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Research on sound quality of roller 
chain transmission system based 
on multi‑source transfer learning
Jiabao Li , Lichi An , Yabing Cheng * & Haoxiang Wang 

To establish the sound quality evaluation model of roller chain transmission system, we collect 
the running noise under different working conditions. After the noise samples are preprocessed, a 
group of experienced testers are organized to evaluate them subjectively. Mel frequency cepstral 
coefficient (MFCC) of each noise sample is calculated, and the MFCC feature map is used as an 
objective evaluation. Combining with the subjective and objective evaluation results of the roller chain 
system noise, we can get the original dataset of its sound quality research. However, the number of 
high-quality noise samples is relatively small. Based on the sound quality research of various chain 
transmission systems, a novel method called multi-source transfer learning convolutional neural 
network (MSTL-CNN) is proposed. By transferring knowledge from multiple source tasks to target 
task, the difficulty of small sample sound quality prediction is solved. Compared with the problem that 
single source task transfer learning has too much error on some samples, MSTL-CNN can give full play 
to the advantages of all transfer learning models. The results also show that the MSTL-CNN proposed 
in this paper is significantly better than the traditional sound quality evaluation methods.
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Studies have shown that long-term exposure to noise can seriously affect people’s mental and physical health. 
Mechanical noise not only makes people cranky, but also can damage hearing and even lead to a higher risk 
of heart disease1,2. As an important mechanical basic product, roller chain is widely used in automobiles and 
motorcycles, which directly affects the noise quality of the whole machine. Nowadays, users pursue higher noise 
comfort, so how to evaluate the noise of the roller chain transmission system is particularly important. However, 
previous studies on roller chain noise mainly focus on noise characteristics and noise generation mechanism3,4. 
Due to the lack of relevant research on sound quality, a series of noise tests are carried out in this paper to estab-
lish the sound quality evaluation model of the roller chain system.

Sound quality research generally includes subjective and objective evaluation content, exploring the user’s 
subjective feeling to noise, mainly the evaluation of comfort degree. The research on sound quality mainly focuses 
on the field of automobile, and researchers generally use some acoustic parameters (A-weighted sound pressure 
level, loudness, sharpness, roughness, fluctuation, articulation index and tonality) as objective evaluation. Based 
on the specific subjective evaluation method, the testers are organized to conduct the auditory evaluation test on 
the noise samples. Then, researchers often use some machine learning and neural network methods to establish 
a sound quality evaluation model with objective evaluation as input and subjective evaluation as output5–7. Li, D. 
et al. used the method of multiple linear regression to establish the relationship between subjective discomfort 
degree and acoustic parameters. The results show that loudness and sharpness have the greatest influence on 
the comfort of micro commercial vehicles8. Wang, Y. et al. proposed a global annoyance level modeling method 
for pure electric vehicles and established a nonlinear mapping relationship between psychoacoustic indicators 
and sound quality based on the extreme gradient boost algorithm9. Sometimes there is severe multicollinearity 
between the input features, and the accuracy and performance of the sound quality evaluation model will be 
reduced. Convolutional neural network (CNN) has strong feature extraction ability and is generally used in the 
field of image processing. In order to use CNN in the study of sound quality, various feature maps are constructed 
as objective evaluation of noise10,11. Mel frequency cepstral coefficient (MFCC) is a commonly used feature rep-
resentation method in sound signal processing, which has been proved to be used to distinguish sound quality12. 
Using the MFCC feature map as the input of the model, CNN is obviously better than the traditional sound 
quality modeling method. The above research introduces the development of sound quality research and the 
improvement of modeling methods in different application scenarios. However, how to improve the accuracy of 
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sound quality prediction model is still a difficult problem when the number of samples is insufficient. Moreover, 
the constant pursuit of prediction accuracy will inevitably lead to more and more complex models, so it is also 
important to achieve lightweight sound quality prediction models.

To establish the sound quality evaluation model of roller chain transmission system, we first collect the 
running noise of the roller chain system under different working conditions and preprocess the noise samples. 
Secondly, we organize a group of testers to evaluate the noise samples subjectively, and construct feature maps as 
objective evaluation. To solve the problem of small sample sound quality evaluation, we find and make use of a 
fuzzy phenomenon in the subjective evaluation of sound quality and propose a data enhancement method called 
fuzzy generation. However, fuzzy generation can lead to a particular kind of data leakage, and we use transfer 
learning to eliminate this effect. The basic idea of transfer learning is to accelerate the learning process on the 
target task by using the knowledge learned in one or more source tasks. This is usually done by using a model 
that has already been trained on one task as a starting point, and then fine-tuning it to fit the new task13–16. In 
the study of single-source tasks, Jamil, F. et al., proposed an example-based deep transfer learning method for 
wind turbine gearbox fault detection to prevent negative migration17. Maschler, B. et al. proposed a modular 
deep learning algorithm for anomaly detection of time series data sets, which realizes deep industrial transfer 
learning18. In the study of multi-source tasks, Rajput, D. S. et al. use multi-source sensing data and fuzzy con-
volutional neural network for fault classification and prediction, and the accuracy of the model is significantly 
superior to other machine learning and deep learning methods19. Sun, L. et al., proposed a new parameter transfer 
method to improve training performance in multi-task reinforcement learning20. Based on the sound quality 
study of three chain transmissions (silent chain, Hy-Vo chain and dual-phase Hy-Vo chain), we propose a new 
method named multi-source transfer learning convolutional neural network (MSTL-CNN). The results show 
that the proposed model is superior to the traditional sound quality prediction methods.

Data collection and pre‑processing
Figure 1 shows the steps of the sound quality evaluation test, including noise acquisition and processing, subjec-
tive evaluation test and objective evaluation.

Noise test
For the chain transmission system, the roller chain type is 06B, the tooth number of driving sprocket is 19, and 
the tooth number of driven sprocket is 38. The noise sensor (MINIDSP UMIK-1) is placed at the same height 
as the center of the driving sprocket, and the noise test is carried out in a closed indoor reverberation field. 
The measurement distance is the distance between the noise sensor and the chain system, which is 0.5 and 1 m 
respectively. In the noise test, the speed range is 500–4000 rpm, and the three loads are 500 N, 600 N and 750 N 
respectively. Starting from the lowest speed (500 rpm), the noise collection is performed every 500 rpm, and 

Figure 1.   Test procedure.
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the collection time is greater than 30 s each time. We record noise audio using Adobe Audition 2022 software, 
and the noise is sampled at 48,000 Hz. Finally, we can get 2 × 8 × 3 = 48 noise samples, and randomly intercept 
5 s fragments of each sample for subsequent processing.

Figure 2 shows a comparison between the noise of the roller chain transmission system and a silent chain 
transmission system. The green time-domain waveform on the left is the roller chain system, and the blue one on 
the right is the silent chain system. Under the same load and measurement distance, the noise of the roller chain 
system is stronger than that of the silent chain from low speed to high speed. At the low-speed of 1000 rpm, the 
noise energy of the roller chain system is obviously stronger than that of the silent chain. As the speed increases, 
the noise energy of the roller chain system decreases at 2500 rpm. The results show that the roller chain system 

Figure 2.   Comparison of time domain waveform.
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works more smoothly at medium speed, but the noise is still stronger than that of the silent chain system. At 
the high speed of 4000 rpm, the noise energy of both increases significantly, and the noise of the roller chain 
system is slightly stronger than that of the silent chain system. Therefore, the noise characteristics of the roller 
chain system are different from those of the silent chain system, so it is necessary to construct the sound quality 
evaluation model of the roller chain transmission system.

Subjective evaluation test
We use the equal interval direct one-dimensional evaluation as a subjective evaluation method, and the noise 
discomfort level describes the sound quality21. As shown in Fig. 3, there are five discomfort levels for noise, where 
0 means extreme discomfort and 10 means no discomfort. The three middle discomfort levels, with three scores 
for each level, represent the strength of the discomfort level from smallest to largest. Twelve healthy testers with 
driving experience take part in the auditory perception test, with a ratio (5:1) of men to women. As shown in 
Fig. 1d, the tester wears a hi-fi headset for the test, and the same noise audio is played five times by the Groove 
software. The sound pressure level of the test environment does not exceed 30 dB, and the score is recorded in 
the table after the tester listens to a noise audio.

The subjective evaluation scores at each speed are shown in Fig. 4. Based on the median line, as the speed 
continues to increase, the score overall shows a downward trend. In the speed range of 500–3000 rpm, the 
sound quality of the roller chain system decreases with the increase of the speed. However, at 3500 rpm, the 
score increases, indicating that the roller chain system runs more smoothly at this time. At the limit speed of 
4000 rpm, the score is significantly reduced. It should also be noted that the longer the box line means that the 
sound quality of this speed fluctuates greatly, and there is even an outlier at 2000 rpm. For the same sample, twelve 
testers should have relatively consistent feelings, so it is necessary to conduct normality test and correlation test 
on the subjective evaluation results.

Because the sample size is small, Shapiro–Wilk test is used to test the normality of each sample scores, as 
shown in Fig. 5. If the test value is greater than 0.05, it is consistent with normality, which is represented by the 
blue circle, and the red circle indicates that the sample does not conform to the normal distribution. We can see 

Figure 3.   Subjective evaluation score chart.

Figure 4.   Box plot of scores.
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that quite a variety of evaluation results do not conform to the normal distribution, so spearman correlation test is 
needed to further analyze the subjective evaluation results. The formula for spearman correlation test is as follows:

where xi and yi represent the corresponding elements of the two variables, x and y represent the average value 
of the corresponding variables. The larger the r value, the stronger the correlation, and the test results are shown 
in the Fig. 6.

In Fig. 6, Ti (i = 1, 2,…,12) represents the number of the twelve testers. The correlation between many testers 
is less than 0.7, and the weakest correlation between T9 and T6 is only 0.40. To screen reasonable subjective 
evaluation results, we calculated the average correlation coefficient (ACC) of each tester based on Fig. 6, as 
shown in Table 1.

It can be seen from Table 1 that the ACC of T9 is less than 0.7, so if the results of T9 are excluded, the evalu-
ation results of the remaining testers are all reasonable. The average evaluation scores of the remaining eleven 
testers are calculated as the final subjective evaluation results, as shown in Table 2.

(1)r =

n
∑

i=1
(xi − x)

(

yi − y
)

√

n
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i=1
(xi − x)2

n
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Figure 5.   Normality test.

Figure 6.   Correlation test result.
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Objective evaluation
Mel frequency cepstral coefficient (MFCC) is based on the characteristics of the human auditory system. The 
sensitivity of the human ear to different frequencies is non-linear: it is more sensitive to low frequency sounds 
and less sensitive to high frequency sounds. The Mel scale is a frequency measurement method based on the 
human ear’s perception of pitch, which can convert the actual frequency into the Mel frequency. MFCC is a 
powerful feature representation method because it is able to capture the main characteristics of speech signals 
in a compact manner, and to some extent simulates the characteristics of human auditory perception22–24. The 
calculation steps of MFCC are as follows:

(1)	 The original signal is pre-weighted, the high-frequency part is strengthened, and the high-frequency part 
of the sound signal is compensated for the loss that may be suffered during transmission.

where x(t) is the original signal, y(t) is the pre-weighted signal, and α usually takes 0.95 or 0.97.
(2)	 The signal is divided into N millisecond frames, and the data of each frame is windowed. Window functions 

usually use Hamming window:

(3)	 The frequency spectrum is obtained by fast Fourier transform of the data of each frame. A set of Mel filters 
(usually a triangular filter bank) is applied to the spectrum to simulate the perceptual properties of the 
human ear. Each filter Hm(k) is defined as:

where f(m) is the central frequency of the filter on the Mel scale. The Mel scale transformation is shown 
as follows:

where M(f) is the representation of the frequency f on the Mel scale.
(4)	 The output of the filter bank needs to be logarithmic.

where X(k) is the spectrum of the frame.
(5)	 After taking the logarithm of the filter bank output, the discrete cosine transform is used to get the final MFCC.

where C(n) is the n-th MFCC, L represents the order of the MFCC, generally 12–16.

In this paper, the MFCC order L is taken as 12, and the length N of each frame is taken as 20 ms, 25 ms and 
30 ms respectively. Finally, the 5 s noise sample is divided into F (250,200 and 167) frames. Based on Eqs. (2)–(7), 
we can calculate the three MFCC for each noise sample. The objective evaluation results generate the input 
feature space, and the subjective evaluation labels the noise samples. As shown in Fig. 7, the MFCC feature map 
is constructed as the input of the sound quality evaluation model. To compare with the traditional modeling 
method of sound quality evaluation, we also select six acoustic parameters as objective evaluation. As illustrated 

(2)y(t) = x(t)− αx(t − 1)

(3)ω(n) = 0.54− 0.46 · cos(2πn/N) 1 < n < N
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Table 1.   ACC of twelve testers.

Tester T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

ACC​ 0.80 0.74 0.82 0.77 0.74 0.75 0.82 0.84 0.63 0.81 0.80 0.84

Table 2.   Final score of each sample.

Sample number 1 2 3 4 5 6 7 … 42 43 44 45 46 47 48

Score 8.82 8.73 9.00 8.82 8.82 8.91 6.55 … 4.36 2.73 2.09 1.00 5.55 4.55 2.73
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in Fig. 8, the Audio toolbox in MATLAB is used to calculate these six parameters: A-weighted sound pressure 
level (A-SPL), loudness, sharpness, roughness, fluctuation, articulation index (AI).

Methodology
Transfer learning (TL) is especially useful in situations where data is scarce, because it allows models to lev-
erage existing knowledge, reducing the need for large amounts of labeled data. TL can be divided into four 
categories according to different technical methods: instance-based TL, feature-based TL, model-based TL and 
relation-based TL25,26. Instance-based TL directly uses the data instances of the source task to assist the learning 
of the target task, which usually involves reweighting the data of the source task to better adapt to the target 
task. Feature-based TL learns feature representations that can be transferred between source and target tasks. 
Model-based TL directly transfers the model parameters of the source task to the target task and adjusts them. 
Relation-based TL is suitable for situations where both source and target tasks involve relational data, such as 
knowledge graphs or social networks. These classification methods of TL help to understand its wide application 
and provide guidance for selecting appropriate transfer learning strategies for specific problems.

In this paper, we take the sound quality evaluation of roller chain transmission system as the target task 
and choose the sound quality study of silent chain transmission system as the source task. The source task and 
the target task are the same in feature space and data space, but the data distribution is different. We choose 
the model-based TL approach, in which the model parameters of the source task are used as the initialization 
parameters of the target task model27. The fine-tuning process can be represented by the following formula:

where θtarget is the model parameter of the target task, θsource is the model parameter of the source task, and Δθ is 
the parameter adjustment on the target task. As shown in Fig. 9, by stacking the prediction results of the three 
target models, the final sound quality evaluation model can be obtained.

As a basic model, convolutional neural network (CNN) is generally used to solve classification tasks. To 
model sound quality evaluation, the number of nodes in the output layer is set to 1, and a continuous value can 
be obtained without using nonlinear activation function. The convolutional layer in front of the CNN can be 
regarded as a feature extractor, as shown in the Fig. 10. In the source model, there are three convolution lay-
ers (Conv), one maxpooling layer, one flatten layer, and three fully connected layers (FC). The step size of the 
maximum pooling layer is 2 with 0 padding, and the step size of the Conv is 1 without 0 padding. In the three 
FC, the number of nodes is 1024, 128, and 1, respectively. To avoid overfitting, dropout technology is used in 
FC1, and the dropout rate is set to 0.5. The output layer is the last layer, and the output result is the evaluation 
score. Except for the last layer, the activation functions of other layers are relu. Some studies have shown that the 
structure of the source model and the target model should be similar28. Therefore, in this paper, the structural 
parameters of the target model are the same as those of the source model. When the 167 × 12 MFCC feature map 
is used as input, the structural parameters of the source model are shown in the Table 3. The transfer learning 
process from the source model to the target model can be summarized as: First, the source model is trained on 
the source task, and then the feature extractor of the source model is reused on the target model. Based on the 
samples of the target task, the parameters of the new fully connected layers can be trained on the target model.

We chose three sound quality research of chain transmission system as the source tasks, which are: silent 
chain, Hy-Vo chain, and dual-phase Hy-Vo chain. To better train the source model, we need to expand the data-
sets for these three source tasks. Fuzzy generation is a data enhancement method based on the fuzzy phenomenon 
in the subjective evaluation of sound quality. After the correlation test, all the subjective evaluation scores are 
reasonable, but researchers often take the mean as the final score. If the average score is taken as the most correct 
result, the accuracy of the other scores can be defined. Based on the uncertainty of subjective evaluation results, 
we introduce fuzzy mathematics to quantify and deal with the fuzziness of this problem. Fuzzy mathematics is 
an effective mathematical tool for dealing with uncertainty and fuzziness. By introducing the concepts of fuzzy 
sets and fuzzy logic, it allows mathematical modeling of inaccurate or incomplete information that is prevalent 
in the real world29–31. Combined with the idea of fuzzy mathematics, fuzzy generation is proposed to expand the 
datasets. First, we can define a fuzzy map on the evaluation score interval as follows:

(8)θtarget = θsource +�θ

Figure 7.   MFCC feature map.
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where I is the value field [0 10], M is the fuzzy interval of I, and M(s) is the membership function.
We treat the average score as having a membership of 1, while the minimum score and the maximum score 

both have a membership of 0. After constructing different membership functions, the membership degrees of 
different sizes are selected to divide the fuzzy generation interval. In the fuzzy generation interval, a suitable 
perturbation method is selected to generate a sufficient number of new samples. In this paper, three membership 
functions (cusp, ridge and normal) are constructed, and the formula is as follows:

(9)
M : I → [0, 1]

s �→ M(s)

Figure 8.   Six acoustic parameters: (a) A-SPL, (b) loudness, (c) sharpness, (d) roughness, (e) Fluctuation, (f) AI 
(The upper figure of each subgraph represents the parameters at 0.5 m measuring distance and the lower figure 
of each subgraph represents the parameters at 1 m measuring distance).
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where c is the core point (the average score), m is the left boundary point (the minimum score), n is the right 
boundary point (the maximum score), r is a random generation point, and M(sr) is the membership of r. Equa-
tion (10) is the cusp membership function, Eq. (11) is the ridge membership function, and Eq. (12) is the normal 
membership function. We take three samples of the roller chain transmission system as an example, and the 
three membership functions are shown in Fig. 11. In this paper, we use random perturbation to triple the size 
of the original dataset with three membership degrees (0.9, 0.7 and 0.5).
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Figure 9.   MSTL-CNN flowchart.
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Results and analysis
Based on three source tasks (with 168 samples) and one target task, we build three transfer learning models: 
Source model 1(silent chain)–Target model 1, Source model 2(Hy-Vo chain)–Target model 2, Source model 
3(dual-phase Hy-Vo chain)–Target model 3. On the source model and the target model, the MFCC feature 
map is input, the evaluation score is output. Since a large dataset is obtained through fuzzy generation, simple 
segmentation is enough to obtain reliable evaluation. Therefore, for the test method of source model and target 
model, we choose training-test split, that is, 83% of data sets are randomly selected for training and 17% for 
testing. Both the source model and the target model use the Adam optimizer, and the root mean squared error 

Figure 10.   Transfer learning model.

Table 3.   Model structure parameters.

Layer type Channels/units

Input 167 × 12 3

3 × 3 Conv relu, stride 1 4

3 × 3 Conv relu, stride 1 8

3 × 3 Conv relu, stride 1 12

2 × 2 Maxpooling relu, stride 2 48

Flatten 2916

FC1 1024

Dropout 1024

FC2 128

FC3 1
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is the loss function. The initial learning rate of the source model is 0.005 and the epoch is set to 200. After each 
source model is trained on the source task, this part including the convolution layers, pooling layer, and flatten 
layer is regarded as the feature extractor and the parameters of these layers are frozen. By connecting the feature 
extractor with the new input layer, the new fully connected layers, the new dropout layer, and the new output 
layer, we can finally get three target models. For the target model, we use the dataset of the roller chain system 
for training, the initial learning rate is 0.003 and the epoch is set to 100. During the training process, only the 
parameters of the new fully connected layers are constantly updated, and with the help of the feature extrac-
tor, the model can converge with fewer epochs. The final results need to take the mean of five training results, 
and since there are 3 kinds of feature maps, 3 membership functions and 3 membership values, each transfer 
learning model needs to be trained 5 × 3 × 3 × 3 = 135 times in total. Three indicators: correlation coefficient (R), 
root mean squared error (RMSE) and mean absolute error (MAE) are selected to evaluate the transfer learning 
model, and the formulas are as follows:

where n is the number of samples, xi is the predicted value of the sample, and yi is the true value of the sample. R 
is used to measure the degree of linear correlation between two variables. The value is between − 1 and 1, where 
1 means a completely positive correlation, − 1 means a completely negative correlation, and 0 means no linear 
correlation. In the prediction of sound quality, R can be used to intuitively show the linear correspondence 
between the predicted value of the model and the real value. To measure the final predictive effect of transfer 
learning, we also propose an evaluation formula to select the best situation.

The indicator E can represent the effectiveness of the transferred knowledge on the target model. To ensure 
that the performance difference between the source model and the target model is not too large, the value of E 
should be as small as possible. Based on the size of the E value, we can get the best set of source model-target 
model. Due to the small sample size of the target task, serious underfitting occurs in the model without the use 
of transfer learning, and the results are not presented because they are meaningless.

The training results of the Source model 1 are shown in Table 4, and the training results of the Target model 
1 are shown in Table 5. The smaller the evaluation indicator E, the greater the contribution of the source model, 
and the smaller the prediction error of the target model. As Table 5 shows, the minimum value of evaluation 
indicator E is 1.745. Therefore, when the membership function is ridge, the membership value is 0.7 and the 
input size is 167 × 12, the transfer learning effect is the best. The training results of the Source model 2 and Target 
model 2 are presented in Tables 6 and 7 respectively.

For the Source model 2–Target model 2, as can be seen from the minimum value 1.813 of E in Table 7, transfer 
learning has the best effect when the membership function is ridge, the membership value is 0.7 and the input 
size is 200 × 12. For the last transfer learning model (Source model 3–Target model 3), the results are shown in 
Tables 8 and 9.

As can be seen from Table 9, the minimum value of E is 2.009, indicating that transfer learning has the best 
effect when the membership function is ridge, the membership value is 0.9 and the input size is 250 × 12. Among 
the three transfer learning models, the error indicators (RMSE and MAE) of the target model are larger than 

(13)R =

∑n
i=1 (xi − x)(yi − y)

√

∑n
i=1 (xi − x)2

√

∑n
i=1 (yi − y)2

(14)RMSE =

√

1

n

∑n

i=1
(xi − yi)2

(15)MAE =
1

n

∑n

i=1

∣

∣xi − yi
∣

∣

(16)E =
Rsource

Rtarget

(

RMSEtarget +MAEtarget
)

Figure 11.   Three membership functions.
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that of the source model, and we find that the transfer learning effect will be poor on specific samples, as shown 
in the Fig. 12.

In Fig. 12, the performance of the three transfer learning models differs significantly for different samples. 
To get the most out of each model, the stacking technique is shown in Fig. 13. Firstly, we train the three transfer 
learning models at their best situation, and Fig. 14 shows their convergence curves. Among the three transfer 
learning models, the initial RMSE of the target model is significantly smaller than that of the source model. It 
shows that the iteration of the target model is smoother, unlike the source model which has an obvious period 
of rapid convergence. The three target models are taken as the base model, and the prediction results of the base 
model are taken as the training data of the meta model. After training the meta model, the prediction of the base 
model can be effectively integrated. In this paper, the meta model adopts the method of linear regression, and 
the regression equation is shown as follows:

where Pfinal is the final prediction result of the meta model, p1 is the prediction result of Target model 1, p2 is 
the prediction result of Target model 2, and p3 is the prediction result of Target model 3. Finally, the prediction 
results of the meta model are shown in the Table 10.

To compare with the traditional sound quality evaluation methods, we also use lasso regression and support 
vector regression (SVR)32,33. Lasso regression is a linear model, which uses L1 penalty term to control variable 
selection and complexity. This helps reduce the risk of overfitting and enhances the interpretability of the model 
in data containing multiple related predictors. There are a large number of potential explanatory variables in 
sound quality prediction, and lasso regression can help identify which features are most important, simplifying 
the model and improving prediction performance. Unlike lasso regression, SVR is a nonlinear model that deals 
with linearly indivisible data by using different kernel functions. There are two main advantages of SVR: it has 
good robustness to outliers and can work effectively in high-dimensional space. For problems such as sound 
quality that involves complex nonlinear relationships, SVR can provide powerful modeling capabilities. Based 
on the six acoustic parameters as inputs and the subjective evaluation scores as outputs, we train the lasso regres-
sion model and SVR model. For the lasso regression model, five-fold cross validation is used to find the optimal 
parameter λ is 68. As for the SVR model with radial basis function, five-fold cross validation is also used to find 

(17)Pfinal = −1.38+ 0.11p1 + 0.30p2 + 0.97p3

Table 4.   Results of source model 1.

Membership function Membership value Input size

Source model 1

Training Test

R RMSE MAE R RMSE MAE

Cusp

0.9

250 × 12 0.953 0.785 0.613 0.952 0.847 0.688

200 × 12 0.963 0.749 0.609 0.969 0.767 0.640

167 × 12 0.979 0.491 0.420 0.977 0.474 0.412

0.7

250 × 12 0.954 0.718 0.568 0.953 0.747 0.627

200 × 12 0.976 0.613 0.527 0.976 0.652 0.577

167 × 12 0.971 0.485 0.372 0.974 0.475 0.398

0.5

250 × 12 0.692 1.283 0.991 0.371 1.615 1.248

200 × 12 0.714 1.217 0.920 0.392 1.648 1.253

167 × 12 0.711 1.211 0.916 0.424 1.637 1.253

Ridge

0.9

250 × 12 0.951 0.802 0.646 0.939 0.793 0.670

200 × 12 0.979 0.512 0.431 0.982 0.482 0.420

167 × 12 0.968 0.594 0.472 0.971 0.598 0.497

0.7

250 × 12 0.939 0.806 0.664 0.941 0.754 0.608

200 × 12 0.959 0.711 0.589 0.972 0.628 0.525

167 × 12 0.965 0.602 0.475 0.980 0.476 0.388

0.5

250 × 12 0.929 0.936 0.765 0.950 0.805 0.674

200 × 12 0.951 0.682 0.552 0.968 0.522 0.435

167 × 12 0.951 0.679 0.556 0.967 0.503 0.403

Normal

0.9

250 × 12 0.948 0.893 0.759 0.949 0.873 0.738

200 × 12 0.978 0.664 0.544 0.980 0.667 0.559

167 × 12 0.979 0.581 0.509 0.983 0.540 0.468

0.7

250 × 12 0.977 0.515 0.410 0.979 0.464 0.389

200 × 12 0.975 0.614 0.524 0.974 0.569 0.500

167 × 12 0.980 0.568 0.487 0.981 0.483 0.410

0.5

250 × 12 0.968 0.572 0.454 0.970 0.585 0.483

200 × 12 0.970 0.539 0.434 0.973 0.541 0.436

167 × 12 0.970 0.527 0.425 0.975 0.502 0.408
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the optimal parameter, the value range is [0.01, 0.1, 1, 10, 100], and the optimal parameters (penalty parameter 
c = 100 and kernel parameter g = 0.01) can be obtained. Due to the small size of the original dataset, we choose 
the cross-validation approach to get a robust model performance evaluation. Five-fold cross-validation is used 
as a test method for lasso regression model and SVR model. The prediction results of lasso regression model 
and SVR model are also shown in the Table 10. Compared with the three target models, the three indicators of 
the meta model are significantly better, especially the error indexes (RMSE and MAE) are particularly small. 
Compared with the two traditional methods, the meta model also has obvious advantages: the maximum cor-
relation coefficient R is 0.993, the minimum RMSE is 0.238, and the minimum MAE is only 0.181. Therefore, 
the results show that the multi-source transfer learning convolutional neural network (MSTL-CNN) proposed 
in this paper has the best effect and the most accurate results in the evaluation of sound quality.

Table 5.   Results of target model 1.

Membership function Membership value Input size

Target model 1

E

Training Test

R RMSE MAE R RMSE MAE

Cusp

0.9

250 × 12 0.872 1.310 1.125 0.875 1.460 1.142 2.393

200 × 12 0.869 1.363 1.169 0.887 1.489 1.139 2.406

167 × 12 0.899 1.523 1.348 0.914 1.300 0.979 2.130

0.7

250 × 12 0.913 1.303 1.098 0.892 1.376 1.040 2.259

200 × 12 0.932 1.118 0.953 0.925 1.271 0.944 2.098

167 × 12 0.912 1.301 1.127 0.904 1.210 0.923 1.979

0.5

250 × 12 0.952 1.102 0.969 0.933 1.057 0.916 4.966

200 × 12 0.892 1.301 1.112 0.884 1.364 1.141 5.650

167 × 12 0.936 1.486 1.343 0.931 1.516 1.241 6.053

Ridge

0.9

250 × 12 0.914 1.373 1.169 0.888 1.495 1.268 2.613

200 × 12 0.948 1.203 1.044 0.949 1.276 1.098 2.295

167 × 12 0.948 1.115 0.973 0.943 1.179 1.023 2.138

0.7

250 × 12 0.952 1.389 1.215 0.958 1.418 1.232 2.700

200 × 12 0.930 1.315 1.103 0.900 1.418 1.197 2.421

167 × 12 0.963 0.915 0.792 0.959 0.958 0.826 1.745

0.5

250 × 12 0.913 1.222 1.014 0.908 1.299 1.070 2.264

200 × 12 0.942 1.137 0.968 0.928 1.235 1.072 2.212

167 × 12 0.933 1.288 1.075 0.906 1.336 1.134 2.313

Normal

0.9

250 × 12 0.795 1.470 1.226 0.858 1.444 1.206 2.395

200 × 12 0.946 0.993 0.808 0.934 1.133 0.938 1.975

167 × 12 0.960 1.047 0.948 0.949 1.138 1.033 2.095

0.7

250 × 12 0.834 1.424 1.197 0.871 1.451 1.218 2.377

200 × 12 0.943 1.170 1.008 0.942 1.250 1.074 2.249

167 × 12 0.936 1.272 1.104 0.916 1.274 1.121 2.237

0.5

250 × 12 0.866 1.544 1.323 0.856 1.624 1.394 2.665

200 × 12 0.962 1.119 0.948 0.949 1.185 0.987 2.117

167 × 12 0.934 1.079 0.919 0.928 1.160 0.993 2.049



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11226  | https://doi.org/10.1038/s41598-024-62090-3

www.nature.com/scientificreports/

Conclusion
In this paper, we do a series of noise tests to establish the sound quality evaluation model of roller chain trans-
mission system. Firstly, 48 noise samples are obtained through noise acquisition test, and all the noise samples 
are evaluated subjectively and objectively. For the subjective evaluation, the results with poor correlation are 
excluded. As for the objective evaluation, we calculate the Mel frequency cepstral coefficients and six acoustic 
parameters.

To solve the problem of small sample sound quality evaluation, we propose a multi-source transfer learning 
convolutional neural network (MSTL-CNN) based on three source tasks. For the transfer learning model, three 
membership functions (cusp, ridge and normal) and three membership values (0.9, 0.7 and 0.5) are selected for 
fuzzy generation. By comparing the transfer learning results in different situations, the optimal conditions of 
each transfer learning model are found. Since the three transfer learning models behave differently on different 
samples, we stack their predictions into one meta model. The results of the meta model are not only much bet-
ter than each transfer learning model, but also better than the traditional methods of sound quality research. In 
particular, the MSTL-CNN proposed in this paper has the smallest mean absolute error of only 0.181, indicating 
that the model is the most accurate in the evaluation of sound quality. In the future work, how to remove the 
stacking steps to simplify the model structure is a research difficulty. Therefore, it is crucial to realize the simul-
taneous training of three transfer models and timely knowledge sharing for specific samples.

Table 6.   Results of source model 2.

Membership function Membership value Input size

Source model 2

Training Test

R RMSE MAE R RMSE MAE

Cusp

0.9

250 × 12 0.990 0.513 0.421 0.986 0.557 0.468

200 × 12 0.992 0.557 0.483 0.991 0.603 0.539

167 × 12 0.994 0.392 0.335 0.993 0.429 0.390

0.7

250 × 12 0.986 0.519 0.433 0.982 0.614 0.539

200 × 12 0.987 0.444 0.358 0.984 0.490 0.416

167 × 12 0.987 0.537 0.462 0.984 0.650 0.572

0.5

250 × 12 0.975 0.657 0.549 0.974 0.695 0.608

200 × 12 0.978 0.495 0.412 0.978 0.498 0.431

167 × 12 0.978 0.662 0.561 0.981 0.705 0.626

Ridge

0.9

250 × 12 0.983 0.631 0.519 0.985 0.698 0.616

200 × 12 0.986 0.519 0.430 0.985 0.568 0.485

167 × 12 0.992 0.452 0.368 0.991 0.531 0.441

0.7

250 × 12 0.980 0.527 0.419 0.978 0.560 0.491

200 × 12 0.977 0.515 0.421 0.976 0.540 0.463

167 × 12 0.984 0.496 0.411 0.984 0.514 0.443

0.5

250 × 12 0.983 0.562 0.460 0.977 0.614 0.524

200 × 12 0.983 0.748 0.638 0.974 0.884 0.787

167 × 12 0.981 0.604 0.418 0.971 0.702 0.600

Normal

0.9

250 × 12 0.983 0.603 0.462 0.984 0.596 0.462

200 × 12 0.992 0.373 0.270 0.994 0.334 0.255

167 × 12 0.989 0.447 0.338 0.992 0.407 0.321

0.7

250 × 12 0.985 0.623 0.529 0.984 0.564 0.498

200 × 12 0.991 0.474 0.380 0.992 0.425 0.359

167 × 12 0.992 0.400 0.332 0.992 0.348 0.294

0.5

250 × 12 0.975 0.712 0.601 0.973 0.795 0.687

200 × 12 0.985 0.535 0.455 0.984 0.594 0.515

167 × 12 0.987 0.502 0.405 0.986 0.549 0.470
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Table 7.   Results of target model 2.

Membership function Membership value Input size

Target model 2

E

Training Test

R RMSE MAE R RMSE MAE

Cusp

0.9

250 × 12 0.874 1.406 1.229 0.897 1.414 1.059 2.249

200 × 12 0.903 1.397 1.223 0.932 1.332 1.024 2.215

167 × 12 0.819 1.439 1.235 0.810 1.620 1.203 2.302

0.7

250 × 12 0.903 1.353 1.175 0.885 1.337 0.998 2.104

200 × 12 0.940 1.172 1.014 0.954 1.162 0.903 2.002

167 × 12 0.930 1.134 0.982 0.908 1.178 0.871 1.890

0.5

250 × 12 0.876 1.427 1.234 0.830 1.489 1.216 2.305

200 × 12 0.960 1.044 0.929 0.962 1.064 0.867 1.900

167 × 12 0.948 1.178 1.049 0.942 1.193 0.983 2.090

Ridge

0.9

250 × 12 0.938 1.337 1.136 0.942 1.430 1.206 2.522

200 × 12 0.900 1.272 1.090 0.925 1.332 1.146 2.326

167 × 12 0.965 1.089 0.968 0.960 1.139 1.009 2.080

0.7

250 × 12 0.884 1.542 1.290 0.877 1.617 1.350 2.661

200 × 12 0.969 0.952 0.815 0.969 0.994 0.834 1.813

167 × 12 0.951 1.321 1.169 0.946 1.406 1.239 2.543

0.5

250 × 12 0.945 1.045 0.860 0.945 1.108 0.939 1.980

200 × 12 0.948 1.059 0.873 0.946 1.124 0.956 2.020

167 × 12 0.962 1.295 1.137 0.958 1.301 1.158 2.427

Normal

0.9

250 × 12 0.940 1.452 1.280 0.944 1.558 1.343 2.782

200 × 12 0.910 1.319 1.148 0.918 1.424 1.232 2.454

167 × 12 0.931 1.346 1.184 0.926 1.443 1.250 2.514

0.7

250 × 12 0.917 1.235 1.070 0.930 1.268 1.077 2.216

200 × 12 0.955 1.040 0.892 0.956 1.128 0.959 2.012

167 × 12 0.962 1.052 0.925 0.949 1.167 1.005 2.076

0.5

250 × 12 0.822 1.529 1.263 0.874 1.508 1.228 2.459

200 × 12 0.882 1.320 1.105 0.889 1.401 1.178 2.328

167 × 12 0.953 1.083 0.947 0.953 1.179 1.015 2.120
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Table 8.   Results of source model 3.

Membership function Membership value Input size

Source model 3

Training Test

R RMSE MAE R RMSE MAE

Cusp

0.9

250 × 12 0.980 0.636 0.495 0.979 0.717 0.553

200 × 12 0.984 0.514 0.413 0.981 0.575 0.462

167 × 12 0.982 0.606 0.510 0.982 0.642 0.533

0.7

250 × 12 0.978 0.476 0.387 0.978 0.511 0.430

200 × 12 0.980 0.547 0.458 0.979 0.589 0.488

167 × 12 0.983 0.548 0.460 0.982 0.598 0.513

0.5

250 × 12 0.959 0.692 0.557 0.958 0.732 0.603

200 × 12 0.965 0.841 0.742 0.966 0.828 0.723

167 × 12 0.965 0.594 0.481 0.963 0.612 0.511

Ridge

0.9

250 × 12 0.985 0.513 0.432 0.986 0.536 0.445

200 × 12 0.983 0.501 0.419 0.983 0.518 0.430

167 × 12 0.989 0.444 0.381 0.989 0.452 0.388

0.7

250 × 12 0.972 0.726 0.608 0.965 0.795 0.679

200 × 12 0.978 0.529 0.416 0.974 0.588 0.462

167 × 12 0.985 0.534 0.462 0.982 0.602 0.541

0.5

250 × 12 0.968 0.612 0.495 0.972 0.608 0.492

200 × 12 0.969 0.601 0.484 0.971 0.630 0.520

167 × 12 0.973 0.563 0.458 0.975 0.568 0.464

Normal

0.9

250 × 12 0.985 0.447 0.367 0.983 0.487 0.398

200 × 12 0.980 0.642 0.563 0.979 0.665 0.583

167 × 12 0.989 0.384 0.300 0.988 0.418 0.319

0.7

250 × 12 0.981 0.640 0.521 0.979 0.743 0.609

200 × 12 0.975 0.579 0.474 0.973 0.661 0.528

167 × 12 0.987 0.489 0.415 0.986 0.521 0.414

0.5

250 × 12 0.985 0.510 0.416 0.983 0.524 0.426

200 × 12 0.987 0.478 0.390 0.982 0.500 0.414

167 × 12 0.988 0.499 0.414 0.986 0.511 0.437
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Table 9.   Results of target model 3.

Membership function Membership value Input size

Target model 3

E

Training Test

R RMSE MAE R RMSE MAE

Cusp

0.9

250 × 12 0.860 1.436 1.231 0.827 1.688 1.276 2.504

200 × 12 0.835 1.345 1.126 0.826 1.723 1.350 2.587

167 × 12 0.827 1.490 1.278 0.789 1.609 1.187 2.248

0.7

250 × 12 0.928 1.298 1.134 0.908 1.344 1.042 2.216

200 × 12 0.891 1.432 1.203 0.878 1.463 1.170 2.363

167 × 12 0.884 1.248 1.060 0.863 1.424 1.088 2.208

0.5

250 × 12 0.906 1.236 1.037 0.885 1.407 1.093 2.309

200 × 12 0.936 1.170 0.988 0.933 1.321 1.071 2.308

167 × 12 0.962 1.137 0.963 0.947 1.207 0.958 2.128

Ridge

0.9

250 × 12 0.956 0.994 0.909 0.954 1.118 0.958 2.009

200 × 12 0.965 1.051 0.891 0.964 1.153 0.985 2.097

167 × 12 0.962 1.171 1.041 0.957 1.204 1.091 2.221

0.7

250 × 12 0.841 1.532 1.322 0.876 1.557 1.328 2.619

200 × 12 0.948 1.182 1.051 0.942 1.231 1.072 2.228

167 × 12 0.946 1.048 0.883 0.938 1.191 1.000 2.092

0.5

250 × 12 0.927 1.160 0.945 0.929 1.308 1.089 2.293

200 × 12 0.904 1.291 1.097 0.909 1.313 1.151 2.307

167 × 12 0.906 1.271 1.079 0.868 1.400 1.240 2.352

Normal

0.9

250 × 12 0.949 1.366 1.166 0.947 1.435 1.234 2.572

200 × 12 0.942 1.296 1.084 0.936 1.417 1.193 2.495

167 × 12 0.956 1.221 1.064 0.957 1.251 1.085 2.262

0.7

250 × 12 0.930 1.244 1.047 0.933 1.354 1.126 2.364

200 × 12 0.872 1.377 1.176 0.878 1.493 1.267 2.489

167 × 12 0.968 1.177 1.023 0.968 1.200 1.054 2.213

0.5

250 × 12 0.938 1.208 1.021 0.940 1.312 1.104 2.311

200 × 12 0.949 1.216 1.064 0.936 1.265 1.085 2.238

167 × 12 0.946 1.147 0.976 0.937 1.218 1.037 2.144

Figure 12.   Error contrast.
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Figure 13.   Stacking of three models.

Figure 14.   Convergence curve of three models: (a) source model 1–target model 1, (b) source model 2–target 
model 2, (c) source model 3–target model 3.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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