1)

{ dX
dξ = φ

dY
dξ = − 2(Q−ω2ρ)

εχ(ω2ρ−γ a)
X − qηε

εχ(ω2ρ−γ a)
X2

.

(3.2)H(X,Y) =
Y2

2
+

Q − ω2ρ

εχ
(

ω2ρ − γ a
)X2 +

qηε

3εχ
(

ω2ρ − γ a
)X3.

Figure 2.   Representation of the three-dimensional wave profiles of the solution u73(x, t) for the selected 
parameters Q = 2, a = 1,µ = 0, q = 5.1, ε = 0.2 . (a) χ = 0.21, γ = 1, � = −0.1, σ = 0.2, η = 0.3, ρ = 0.01 ; (b) 
χ = 0.21, γ = 1, � = −0.1, σ = 0.2, η = 0.3, ρ = 0.01 ; (c) χ = 0.21, γ = 1, � = −0.6, σ = 0.2, η = 0.3, ρ = 0.01 ;  
(d) χ = 0.21, γ = 1, � = −0.1, σ = 0.6, η = 0.3, ρ = 0.01 ; (e) χ = 0.21, γ = 1, � = −0.1, σ = 0.2, η = 0.4, ρ = 0.01 ; 
(f) χ = 0.21, γ = 1, � = −0.1, σ = 0.2, η = 0.3, ρ = 0.03.
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Figure 3.   Representation of the impact of the various parameters of the solution u1(x, 1).

Figure 4.   Representation of the impact of the various parameters of the solution u5(x, 1).
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EP is unstable saddle point. If 2(ω2ρ−Q)
εχ(ω2ρ−γ a)

< 0 , the eigenvalues are purely imaginary. So, the EP is stable center 
point. For different choices of the parameters, we will explain as: For the values of the parameters 
Q = 2,ω = 1, q = 1,χ = 1, γ = 2, a = 1, ε = 1, ρ = 1 and η = 1 as display the phase portrait of the model, 
which is shown in Fig. 7. We have been seen that the two EPs where (0, 0) is unstable saddle and (−2, 0) is center 
p oi nt s .  F i g u re   8  e x h ibi t s  t he  phas e  p or t r a i t  of  t he  v a lu e s  of  t he  p ar ame te rs 
Q = 0.5,ω = 1, q = 1,χ = 1, γ = 2, a = 1, ε = 1, ρ = 1 and η = 1 . We have been seen that the two EPs where 
(0, 0) is center and (1, 0) is unstable saddle points. Figure 9 displays the phase portrait of the values of the param-
eters Q = 1,ω = 0.1, q = 1,χ = 1, γ = 1, a = 1, ε = 1, ρ = 1 and η = 0.2 . We have been seen that only one EP 
as (0, 0) is unstable saddle point. Figure 10 presents the phase portrait of the values of the fixed parameters 
Q = −2,ω = 1, q = 1,χ = 1, γ = 2, a = 1, ε = 1, ρ = 1 and η = 1 . We have been seen that only one EP as (0, 0) 
is center. Figure  11 presents the phase portrait of the values of the fixed parameters 
Q = 2,ω = 1.7, q = 0.5,χ = 1, γ = 0.1, a = 1.5, ε = 1, ρ = 1 and η = 1 . We have been seen that two EPs where 
(0, 0) is unstable center and (1.78, 0) is center. If the change of the values of the parameters χ , then the remain 
unchanged figures like as center and unstable saddle points. For the values of the parameters 
Q = 0.5,ω = 1.7, q = 0.1,χ = −1, γ = −2, a = −1, ε = 1, ρ = 1 and η = 1 , Fig. 12 display the phase portrait 

Figure 5.   Representation of the impact of the various parameters of the solution u73(x, 1).

Figure 6.   Representation of the wave profile for different time and different solutions.
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of the model. We have been seen that only one EP as (0, 0) is center point. Due to this discussion, it can be seen 
that the presence of nonlinear periodic trajectory and nonlinear homoclinic trajectory ensure the occurrence of 
the solutions of the DD model. It is also seen that the wave solutions of the trajectories are not obtained. In sum-
mary, phase plane analysis is a valuable technique that plays a fundamental role in understanding the dynamics, 
stability, and behavior of complex systems in various scientific and engineering disciplines. It provides a visual 
and intuitive way to interpret and predict the evolution of systems, making it an indispensable tool for researchers 
and engineers alike.

Figure 7.   A phase profile of the Eq. (3.1) is represented as (a) shows its trajectories, isoclines, and nullclines, 
revealing its behavior. (b) Displays the trajectories of the consistent solutions to the wave variable ξ.

Figure 8.   A phase profile of the Eq. (3.1) is represented as (a) shows its trajectories, isoclines, and nullclines, 
revealing its behavior. (b) Displays the trajectories of the consistent solutions to the wave variable ξ.
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Conclusion
This article presents a study on the DD model, where various wave solutions are derived through the MK method. 
These solutions encompass both fresh and classical soliton patterns known in existing literature. The wave solu-
tions are associated with several free parameters related to the approach and the model, and their effects are dis-
cussed. We have plotted the 3D diagrams some of the selected solutions as shown in Figs. 1 and 2. Furthermore, 
2D combined diagrams are illustrated to examine the impact of these parameters at different levels as shown in 
Figs. 3, 4, and 5. To understand the dynamical behaviors of solitons in various disciplines, stability analysis is 
performed for some of the obtained solutions. Additionally, bifurcation analysis of the model is carried out. The 
stability of equilibrium points is analyzed, and the phase portrait of the system are depicted in Figs. 7, 8, 9, 10, 11, 
and 12. The results suggest that changes in parameter values can lead to shifts in the dynamics of wave solutions 
provided by the DD model. Overall, the MK scheme proves to be a powerful, compatible, and straightforward 
method to derive comprehensive wave solutions with various free parameters, which are valuable for describing 
wave profiles in different scenarios. Therefore, it is reliable, easy to use and effective, future research can use the 
implemented method to obtain analytical wave solutions to incremental nonlinear fractional wave equations of 
many models in nonlinear science and engineering.

Figure 9.   A phase profile of the Eq. (3.1) is represented as (a) shows its trajectories, isoclines, and nullclines, 
revealing its behavior. (b) Displays the trajectories of the consistent solutions to the wave variable ξ.

Figure 10.   A phase profile of the Eq. (3.1) is represented as (a) shows its trajectories, isoclines, and nullclines, 
revealing its behavior. (b) Displays the trajectories of the consistent solutions to the wave variable ξ.
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