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Cutaneous squamous cell 
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Cutaneous squamous cell carcinoma (SCC) is an increasingly prevalent global health concern. Current 
diagnostic and surgical methods are reliable, but they require considerable resources and do not 
provide metabolomic insight. Matrix-assisted laser desorption/ionization mass spectrometry imaging 
(MALDI-MSI) enables detailed, spatially resolved metabolomic analysis of tissue samples. Integrated 
with machine learning, MALDI-MSI could yield detailed information pertaining to the metabolic 
alterations characteristic for SCC. These insights have the potential to enhance SCC diagnosis and 
therapy, improving patient outcomes while tackling the growing disease burden. This study employs 
MALDI-MSI data, labelled according to histology, to train a supervised machine learning model 
(logistic regression) for the recognition and delineation of SCC. The model, based on data acquired 
from discrete tumor sections (n = 25) from a mouse model of SCC, achieved a predictive accuracy of 
92.3% during cross-validation on the labelled data. A pathologist unacquainted with the dataset 
and tasked with evaluating the predictive power of the model in the unlabelled regions, agreed with 
the model prediction for over 99% of the tissue areas. These findings highlight the potential value 
of integrating MALDI-MSI with machine learning to characterize and delineate SCC, suggesting a 
promising direction for the advancement of mass spectrometry techniques in the clinical diagnosis of 
SCC and related keratinocyte carcinomas.

Abbreviations
FISH  Fluorescence in situ hybridization
H&E  Hematoxylin and eosin
IHC  Immunohistochemistry
KC  Keratinocyte carcinoma
LR  Logistic regression
MALDI-MSI  Matrix-assisted laser desorption/ionization mass spectrometry imaging
ML  Machine learning
MS  Mass spectrometry
MSI  Mass spectrometry imaging
m/z  Mass to charge ratio
PC  Principal component
PCA  Principal component analysis
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REIMS  Rapid evaporative ionization mass spectrometry
SCC  Squamous cell carcinoma

Keratinocyte carcinoma (KC), also known as non-melanoma skin cancer, is the most common form of cancer 
affecting around 3.5 million people globally per  year1. KC include basal cell carcinomas, Merkel cell carcinoma 
and cutaneous squamous cell carcinomas (SCC). While basal cell carcinomas are more common, SCC pose a 
greater threat to patients due to their rapid development, higher recurrence, and metastasis rates. Thus, despite 
its substantially lower incidence compared to basal cell carcinoma, SCC is associated with three-quarters of KC-
related  deaths2,3. In Caucasian populations KC is the most frequently diagnosed malignancy and the incidence 
rate is  increasing4. Some models even suggest a doubling in the incidence of KC within the next 10  years1. Most 
cases of KC occur on skin areas that are exposed to ultraviolet radiation from  sunlight5. Factors involved in the 
observed increase in incidence rate, include climate change, globalization, tanning beds, ageing populations as 
well as improved screening and reporting of the  condition2,4,6,7. SCC has a considerable impact on the quality of 
life of  patients8,9. Chronic inflammation and immunosuppression are often contributors to the development of 
SCC. Dysregulation of the lipid metabolism and signaling is fundamental in KC  tumorigenesis10,11. Most SCCs 
originate from the precancerous lesion known as actinic keratosis; however, some cases arise de  novo6,12.

In the majority of cases, surgical excision is the recommended treatment for  SCC9. Among the various surgical 
approaches available, Mohs micrographic surgery is widely acknowledged as the most  accurate9,13. This technique, 
first introduced in the 1940s, entails iterative steps of tumor excision, followed by histopathological evaluation, 
until complete removal of the tumor has been  achieved13. Given the iterative nature of Mohs micrographic 
surgery, the procedure can be both time-consuming and costly. Furthermore, as Mohs micrographic surgery is 
relying on histology, the technique is susceptible to interobserver  variation14–16.

Detailed molecular profiling of tumor tissue can potentially enhance both diagnostic and therapeutic strate-
gies. However, metabolomic insights are not obtained with conventional techniques for skin cancer treatment. 
In particular, the field of lipidomics has gained attention during the past decade due to technological advances 
facilitating unprecedented detail in the analysis of lipids. Lipidomics has solidified its role within oncology, 
by demonstrating that lipids, in addition to their structural role in cellular membranes, also perform critical 
functions in cellular  signaling10,17. The lipidomic profile of a cell is consequently highly characteristic of the 
cell type, enabling the use of lipidomics for fingerprinting of tumor cells. This capability offers potential for 
the development of highly accurate diagnostic techniques. Mass spectrometry (MS) is one technique widely 
adopted for lipidomics owing to its capacity for highly sensitive and accurate analysis. The abundance of an ion-
ized compound is detected according to its mass-to-charge ratio (m/z). Techniques for spatially resolved MS, 
known as MS imaging (MSI), enable the generation of hundreds of compound-specific images from a single 
experimental run, providing comprehensive metabolomic mapping. A mass spectrum with a spatial component 
is conventionally referred to as a pixel. The evolution and refinement of MSI over recent decades has unveiled 
new possibilities for clinical applications. Its capacity to render detailed visualizations of metabolites and proteins 
has not only increased its value in the realm of molecular histology but also highlighted a potential for ambient 
MS techniques as real-time analytical tools during critical procedures such as cancer diagnosis and  surgery18. 
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a widely implemented 
technique enabling high spatial resolution. A key benefit of MALDI is its soft ionization process, which preserves 
the molecular profile of the sample. This facilitates detailed molecular histology with predominantly singly 
charged, unfragmented molecules represented. However, MALDI-MSI datasets are large and complex, making 
data-analysis resource intensive.

The use of MS for recognition and delineation of solid tumors presents a classification problem that can be 
addressed with machine learning (ML). In particular, supervised learning, a subfield of ML, has potential in this 
context, as it leverages pre-labeled data to predict classifications for new, unseen data. One notable algorithm 
employed for supervised ML is logistic regression (LR). LR essentially models the probability (P) that a given 
observation (Y) belongs to a particular class, which in the domain of tumor detection, is typically binary: either 
tumor (1) or not tumor (0). The estimated probability of Y = 1 is denoted P(Y = 1) and is determined by a linear 
combination of the predictor variables, such as m/z values in MS data. The coefficients for the model can essen-
tially be interpreted as a specific m/z values importance for the classification outcome. A threshold, typically set 
at 0.5, determines the classification: if the predicted probability is greater than this threshold, the data point is 
classified as Y = 1 (e.g. Tumor). Conversely, if the probability is below the threshold, the data point is classified 
as Y = 0 (e.g. Not tumor). LR is particularly useful when the relationship between the predictor variables and the 
probability of class membership is non-linear. This is likely the case in the complex task of recognizing tumor 
tissue from MS data.

We aim at demonstrating the utility of MALDI-MSI in combination with LR for SCC tumor delineation, while 
providing metabolomic characterization that could enhance our understanding of SCC pathophysiology. Our 
research has the potential to establish a role for MS techniques in the therapeutic management of SCC, offering a 
significant advancement in addressing the current and prospective challenges in the treatment of this condition.

Results
A total 25 datasets, each comprising histological and MSI data from adjacent mouse SCC tissue sections, were 
collected. Figure 1 shows the workflow from tumor excision to initial data-processing. All 25 samples contained 
viable tumor in various stages as well as at least one other tissue class (described in “Materials and methods” 
section). Final labelling of the MSI pixels were grouped to either Non-tumor or Tumor and all 25 tumors were 
confirmed as SCC by histological evaluation from the annotating pathologist. The annotating pathologist left a 
substantial number of pixels unannotated in the image to ensure an adequate amount of data for model validation 
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purposes. Figure 2a shows an example of an annotated H&E image with the extraction mask used for labelling 
of the MSI pixels.

Data quality and processing
The quality of each unprocessed MSI dataset was assessed by visualizing the molecular distribution of a metabo-
lite known to be present across the tissue (Fig. 3a). All datasets were of satisfactory quality and spectral recalibra-
tion and peak picking were performed. A total of 966 peaks were used for further analysis. A plot of the picked 
peaks is available in the supplementary material (Fig. SM2). After processing, the first principal component 
was visualized and used as the foundation for the coregistration of the tissue area to the annotated H&E image 
(Fig. 3b–d). The labelled data from the 25 datasets was used to train the LR model to classify MSI pixels accord-
ing to the labels (i.e. Background, Tumor or Non-tumor). The classification of background was included for the 
purpose of visualizing the predictions.

Predictive accuracy
A total of 79.293 pixels across the 25 datasets received a label based on the extraction masks. The total number 
of pixels labelled as tissue (either Tumor or Non-tumor) was 45.737. The leave-one-group-out cross validation 
(described in the “Materials and methods” section) indicates a model sensitivity of 94.4% (i.e., the proportion 
of tissue pixels correctly classified as Tumor), and a specificity of 90.1% (i.e., the proportion of tissue pixels cor-
rectly classified as Non-tumor) for the labelled data (Fig. 4). The predictive accuracy of the model on labelled 
data within the tissue was 92.3% (calculated as the ratio between correctly classified tissue pixels to the total 
number of tissue pixels). For the calculation of sensitivity, specificity and accuracy the reader is referred to the 
“Materials and methods” section.

Predictive power
In Fig. 3e the prediction for three distinct tissue sections is shown along with areas of misclassification as anno-
tated by the validating pathologist. The summed areas of false positive predictions and false negative predictions 
were compared to the total tissue area. Figure 5 shows the confusion matrix with the relative areas in percentage. 
The validation showed a combined model accuracy of > 99% with a sensitivity of 99.8%. False positives consisted 
primarily of panniculus muscle tissue, misclassified as tumor tissue. Common for both false negative and false 
positive classifications were that the areas were located on the edge of the tissue, indicating that improvements of 
the coregistration could yield better classification results. One solution could be to have more stringent criteria 
for accepting the coregistration by introducing a threshold for the number of mis-matched pixels. Predictions 
for all datasets with mis-classified areas annotated and corresponding H&E images with annotations are avail-
able in the supplementary material (Attachment SM1). We did not observe any areas of discrepancy between 
the annotations of the annotating pathologist and the validating pathologist.

Spectral characteristics
The coefficients for the trained model, signifying the importance of each of the 966 m/z values in the classifica-
tion were extracted and plotted. LR coefficients for the 50 m/z values most important for classification outcome 
are shown in Fig. 6. The plot showing the coefficients of all m/z values is supplied in the supplementary material 

Figure 1.  Workflow for sample preparation and data collection. Illustrates the processes for both modalities: 
MALDI-MSI and histopathology. Source of vector graphics: www. BioRe nder. com.

http://www.BioRender.com
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(Fig. SM4). Negative coefficients suggest upregulation in the tumor regions and vice versa. Particularly, ions in 
the lipid range (defined here as m/z 600–900) exhibited upregulation in tumor areas, as depicted in Fig. 6. The 
ion at m/z 465.304, tentatively annotated as cholesterol sulphate, showed the largest downregulation in tumor 
regions when compared to the non-tumor regions (Fig. 6). The best predictor in the lipid range was the ion 
observed at 883.534, tentatively annotated as phosphatidylinositol (38:5). Examples of the distribution of these 
ions, visualized by the unprocessed MSI data are available in the supplementary material (Fig. SM5). For further 
inspection of specific ion distributions the reader is referred to the Metaspace annotation platform according to 
the Data availability statement below.

Discussion
In the present study, we focused on the applicability of a combination of MALDI-MSI and ML for SCC charac-
terization and margin detection. The LR model demonstrated a high level of predictive accuracy and predictive 
power, affirming the utility of MALDI-MSI in combination with LR in SCC characterization. The method out-
lined facilitates a deeper, metabolomic understanding of the pathophysiological mechanisms behind SCC and can 
potentially be a more comprehensive and accurate diagnostic method than traditional histology. However, the 
method is primarily a tool for characterization of tumor tissue, and not intended to replace traditional histological 
approaches in its current form. Traditional histology has, despite shortcomings such as interobserver variation, 
a well-established role in the clinical diagnosis of SCC. Nonetheless, our method showcase how MS data can be 

Figure 2.  Coregistration and data-extraction. (a) Example of an H&E image with annotations drawn in 
freehand and the extraction mask, drawn as colored shapes. Data extracted from the green areas of the 
extraction mask is labelled as Non-tumor, data from the red areas as Tumor and data from the blue areas as 
Background. (b) Projection of the first principal component of the MSI data (PC1) for outlining the tissue. (c) 
Coregistration of the tissue area. Grey signifying pixels that are present in both images, white signifying pixels 
exclusively present in the H&E-image mask and black indicating pixels exclusively present in the MALDI image. 
(d,e) Illustration of the principle of extracting and labelling the spectra according to the extraction mask. A 
spectrum for pixels labelled as background is not shown for simplicity.
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Figure 3.  Data-analysis workflow with intermediary images. Demonstrates the data analysis workflow through 
representative datasets. (a) MSI of the ion present at m/z 885.55. (b) PC1 projection used for coregistration. (c) 
H&E staining with annotations and extraction mask. Red: Tumor, Green: Non-tumor, Blue: Background. (d) 
Coregistration of H&E image and PC1. Grey: pixels found in both images, Black: pixels exclusively found in 
MSI, White: pixels exclusively found in H&E image. (e) Projection of model classification. Red: Tumor; Green: 
Non-tumor; Black: Tissue boundary; White: Misclassifications according to the validating pathologist with 
Tumor 232 showing an example of false positive prediction and Tumor 254 showing an example of false negative 
prediction.

Figure 4.  Leave-one-group-out cross-validation. Cross-validation conducted on a leave-one-group-out basis 
with 25 iterations (each dataset left out in one iteration of training). Percentages show the proportion of pixels 
that fall into each category summed across each iteration. Numbers show the absolute number of pixels within 
each category. Unclassified pixels are those which failed to achieve a scaled probability > 0.5. Details about the 
validation method are provided in “Materials and methods” section.
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Figure 5.  Confusion matrix for model evaluation. Confusion matrix based on the areas of misclassification for 
evaluation of the model prediction. Percentages represent the total area of a classification type relative to the 
total tissue area.

Figure 6.  Molecular ions of importance for prediction outcome. Plot displaying the 50 ions of largest 
importance for the classification outcome as specified by the coefficients of the logistic regression model. 
Negative coefficients suggest upregulation in the tumor regions and positive coefficients suggest higher intensity 
in the non-tumor regions (i.e. downregulation in the tumor regions). The coefficients are sorted according to 
m/z value and the lipid-range is highlighted by the red box.
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effectively employed in the accurate diagnosis and delineation of SCC. A study by Janßen et al. reported a level of 
accuracy similar to our findings on human samples of non-small cell lung cancers (including adeno-carcinoma 
and SCC). They report accuracies of 99.0% and 98.3% for a neural network and a linear discriminant analysis, 
respectively, trained for classifications based on MALDI-MSI spectra obtained in the mass range m/z 700–270019.

While the potential of MALDI-MSI in SCC characterization is recognized, our study, focusing specifically 
on mouse SCC tissue and integrating LR, substantiates and extends this potential by investigating a previously 
unexplored combination of methods and  models20. The m/z-range chosen for data acquisition (m/z 300–1000) 
encompasses lipids and small metabolites, both of which are hypothesized to be altered during  tumorigenesis10,17. 
A potential use for this information is the application of ambient MS techniques coupled with surgical tools, for 
real-time metabolomics during surgery. This would likely require the use of a mass range similar to the one used 
in this study, since energy-based surgical techniques would not conserve the protein structure under ambient 
conditions. This could effectively combine diagnosis, delineation, and tumor removal into  one21.

To discern the differences in specific ions between tumor and non-tumor tissues, we inspected the coeffi-
cients of the trained LR model. Our findings confirm a general upregulation of lipids in the tumor area (Fig. 6, 
Fig. SM4). A smaller study on oral SCC found that two phosphatidylcholines, namely phosphatidylcholine 
(16:0/16:1) and phosphatidylcholine(18:1/20:4) present at m/z 770.5 and m/z 846.6, respectively in positive 
mode, provided good tumor  delineation22. In Fig. SM5, we show the distribution of two of the most important 
metabolites for the prediction. We find that these metabolites do to some extend differentiate between tumor 
and non-tumor regions, however neither metabolite provide a sufficient binary distinction for accurate tumor 
delineation. In our study we conclude that focusing on single ions may provide valuable insights into tumor 
pathology, however, for accurate delineation of the tumor, a multivariate approach is needed.

We used negative mode with 1,5-diaminonaphthalene as the MALDI matrix to efficiently ionize a broad 
range of lipids, fatty acids and other small metabolites that tend to ionize better in negative  mode23,24. Studies 
on the use of MALDI-MSI for characterization of other cancers such as breast, colon, liver, and ovarian cancer 
have shown promising results by investigating higher mass-ranges for  proteomics11,25–27. The field of proteomics 
does, however, lend itself less useful in the aim of implementing MS in the clinical, ambient settings due to the 
sample preparation required to conserve the primary protein structure.

The final evaluation by the validating pathologist suggests a very high concordance between classic histology 
and our model prediction. Notably, the validation shows a sensitivity of 99.8% (Fig. 5). This is important as model 
sensitivity is crucial in cancer diagnostics; tumor cells that are undetected and associated with a false sense of 
security could constitute a significant risk for the patient.

Traditional histopathological evaluations face challenges such as inter-observer variation, underscoring the 
importance of more consistent and objective diagnostic  tools15,28. Molecular histology techniques like immuno-
histochemistry (IHC) and fluorescence in situ hybridization (FISH) provide a more decisive tumor identification 
than classical histology but are specific to certain antigens or genomic sequences. MS based techniques provide 
rich metabolomic information that, in the realm of SCC diagnosis, could provide new prognostic markers and 
facilitate the identification of novel tumor subgroups, aiding in the stratification of tumors. This could direct 
targeted treatment strategies based on the molecular profile of the  tumor20,29. For instance, it may reveal meta-
bolic differences in SCC between patients with normal immune function and those who are immunosuppressed, 
offering deeper insights into tumor behavior.

Challenges and limitations
This study utilized murine samples rather than human samples. While larger biological variation can be expected 
in human samples, increasing complexity in the data, this study does provide important foundational insights 
and a framework for general tumor characterization using MS data. The specificity of the model presents certain 
challenges and limitations. It was not designed to differentiate between different tumor grades, which means it 
might not encapsulate the full spectrum of SCC variations. Furthermore, should a tissue type, which was not 
represented in the training data emerge in subsequent samples, our model was not trained for classification 
of this tissue type. The primary focus of our model was on viable tumor cells, leading to the categorization of 
necrotic tissues as non-tumor, however the model can be retrained and tailored to the specific needs for future 
classification challenges encompassing several different tissue types. Another limitation of this approach is that 
evaluating on a pixel-by-pixel basis does not incorporate the spatial, relational information that is important in 
classical histology, where aspects such as depth of invasion and perineural invasion are important prognostic 
 markers30,31. A more sophisticated machine learning model might address this by attributing a weight to each 
pixel based on the classification of surrounding pixels, thus modifying the classification threshold. We did not 
test the LR model against other ML classification models, as we achieved both high accuracy and interpretability 
with this model. While other ML algorithms, including random forests, support vector machines, and neural 
networks, have been effectively utilized for tumor classification using MALDI-MSI  data32–34, the significance of 
interpretability remains crucial, especially in the context of biomarker  discovery35.

Tuning of model parameters and the inclusion of more data from a diverse set of samples may lead to even 
higher accuracy and better coverage. For good model training, it is crucial that the extracted spectra are labelled 
correctly. The use of adjacent sections for MSI and histological annotation introduces a risk of misalignment of 
the sections, which could in turn result in erroneous labelling in the coregistration process. Some misalignments 
in the edges of the tissues can be observed for the examples in Fig. 3d. Using the same tissue section for both the 
histological evaluation and the MALDI-MSI experiments would eliminate this risk and has proven  feasible20. 
However, practical considerations in this study led to the decision to use adjacent sections.

The choice of leave-one-group-out cross-validation in our study was made to mitigate the risk of overfitting at 
both the pixel and tissue levels, ensuring the model’s reliability and effectiveness when encountering new tissue 
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samples. This consideration is crucial for maintaining a clinical perspective, as it aligns with real-world scenarios 
where the model must accurately interpret tissues it has not previously analyzed. Although k-fold cross-validation 
is a more commonly utilized method in ML for its general applicability, it presents a significant risk of overfitting 
to specific tissues in this context. This is because k-fold cross-validation typically involves leaving out only single 
annotations or pixels in each iteration, rather than excluding entire datasets.

Since our leave-one-group-out cross-validation involves testing the model on complete, separate datasets 
rather than a mixed set of data points, it limits the ability to generate a meaningful standard deviation. While 
this approach introduces a challenge in calculating the standard deviation for the model performance across 
different folds, this limitation does not significantly detract from the model’s overall reliability and applicability.

The validation phase of this study incorporated a side-by-side comparison of the projection of the LR pre-
dictions to the corresponding H&E image (Supplementary Material, Attachment SM1). This approach could 
potentially introduce a bias to the validation process, as the validating pathologist will become familiar with the 
performance of the model. An ideal approach would involve complete annotation of the H&E-image and only 
subsequently comparing the annotations with the model projection. Furthermore, comparison of our results 
to a third technique such as IHC or FISH applied to the same tissue sections could help identify shortcomings 
in the model and combined with histology, provide a conclusive measure of model accuracy. While the results 
presented in this study suggest an accurate method for tumor delineation, it does not provide the high spatial 
(optical) resolution achievable with classical histology.

Future perspectives
Common for all the techniques mentioned (MALDI, H&E, IHC and FISH), is the need for tissue excision and 
sectioning followed by specialized sample preparation. As we look towards broader clinical applications, tech-
niques that do not require these preliminary steps would be highly valuable. Ambient MS techniques, such as 
rapid evaporative ionization mass spectrometry (REIMS), have the potential to be used for imaging as well as 
surgical and real-time diagnostic  purposes21. Spectral differences between MALDI data and REIMS data are yet 
to be assessed, however, the recent interest in the field of MSI to characterize and compare various modalities is 
noteworthy. This could potentially lead to a scenario where data from one modality can provide useful informa-
tion for optimization of another  modality36,37.

While our study targeted SCC in mice, there is inherent potential to extend this approach to other cancer 
types and to human samples. This adaptability could foster the development of a comprehensive diagnostic tool 
with the capability of discerning various malignancies accurately at early stages, promoting early, tumor-specific 
interventions and improved patient  outcomes38.

Conclusion
The global increase in KC incidence rate necessitates innovative and more effective methodologies for diagnosis 
and tumor characterization. Our method, combining MALDI-MSI and ML, offers both objectivity and tissue 
specificity, showing sensitive recognition and accurate delineation of SCC tumor tissue. We achieved a predictive 
of power of > 99%, indicates a potential complimentary role for MS-based techniques to conventional therapeutic 
approaches.

In conclusion, the results presented in this study confirm that a LR model trained on MALDI-MSI data can 
accurately classify and delineate SCC in a mouse model. While our research has unveiled certain challenges 
and limitations, it lays a robust foundation for future research aiming at the implementation of metabolomics 
in routine cancer diagnostics.

Materials and methods
Mouse model
Hairless mice (C3.Cg-Hrhr/TifBomTac, Taconic, Ry, Denmark) were irradiated by ultraviolet radiation three 
times per week as described by Lerche et al. Tumors were excised from mice that developed SCC (n = 25) and 
embedded in a mixture of hydroxypropyl methylcellulose and polyvinylpyrrolidone (7.5%:2.5%)39. Embedded 
tumors were marked and stored at – 80 °C until further sample preparation.

Approval of the study was granted from the Danish Animal Inspectorate (# 2019‐15‐0201‐01666) and all 
experiments complied with Federation of European Laboratory Animal Science Associations guidelines for 
animal experimentation. Additional details regarding the mouse model can be accessed through previously 
published work by Lerche et al.40. One section from each tumor was hematoxylin and eosin (H&E) stained and 
one section was analyzed with MALDI-MSI, resulting in 25 datasets each comprising of one H&E image and 
one MALDI-MSI image. Reporting of the study results are in accordance with the ARRIVE guidelines (Animal 
Research: Reporting of In Vivo Experiments)41.

Histopathology
Excised tumors were cryosectioned to five 10 µm sections on microscope glass slides (Fig. 1; Dako Denmark, 
Glostrup, Denmark). Tissue images of selected tumors are available in the supplementary material (Fig. SM1). 
The central slide from each tumor was stained with a procedure for H&E staining, described in detail in the 
supplementary material (Attachment SM2). This slide was digitally scanned at a magnification of × 40. A his-
topathological report was generated by a pathologist with detailed annotations of various tissue-classes using 
the open-source software, QuPath (Version 0.3.2, available from: https:// qupath. github. io/). This pathologist is 
referred to as the annotating pathologist throughout this study. The remaining slides were stored at − 80 °C until 
MALDI-MSI analysis. Annotated classes included “SCC” (covering all grades), “Keratosis”, “Keratin pearls”, 
“Inflammatory cells”, “Inflammatory/necrotic area”, “Panniculus muscle”, “Glands” and “Peri-tumorous area with 

https://qupath.github.io/
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dilation/hyperplasia of glands (vacuoles/cysts)”. Histological annotations were used to guide the labelling and 
extraction of MS data from the MSI datasets.

MALDI-MSI
MALDI-MSI was performed on tissue sections from a total of 25 excised tumors. One tissue-slide adjacent to 
the H&E-stained section was selected and inspected for artifacts. Upon satisfactory quality, the section was 
placed in a vacuum desiccator for 10 min. Immediately after desiccation, the slide was sprayed with a solution of 
1,5-diaminonaphthalene (3.3 mg/mL in 90% MeOH), using an  iMatrixSpray42. The sprayer was set at a height of 
80 mm, line distance of 1 mm, speed at 90 mm/s, density of 3 µL/cm2, 12 cycles and an area of 40 × 40 mm. After 
assessment of the crystal formation, MALDI-MSI data was acquired in negative ion mode on an AP-SMALDI5 
ion source (TransMIT GmbH, Giessen, Germany) attached to a Thermo QExactive Orbitrap mass spectrometer 
(Thermo Scientific, Bremen, Germany). The spectral resolution was set to 140.000 with an m/z-range of 300–1000 
and a pixel size of 40–50 µm.

In-house software written in Python 3.9 and MATLAB was used for data-conversion and quality control. 
The data was converted from the Thermo raw data to the open MSI data format imzML. The imzML format is 
widely used and allows for easy visualization of MSI data across various instrument vendors and software plat-
forms. Images in which the tissue area was not clearly differentiated from the background were discarded and 
reacquired using a new tissue section.

Data-analysis and model training
The main data-analysis workflow was built using MATLAB (R2021b, available from https:// www. mathw orks. 
com/). The workflow relied on the MATLAB toolboxes, Bioinformatics, Curve Fitting, Signal Processing, and 
Statistics and Machine Learning. Preprocessing of the MALDI-MSI data included m/z-recalibration based on 
two reference ions (m/z 311.2950 and 885.5493) with a tolerance of 30 ppm. A linear surface fit was applied to 
account for calibration peaks missing in the spectra for some pixels. Spectrum averaging from tissue-pixels was 
done based on presence of signal at m/z = 885.5493, which is expected to be present in all tissue-pixels. Peak pick-
ing was performed on the mean spectrum, smoothed using 2nd order Savitzky-Golay filtering with a 21-point 
Gaussian-weighted window. These procedures were implemented to guarantee spectral precision and minimize 
noise. PCA components 1–3 were projected to assess the data-quality after processing and to generate a tissue 
mask to be used for accurate labelling of pixels during coregistration.

An image extraction mask was created based on the histopathological annotations. This mask was used for 
subsequent extraction and labelling of the corresponding MALDI-MSI data (Fig. 2). This approach allows for 
accurate labelling of pixels while preserving a large number of unlabeled pixels for model testing. Accurate 
labelling was attained by resizing, warping, and scaling the annotated H&E-image and performing a coregistra-
tion, optimizing for the best overlap of tissue-pixels in the two images. The extraction-mask was transformed 
identically. The interface of this step is shown in supplementary material (Fig. SM3). The coregistration step was 
concluded by extraction and labelling of the MSI pixels.

LR models were trained based on the extracted, labelled data. The various models were trained for three dis-
tinct classification problems: Tumor vs. Non-tumor + Background, Tumor + Non-tumor vs. Background, and Non-
tumor vs. Tumor + Background. The training data was normalized sequentially by log10 transformation and scaled 
to the Euclidean sum of each spectrum. Predictions from the model were rendered into an image that matched 
the dimensions of the original MALDI-MSI data. We employed a leave-one-group-out cross-validation approach 
on the sample level to evaluate the model: in each iteration, one dataset, consisting of all annotated regions within 
a tumor-tissue sample, was withheld from model-training and then used for validation. The model classified an 
MSI pixel based on a scaled probability threshold. Specifically, a MSI pixel was assigned to a particular label if 
its scaled probability for the class exceeded 0.5. If the datapoint did not have a scaled probability of > 0.5 for any 
class, the pixel remained unclassified (Fig. 4). We used the term predictive accuracy to describe performance of 
a model on labelled datapoints. A series of LR models were trained to classify spectra according to the provided 
labels. Each pixel (representing one mass spectrum) in a given MALDI-MSI underwent classification by its 
probability of belonging to one of the three classes: Tumor, Non-tumor or Background.

The coefficients of the trained LR model, specifying a given m/z value’s relative importance for the classifica-
tion outcome, were plotted to show which ions were up- or downregulated in the tumor regions (Fig. SM4). 
Specific molecular ions were tentatively annotated using the Metaspace MSI data annotation platform (https:// 
metas pace2 020. eu/), utilizing the LIPID MAPS® database (https:// www. lipid maps. org/)43,44. Metabolite annota-
tions were matched within a 3 ppm tolerance on the exact mass of each molecule. Hence, the annotations were 
tentative and not confirmed by tandem MS. The full list of metabolite annotations is available through the 
Metaspace platform as described in the Data availability statement.

Evaluation of model predictions
A second pathologist with extensive experience in murine skin cancers, unacquainted with the dataset and 
methods of analysis, was consulted for evaluation of the model predictions. We refer to this pathologist as the 
validating pathologist and use the term predictive power to describe the performance of a model on unlabeled 
data. The predictive power was assessed by annotation of mis-classified pixels within the tissue area. The validat-
ing pathologist was instructed to compare the original H&E-stained images with the images produced by the 
trained ML model. In a side-by-side comparison, the validating pathologist marked any incorrect representa-
tions in the model projection (Attachment SM1). Upon detailed annotation of incorrectly classified pixels the 
proportion of correctly classified pixels was calculated within each dataset. This metric was used to assess the 
overall predictive power of the model.

https://www.mathworks.com/
https://www.mathworks.com/
https://metaspace2020.eu/
https://metaspace2020.eu/
https://www.lipidmaps.org/
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We use the term sensitivity to describe the ability of the model to correctly identify tumor pixels. We cal-
culate sensitivity as follows: True positives

True positives+False negatives . We use the term specificity to describe the ability of the 
model to correctly identify non-tumor pixels. The specificity was calculated by True negatives

True negatives+False false positives . 
Accuracy, used to assess the general performance of the model, was calculated using the formula: 

True positives+True negatives
True positives+False negatives+True negatives+False false positives . The tumor class was regarded as a positive case and the 
non-tumor class was regarded as a negative case.

Data availability
Datasets related to this article can be found at https:// metas pace2 020. eu/ group/ UCope nhagen. Metaspace is an 
online database for annotation and storage of MSI  data44. The relevant datasets are prefixed with M.
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