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Systematic in‑silico evaluation 
of fibrosis effects on re‑entrant 
wave dynamics in atrial tissue
Michela Masè 1*, Alessandro Cristoforetti 1, Samuele Pelloni 1 & Flavia Ravelli 1,2

Despite the key role of fibrosis in atrial fibrillation (AF), the effects of different spatial distributions 
and textures of fibrosis on wave propagation mechanisms in AF are not fully understood. To clarify 
these aspects, we performed a systematic computational study to assess fibrosis effects on the 
characteristics and stability of re‑entrant waves in electrically‑remodelled atrial tissues. A stochastic 
algorithm, which generated fibrotic distributions with controlled overall amount, average size, 
and orientation of fibrosis elements, was implemented on a monolayer spheric atrial model. 245 
simulations were run at changing fibrosis parameters. The emerging propagation patterns were 
quantified in terms of rate, regularity, and coupling by frequency‑domain analysis of correspondent 
synthetic bipolar electrograms. At the increase of fibrosis amount, the rate of reentrant waves 
significantly decreased and higher levels of regularity and coupling were observed (p < 0.0001). 
Higher spatial variability and pattern stochasticity over repetitions was observed for larger amount of 
fibrosis, especially in the presence of patchy and compact fibrosis. Overall, propagation slowing and 
organization led to higher stability of re‑entrant waves. These results strengthen the evidence that the 
amount and spatial distribution of fibrosis concur in dictating re‑entry dynamics in remodeled tissue 
and represent key factors in AF maintenance.

Atrial fibrillation (AF) is the most common sustained arrhythmia in the clinical practice. The current estimated 
prevalence of AF is between 2 and 4% and is expected to rise by 2.3 fold in 2050, due to population  aging1. AF is 
associated with a five-fold increase in the risk of  stroke2 and often coexists with other pathologies, such as heart 
failure, causing augmented morbidity and  mortality1.

AF is a multifactorial  disease3,4, characterized by a high-rate and disorganized activation of the atria, which 
determines irregular, often rapid, ventricular  activation5. This complex atrial activity is related to different mecha-
nisms, which include high-frequency ectopic foci, multiple wavelets, and  rotors3,4. These mechanisms are pro-
moted by electrophysiological and structural alterations, which contribute to the formation of an arrhythmic 
 substrate3,4.

Accumulating experimental and clinical evidence suggests the role of atrial fibrosis in the structural remod-
eling that favorites  AF6,7. Fibrosis is a scarring process, characterized by cardiac fibroblast activation and dif-
ferentiation into myofibroblasts, loss of extracellular matrix homeostasis, and excess deposition of  collagen6,8. 
Atrial fibrosis may be the consequence of AF-induced remodeling, of an underlying structural heart disease and/
or aging, or of an atrial cardiomyopathy with genetic etiology that precedes the  arrhythmia6,9,10. Fibrosis-related 
structural alterations contribute to AF mechanisms by altering impulse formation and  propagation3,6. Fibrosis 
alters wave propagation by determining heterogenous and/or slow conduction, unidirectional blocks and bar-
riers to wave propagation, and by providing anchoring points for re-entries3,6. Arrhythmogenic effects depend 
on the overall amount of fibrosis, but also on its texture and spatial  distribution11–13. Fibrosis is not a single 
entity and its different forms (i.e., patchy, diffuse, and compact) determine specific conduction  abnormalities8,14. 
Patchy/interstitial fibrosis, which is characterized by elongated non-conducting collagen strands, plays a major 
arrhythmogenic role, being involved in conduction slowing, augmented anisotropy, unidirectional block, and 
zig-zag conduction between bundles. Diffuse fibrosis, consisting of short non-conducting collagen segments, 
determines a reduction of conduction speed and leads to the formation of reentrant waves. Compact fibrosis, 
characterized by large areas completely deprived by myocytes, seems less arrhythmogenic, but it can provide 
anchoring points for re-entrant  waves8.
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Despite accumulating knowledge, gaps still exist in our understanding of the specific relationship between 
distinct characteristics and spatial distributions of fibrosis and the resulting arrhythmogenic substrates. Computer 
models may offer a unique tool to investigate the effects of fibrosis on wave propagation, granting direct control 
on fibrosis properties and independence from other  factors15–18. Diverse computational directions have been 
pursued to investigate different aspects of fibrosis action at different scales and levels of detail. The first modeling 
direction focuses on the microscopic description of the cellular and tissue mechanisms of fibrosis, implementing 
detailed models of fibrotic cell types, ion channel modulation, and conduction  disturbances19–21. The second 
approach aims to develop accurate patient-specific models to identify the specific AF driver regions in the single 
patient for patient-oriented  therapies22–32. Model adaptation to patient-specific data mainly relies on imaging-
derived anatomies and fibrosis distributions, which are mostly assumed as transmural conduction blocks, given 
the limited resolution of clinically-available imaging modalities. Challenges to model personalization rely on 
precise definition of fibre orientation and atrial thickness  profiles12,25,28,32,33, as well as on the integration of intra-
mural fibrosis distribution based on either sparse experimental data or simplified  assumptions12,25,34,35. The third 
modelling approach aims to identify general, instead of specific, properties of wavefront-fibrosis  interactions36–42. 
This is pursued by performing systematic generation of fibrosis patterns under controlled conditions and evaluat-
ing the emerging behaviors in a statistical sense. To dissect the effects of fibrosis from other factors, these studies 
are usually performed in anatomically and structurally-simplified models. Previous investigations in 2D lattice 
ventricular models analyzed the effects of  homogeneous38 and  heterogenous37 distributions of diffuse fibrosis 
or combinations of fibrosis and adipose  tissue43 on arrhythmia onset and type. Other studies tested the influ-
ence of patchy interstitial fibrosis on plane wave  propagation39 and on dynamical anchoring and organization 
of  rotors41, or classified fibrosis arrhythmogenicity based on the geometrical features of the fibrotic  pattern36. 
Recently, the stabilizing effect of local scars or fibrosis regions on rotor meandering was analyzed in the presence 
of noise in a stochastic mathematical model of  AF42. To our knowledge, no systematic study has been performed 
yet, which quantified the effects of multiple geometric features of fibrosis on re-entry dynamics and stability in 
electrically-remodeled atrial tissues.

To fill this gap, we performed an extensive in-silico study, where we systematically analyzed how changes 
in fibrosis distribution and type affected the rhythmic, regularity, and stability properties of re-entrant waves 
in atrial tissue. We implemented a stochastic algorithm that generated fibrosis random patterns with tunable 
amount, size, and orientation of fibrotic elements, mimicking diffuse, compact, and patchy fibrosis. The gener-
ated fibrotic patterns were integrated on a spheric monolayer of atrial tissue with Courtemanche-Ramirez-Nattel 
(CRN) ionic  dynamics44. A total of 245 simulations were systematically run at changing atrial fibrosis features, 
and the properties and stability of the emerging propagation patterns were evaluated. A quantitative description 
of the patterns, in terms of clinically interpretable features, was obtained applying frequency-domain analysis to 
synthetic bipolar electrograms (EGMs) extracted from each simulation.

Methods
The study procedure is schematized in Fig. 1 and described in the next sections. Systematic simulations were run 
on a spherical atrial tissue model (Sect. “Electrophysiological model and tissue geometry” ) and fibrotic spatial 
patterns were generated by the stochastic algorithm (Fig. 1a, Sect. “Fibrotic model and stochastically-generated 
patterns” ). Simulations were performed according to a protocol, which comprised an induction window and 
an observation window (Fig. 1b, Sect. “Simulation protocol” ). During the observation window, pattern stability 
was assessed, and pattern rate, regularity, and coupling were determined from synthetic EGMs (Fig. 1c, Sect. 
“Synthetic signal generation and analysis” ). Computational models and analysis tools were implemented in 
Matlab programming language (The MathWorks, Inc., Natick, MA, USA).

Electrophysiological model and tissue geometry
The CRN cell model for the human atrial action potential was used to describe cell  dynamics44. The total ionic 
transmembrane current Iion is modeled by:

where INa is the fast inward sodium current, IK1 the inward rectifier potassium current, Ito the transient outward 
potassium current, IKur , IKr , and IKs are the ultrarapid, rapid and slow delayed rectifier potassium currents, 
respectively, ICa,L is the L-type calcium current, Ip,ca the calcium pump current, INaK the sodium–potassium 
pump current, INaCa the sodium-calcium exchanger current, and Ib,Na and Ib,Ca are the sodium and calcium 
background currents, respectively.

Cell coupling was implemented following a monodomain  formulation45, leading to the reaction–diffusion 
ODE-PDE equation:

where V  is the transmembrane voltage, ∇ denotes the partial derivative operator, · is the dot product, Ist is the 
stimulus current flowing across the membrane, Cm is the total membrane capacitance, and DT is the diffusion 
tensor, given by the ratio of the effective conductivity tensor to the surface-to-volume ratio.

Ionic parameters were adjusted to mimic electrically-remodelled atrial tissue features, as previously 
 suggested46. Specifically, the currents Ito, ICaL, and IKur were reduced by 80%, 30%, and 90%, respectively, and IKr 
was increased by 50%, to reduce action potential duration (APD) and increase the maximal slope of APD resti-
tution curve. Diffusion was set uniform and isotropic with  DT = 1·10–3  cm2/ms. The model integration domain 

(1)Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,ca + INaK + INaCa + Ib,Na + Ib,Ca

(2)
∂V

∂t
= ∇ · (DT∇V)−

Iion

Cm
+

Ist

Cm
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was a monolayer sphere of 10 cm diameter, discretized into a triangular mesh comprising ~ 290 K nodes with 
spatial resolution of about 280 μm.

Fibrotic model and stochastically‑generated patterns
Similar to other  works36,36–38, fibrotic elements were integrated in the tissue model by replacing mesh nodes with 
non-excitable obstacles with no-flux boundary conditions. A previously-proposed stochastic  algorithm47 was 
extended to generate random fibrosis patterns with tunable amount, size, and orientation of fibrotic elements. 
Increasing element size reproduced transitions from diffuse to compact fibrosis, while increasing element orienta-
tion mimicked the appearance of patchy/interstitial fibrosis. The stochastic generation was based on an iterative 
procedure, controlled by three parameters: the overall amount or density of fibrosis D , expressed as percentage 
of blocked nodes, the probability parameter pth, which tuned the size of fibrotic elements, and the anisotropy 
level α, which tuned fibrotic element orientation according to a predefined direction.

Given the set nk of the position vectors of the k = 1…N nodes of the mesh, and the class function c assigning 
each node to the values 0 or 1, based on its conductive properties:

at each step of the procedure the temporary fibrosis density was computed as:

Until the condition Dtemp < D was fulfilled, a new candidate node ncand was drawn from the set of non-fibrotic 
nodes (i.e., ni with c(ni) = 0), with constraints given by two stochastic conditions.

The first condition determined the selection basin of ncand and was tuned by the probability threshold 
0 ≤ pth ≤ 1, according to:

(3)c(nk) =

{
0 if k is a conductive node
1 if k is a fibrotic node

(4)Dtemp = 100

∑N
k=1 c(nk)

N

Figure 1.  Scheme of the systematic computer simulation approach. (a) Stochastic generation of fibrotic 
patterns. On the left, sphere with fibrotic pattern (in purple). On the right, magnification of the mesh and 
highlight of the candidate node and neighbor nodes considered in the process of node attribution to fibrotic 
regions. See text for details. (b) Simulation protocol composed by an induction window under high-frequency 
pacing, and an observation window with propagation pattern free evolution. (c) Generation and frequency-
domain analysis of synthetic bipolar electrograms (sEGMs: s1, s2) and computation of power spectra 
and magnitude squared-coherence (MSC) to extract rate, organization, and coupling information.
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where q is a random number drawn from the uniform distribution U [0 1], Iborder is the list of the indices of the 
nodes that belong to the external border of fibrotic elements (i.e., conductive nodes with at least one fibrotic 
neighbor node) and ICborder is the set of conductive nodes complementary to Iborder . According to Eq. 5, a 
new node was added to the border of a pre-existing fibrotic element only when q was larger than pth, while a 
new fibrotic element was created otherwise. Thus, the choice of small pth values allowed the formation of larger 
fibrotic elements, while large pth values resulted in smaller fibrotic elements. To ensure that the fibrotic elements 
were simply connected (i.e., they did not present holes) and to avoid the blending of distinct fibrotic regions, a 
selected border node was discarded if its fibrotic neighboring nodes did not form a connected set.

The second condition controlled the position of border candidate nodes and was tuned by the anisotropy 
threshold α ≥ 0: 

where r is a random number extracted from the uniform distribution U [0 1], · indicates the dot product, v̂d is 
the versor, parallel to the mesh, that indicates the predefined orientation of fibrosis, and v̂b is the versor of the 
border normal at the position ncand . vb was operatively determined through the equations:

where  njcand are the position vectors of the j = 1 . . .M neighboring nodes of ncand , c is the class function defined 
above, and ŝ is the versor of the surface normal calculated at ncand . As schematized in Fig. 1a, v′

b
 was calculated 

as the difference between the average position (green star) of the non-fibrotic neighbors of ncand (encircled green 
and yellow dots) and the average position (red star) of the fibrotic neighbors of ncand (encircled red dots). The 
border normal vector vb was thus calculated by orthogonalizing v′

b
 to the surface normal ŝ.

The stochastic condition in Eq. 6 is always fulfilled for α = 0, allowing fibrotic elements to grow in random 
directions. At increasing α, Eq. 6 instead favors fibrosis growth along directions aligned to or forming small angles 
θ with v̂d (see Fig. 1a), leading to the formation of oriented, stringy elements. The algorithm computational effi-
ciency was optimized by precomputing node connectivity and surface normals and by updating the border list 
Iborder only after a certain fraction of its nodes ( fupdate = 5%) was added to the fibrotic element. The pseudocode 
of the algorithm is reported in the Table S1 in the Supplementary Material.

The stochastic generation algorithm was tested to assess its reliability in generating fibrotic patterns with 
tunable properties at the change of the input parameters (D, pth,, α). The control exerted by the three parameters 
was analyzed in terms of the generated output density, the dimension of the generated fibrosis patches, and 
the θ-angle distribution of accepted nodes as a surrogate measure of pattern anisotropy. Validation details are 
presented in the Supplementary Material.

For the simulations, a set of fibrosis spatial distributions was generated by changing the three input parameters 
in predefined ranges. The density D was changed over the values 3, 5, 12, 21, 30 and 40%, to cover fibrosis-based 
clinical patient classes (i.e., Utah stages)48. The size parameter  pth was varied over the empirically-chosen values 
0.008, 0.01, 0.015, 0.03, 0.05, 0.07, 0.1, to obtain fibrotic elements with progressively smaller average size and 
lower number of nodes (see Sect. “Fibrosis pattern generation” and Supplementary Material). Simulations were 
run for all the combinations of D and pth (42 combinations) setting α = 0, i.e., producing diffuse to compact 
fibrosis distributions. Based on previous  results39, the effect of patchy/interstitial fibrosis was evaluated only 
for large fibrosis amounts (D = 30%) at all element size (7 combinations) by empirically set α = 4 (configuration 
indicated by 30or). For each of the considered 49 combinations, the stochastic generation was repeated 5 times, 
leading to a total of 245 fibrotic models, which were used in the simulations.

Simulation protocol
The same simulation protocol was applied in all the 245 fibrosis models (Fig. 1b). The protocol was composed of 
an induction window and an observation window, both of 5 s duration. During the induction window, propaga-
tion patterns were started and maintained by a high-frequency stimulation source at the sphere pole. Like in 
previous  studies19,36, the stimulation frequency was adapted so that a new pulse was released as soon as the tissue 
was re-excitable. During the observation window, stimulation was switched off and propagation patterns evolved 
freely. The stability and characteristics of wave propagation patterns were assessed in the observation window. A 
pattern was considered stable if excitation persisted through the whole observation window. The rate, regularity, 
and coupling properties of stable patterns were quantified by generating and analyzing synthetic electrograms 
(Sect. “Synthetic signal generation and analysis” ).

Numerical integration
ODE-PDE system integration was performed by a previously-validated, fully-adaptive multi-resolution 
 algorithm49, which dynamically restricted the computation to a set of active nodes reducing computational 
burden while preserving simulation accuracy. Reaction and diffusion were integrated with time step Δt = 0.1 ms, 

(5)
{
q > pth → ncand drawn from Iborder
q ≤ pth → ncand drawn from ICborder

(6)r <
∣∣v̂d · v̂b
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using the Rush Larsen non-standard finite difference forward Euler method and explicit node-centered finite 
difference  stencils50, respectively.

Synthetic signal generation and analysis
Simulated bipolar signals were generated during the observation window of each simulation and analyzed in the 
frequency-domain to provide a quantitative description of propagation pattern properties. A detailed description 
of the generation and analysis of the signal is provided in the Supplementary Material.

Briefly, in each simulation, a set of 144 synthetic bipolar EGMs of 5 s length (sampling frequency of 1 kHz) 
was generated, using the current source  approximation46, from a grid of virtual electrodes, composed by eighteen 
regularly spaced splines, each carrying eight regularly spaced bipoles (Fig. 1c). The first 500 ms were discarded 
to let the patterns stabilize and the remaining signal segments were analyzed. The peak-to-peak (P2P) voltage 
amplitude of each EGM was extracted and used as a correlate of fibrosis  presence51.

Frequency-domain analysis was applied to extract the rhythmic properties of the EGMs, in terms of rate, 
regularity, and coupling metrics. Rate and regularity metrics were quantified in each EGM in terms of the domi-
nant frequency (DF) and regularity index (RI), as previously  proposed52,53. DF is defined as the frequency of 
the maximum of the signal spectral amplitude, and can be assumed as the rate of the activation process. RI is a 
measure of spectral dispersion and can be assumed as an index of electrogram organization. RI ranged between 
0 and 1, with higher values indicating more organized electrical activity. The level of coupling of the electrical 
activity between neighboring bipoles (on the same spline, or between adjacent splines) was quantified by calculat-
ing the coupling index Cxy between pairs of EGMs, which was defined as the mean value of magnitude-squared 
coherence of the EGMs over the frequency  range54. Cxy ranges between 0 and 1, with 0 indicating the absence 
of coupling and 1 maximal coupling.

Statistical analysis
In each simulation, the average and spatial variability values of P2P and frequency-domain indices were calcu-
lated as mean and standard deviation (std) values on all the bipoles or bipole pairs (for Cxy). An average coupling 
asymmetry index (DCxy) was calculated as the ratio between the mean line-wise (i.e., on sphere parallels) and 
spline-wise (i.e., on sphere meridians) Cxy values, and its variability was computed by error propagation for-
mulas. DCxy values higher than one indicated higher coupling between neighboring splines, while values lower 
than one indicated higher coupling along splines.

The association between EGM-based properties (average and variability values of P2P, DF, RI, Cxy, and 
DCxy) or pattern stability and the geometrical features of fibrosis was assessed using generalized linear models. 
The effects of fibrosis amount and size were evaluated on the simulation subset with unoriented fibrotic ele-
ments (α = 0), while those of orientation were assessed on the simulation subset with D = 30%, in the absence 
(α = 0) and presence of patchy/stringy fibrosis (α = 4). Details on the calculation of the models are reported in 
the Supplementary Material. Post-hoc comparisons were performed in the presence of statistically-significantly 
associations. P-values for model factors and in post-hoc comparisons were corrected for multiple comparisons 
using Bonferroni correction. A p-value < 0.05 was considered statistically significant.

Results
Fibrosis pattern generation
Figure 2a shows examples of fibrosis patterns generated for different tuning of the stochastic algorithm param-
eters. The total amount of fibrosis (indicated in purple) progressively increased from left to right, passing from 
D = 3% to 30%. For the same amount of fibrosis, diffuse fibrosis was obtained at larger pth values (pth = 0.1, center), 
while larger fibrotic regions were obtained for small values of pth (pth = 0.008, right panels). Compact fibrotic 
elements were obtained for null α values, while patchy fibrotic elements for α = 4 (rightmost panel). The quan-
titative evaluation of the stochastic algorithm capability to generate different fibrosis patterns at changing input 
parameters is presented in the Supplementary Material, while the weighted mean size of the generated pattern 
elements used in the simulations is shown in Fig. 2b. The validation results showed that the stochastic algorithm 
was able to generate fibrosis patterns of predefined density D, with limited average bias (Fig. S1a). The increase 
of the size parameter pth determined a progressive increase in the number of the generated fibrotic elements (Fig. 
S1b) and decrease in the average (Fig. S1c and Fig. 2b) and maximal dimension (Fig. S1d) of the elements and in 
their size dispersion (Fig. S1e). Dimensions increased at increasing D, with larger variations at small pth values 
and more marked effects for maximal size and size dispersion. The increase of the anisotropy parameter α from 0 
to 4 determined a marked restriction of the accepted angles θ for border nodes, with a shift from a uniform angle 
distribution to a zero-peaked narrow distribution, consistent with the selection of the preferential orientation.

Propagation patterns emerging at different fibrosis distributions
An overview of the variety of propagation patterns observed at changing fibrosis features is presented through 
the exemplary patterns in Fig. 3. In the presence of small amounts of fibrosis (D = 5 and 12% in Fig. 3a, b, respec-
tively), propagation was characterized by meandering spirals, which gave rise to break-up and split into multiple 
waves. The increase of fibrosis amount (D = 30% in Fig. 4c–e) led to an overall slowing of the propagating waves, 
albeit with the emergence of various propagation patterns for different fibrosis textures. Slow and very regular 
re-entrant waves, without meandering nor break-up, are shown in Fig. 4c in the presence of uniformly distrib-
uted diffuse fibrosis. The fragmentation of spiral waves by larger-size compact fibrosis is displayed in Fig. 4d. 
Anisotropic wave canalization is observable in Fig. 4e, where stringy fibrosis patches favored propagation along 
and hinder propagation across fibrosis direction.
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Electrogram‑based quantification of propagation pattern properties
The frequency-domain analysis of EGMs for the described patterns is displayed in Fig. 4 in terms of DF, RI, 
and Cxy maps. At low fibrosis densities (a and b), EGMs displayed high voltage amplitudes (P2P = 0.167 ± 0.034 
au and 0.156 ± 0.049 au for a and b, respectively). Spiral break-up patterns were characterized by high activa-
tion rates (DF = 4.31 ± 0.14 and 4.23 ± 0.12 Hz for a and b, respectively), and low regularity (RI = 0.40 ± 0.10 nu 
and 0.44 ± 0.12 nu for a and b, respectively) and coupling (Cxy = 0.27 ± 0.09 nu and 0.34 ± 0.13 nu for a and b, 
respectively). At higher fibrosis densities, EGM displayed lower voltage amplitudes (P2P = 0.097 ± 0.044 au, 
0.121 ± 0.064 au, and 0.116 ± 0.066 au, for c, d, and e, respectively). The single, regular, spiral wave (c) dis-
played the lowest activation rate (DF = 4.15 Hz) and the highest regularity (RI = 0.74 ± 0.09 nu) and coupling 
(Cxy = 0.54 ± 0.17 nu). Wave fragmentation (d) led to slightly higher activation rate (DF = 4.23 ± 0.12 Hz) and 
lower regularity (RI = 0.48 ± 0.13 nu) and coupling (Cxy = 0.37 ± 0.16 nu). Wave canalization (e) showed indices 
(DF = 4.27 ± 0.24 Hz, RI = 0.52 ± 0.16 nu, Cxy = 0.37 ± 0.15 nu) similar to wave fragmentation, but coupling was 
higher along splines than lines, resulting in an asymmetry index of 0.89 au (versus 1.13 au in panel d).

The overall results of EGM-based analysis for diffuse and compact fibrosis textures (α = 0) are summarized in 
Figs. 5 and 6 and Tables S2 and S3. The mean voltage amplitude and its spatial variability showed a statistically 
significant (p < 0.00001) dependence on fibrosis amount D (Table S3). The increase of fibrosis from D = 3% to 
40% led to a progressive decrease of the mean voltage amplitude from P2P = 0.165 ± 0.004 to 0.090 ± 0.009 au 
(Fig. 5, left) and increase in voltage spatial variability from  P2Pstd = 0.033 ± 0.003 to 0.058 ± 0.011 au (Fig. 5, right). 
Statistically-significant differences in P2P and  P2Pstd (Table S3) were observed among all fibrosis levels (p < 0.001), 
except for D = 3% versus 5% (for P2P and  P2Pstd) and D = 40% versus 21% and 30% (for  P2Pstd). A secondary 
significant (p < 0.00001) modulation of P2P and  P2Pstd values by size parameter pth was observed, where larger 
mean and variability values occurred for larger fibrotic obstacles. Statistically-significant differences were mainly 
observed between larger fibrosis sizes (pth ≤ 0.015) versus medium-size-to-diffuse (pth ≥ 0.03). All frequency-
domain indices displayed a significant dependence (p < 0.00001) on fibrosis amount D. A progressive slowing and 
organization of the propagation patterns was observed at increasing D values (Fig. 6). When fibrosis increased 
from D = 3% to 40%, activation rate progressively decreased from DF = 4.34 ± 0.03 to 3.96 ± 0.22 Hz, regularity 
increased from RI = 0.47 ± 0.04 to 0.91 ± 0.09 nu, coupling increased from Cxy = 0.27 ± 0.01 to 0.56 ± 0.09 nu. The 
asymmetry index DCxy displayed mean values larger than 1 at all density values, indicating prevalent coupling 
along lines than splines (Table S2). In pairwise comparisons (Table S3), DF values were significantly higher in the 
very-low to medium–high fibrosis range (D ≤ 21%) than in the high-density fibrosis range (D ≥ 30%, p < 0.01), and 
at D = 30% than 40% (p < 0.05). RI and Cxy were significantly lower (p < 0.05) in the low-to-medium fibrosis range 
(D ≤ 12%) than medium–high to high range (D ≥ 21%), except for Cxy between D = 12% and 21% (p = 0.051). 
Within the D ≥ 21% range, RI displayed statistically-significant differences among the three densities (p < 0.001), 
while Cxy only between D = 21% and 30% and 40% (p < 0.001). The spatial variability of the indices is displayed 
in the lower panels of Fig. 6.  DFstd decreased from a maximum value of 0.16 ± 0.02 at D = 3% to a minimum 

Figure 2.  Generation of fibrosis patterns. (a) Exemplary fibrotic patterns (in purple) obtained setting the 
stochastic algorithm parameters D, pth, and α to the indicated values. From left to right: very-low density fibrosis, 
low-medium density fibrosis, high density diffuse fibrosis, high density compact fibrosis, high density patchy 
fibrosis. (b) Distribution of the weighted mean size (expressed in terms of mesh nodes) of fibrosis elements from 
the stochastic realizations used in the simulation, displayed as a function of the size parameter pth, for different 
fibrosis densities (indicated in different colors). Black dots and whiskers indicate average values and standard 
deviation over simulation subgroups, while small colored dots correspond to single simulation outcomes.
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value of 0.05 ± 0.06 Hz at D = 30%, with statistically-significant differences between medium–high densities 
(D ≥ 21%) versus low densities (D ≤ 5%).  RIstd reached a maximum of 0.13 ± 0.02 nu at D = 12% and a minimum 
of 0.08 ± 0.04 nu at D = 40%.  Cxystd progressively increased from 0.09 ± 0.01 nu at D = 3% to 0.16 ± 0.02 nu at 
D = 40%, with statistically-significant differences between low-to-medium levels (D ≤ 12%) and medium–high-to-
high densities (D ≥ 21%). No statistically-significant association with  pth was detected for any frequency-domain 
index (Table S3 and Figure S3). However, especially for higher densities, index values displayed a larger spread, 
indicating a higher stochasticity in the simulation outcomes. As shown in Figure S4, variability effects were 
particularly evident for compact fibrosis (i.e., for lower values of pth corresponding to larger fibrotic element 
size) than diffuse fibrosis.

The effects of patchy fibrosis texture on the patterns are analyzed in Fig. 7 and Table S4, where pattern 
properties obtained at a density of D = 30% were compared for unoriented versus oriented fibrosis textures. No 
statistically-significant differences were observed between the two conditions in terms of frequency-domain 
indices. The coupling asymmetry index DCxy showed a statistically-significant association with α (p < 0.0001). 
In patchy fibrosis, DCxy showed values lower than one (DCxy = 0.91 ± 0.05 au), indicating higher coupling 
along splines than lines, while in diffuse and compact fibrosis asymmetry index values were higher than one 
(DCxy = 1.06 ± 0.05 au), showing the opposite behavior.

Figure 3.  Exemplary propagation patterns emerging for different geometrical features of fibrosis. Subsequent 
snapshots of action potential maps are indicated in color code. Spiral wave meandering and break-up in the 
presence of very-low (a) and medium–low densities of fibrosis (b). Stable spiral wave without break-up at high-
density diffuse fibrosis (c). Spiral wave fragmentation in the presence of a high-density of compact fibrosis (d). 
Wave canalization in the presence of a high-density of patchy fibrosis (e).
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Stability of propagation patterns
Stable wave propagation patterns perpetuating along the whole observation window were observed in 159 of 
245 simulations (64.9%). Pattern stability was significantly associated with fibrosis overall amount (p < 0.0001, 
Table S3). As shown in Fig. 8, the fraction of stable patterns increased at the increase of fibrosis amount (from 
a minimum of 28.6% at D = 3% to values larger than 70% for D ≥ 21%). Statistically-significant differences were 
observed between the very-low density (D = 3%) and medium–high to high fibrosis range (D ≥ 21%, p < 0.01), 
between low density (D = 5%) and high density (D ≥ 30%, p < 0.05) and between D = 12% and D = 30% (p < 0.01). 
Pattern stability displayed no significant dependence on fibrotic element size (Table S3) nor orientation (Table S4).

Figure 4.  Quantification of propagation patterns properties in the frequency-domain. For each propagation 
pattern (rows, corresponding to patterns in Fig. 3), a snapshot of the activation pattern is shown together 
with dominant frequency (DF), regularity index (RI), and coupling (Cxy) maps (displayed from left to right). 
Meandering spiral waves (a, b) present the highest rate, and the lowest regularity and coupling. Stable spiral 
waves (c) present the slowest rate and the highest regularity and coupling. Wave fragmentation (d) is associated 
with an intermediate rate, and low regularity and coupling. Wave canalization is characterized by intermediate 
rate and low regularity, with higher coupling along splines than lines.
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Discussion
In this study we performed an extensive evaluation of the effects of different geometrical features of fibrosis on 
the rhythmic and stability properties of re-entrant waves in an electrically-remodeled atrial tissue. We showed 
that the progressive increase of fibrosis amount determined: i) a general decrease of the rate and increase of the 
regularity and coupling of re-entrant waves, although with an increased variety of propagation pattern types and 
higher dispersion of the indices; ii). an increase in the stability of the patterns.

The aim of our study was focused on the clarification of the sole effects of the fibrosis geometrical features. 
Thus, like in previous  studies36–39,43, to better separate the pure effects of fibrosis, we implemented the cell model 
on a simplified geometry without specific anatomical or structural information, except for fibrosis. We performed 
our experiments in an extensive and comparative way, progressively varying and comparing the results obtained 

Figure 5.  Voltage amplitude of synthetic electrograms for different fibrosis amounts and sizes. Average values 
(P2P, left panel) and spatial variability values  (P2Pstd, right panel) of electrogram voltage amplitude are displayed 
as a function of fibrosis overall amount (density, D) and color-coded according to fibrosis size parameter (pth). 
Black dots and whiskers indicate mean values and standard deviations over simulation subgroups, while small 
colored dots correspond to single simulation outcomes. Only simulations obtained for diffuse and compact 
fibrosis (α = 0) are shown. The increase of fibrosis density determined a decrease in voltage amplitude and 
increase in voltage amplitude spatial variability.

Figure 6.  Frequency-domain properties of synthetic electrograms for different fibrosis amounts and sizes. 
Average values (top panels) and spatial variability values (std, bottom panels) of rate (DF and  DFstd), regularity 
(RI and  RIstd) and coupling (Cxy and  Cxystd) are shown as a function of fibrosis overall amount (density, D) 
and color-coded according to fibrosis size parameter (pth). Black dots and whiskers indicate mean values and 
standard deviations over simulation subgroups, while small colored dots correspond to single simulation 
outcomes. Only simulations obtained for diffuse and compact fibrosis (α = 0) are considered. The increase of 
fibrosis amount determines slowing and organization of wave propagation, with an overall decrease of DF and 
 DFstd and increase in RI, Cxy, and  Cxystd, albeit with an increased stochasticity of simulation outcomes.
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at different degrees of the property of interest (fibrosis density and patch dimension) or contrasting the effects 
of a feature (anisotropic fibrotic elements) with the corresponding null model (isotropic elements). The proce-
dure led us to identify general properties of fibrosis-wavefront interactions and appreciate transitions between 
propagation pattern regimes, which provide meaningful indications, when fibrosis effects can be considered the 
dominant factor. Thus, our approach differed from patient-specific modelling, where anatomic and structural 
features are instead essential to predict the exact location of drivers in a specific patient. The generation of fibrosis 
distribution was inspired by a previously-proposed stochastic pattern  generator47, that was extended to include 
the control of fibrosis orientation in addition to amount and size. By tuning of three parameters, our algorithm 
controlled the amounts of fibrosis and the transitions between fibrosis textures, from diffuse to compact by chang-
ing element size, and to patchy by imposing element orientation. Differently from previous  approaches37, the 
algorithm did not directly control fibrosis spatial heterogeneity, although, at higher densities of fibrosis, higher 
homogeneity levels were obtained for diffuse fibrosis than for compact fibrosis. The symmetry of our spheric 
model was consistent with the random generation of fibrosis elements, since the locations of fibrotic patches 
were equivalent, and the generated distributions of fibrosis could be considered statistically-equivalent when 
fixing the parameter set. As in previous  studies36,37, fibrotic elements were implemented as nodes with zero-flux 

Figure 7.  Effects of fibrosis texture on coupling asymmetry of synthetic electrograms. Coupling asymmetry 
index (DCxy), quantified as the ratio between line-wise and spline-wise coupling values, is compared in diffuse/
compact (unoriented) versus stringy/patchy (oriented) fibrotic elements for D = 30% fibrosis density. Black 
dots and whiskers indicate mean values and standard deviations over the simulation subgroups, while small 
dots correspond to single simulation outcomes and are color-coded according to fibrosis size parameter (pth). 
Oriented fibrosis determined a prevalent coupling of electrical activity along splines than lines, resulting in 
asymmetry values lower than one with respect to compact fibrosis where asymmetry values were higher than 
one.

Figure 8.  Stability of propagation patterns for different fibrosis amounts and sizes. The number of episodes 
persisting over the whole observation window is indicated as a function of fibrosis amount (density, D) and 
for different fibrosis sizes (pth parameter, in color). Only simulations obtained for diffuse and compact fibrosis 
(α = 0) are considered. Fibrosis had a stabilizing effect on propagation patterns, with the number of stable 
patterns increasing at the increase of fibrosis density.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11427  | https://doi.org/10.1038/s41598-024-62002-5

www.nature.com/scientificreports/

conditions, mimicking fibrosis macroscopic effect as conduction blocks. Since the adoption of different fibrosis 
modeling strategies determine effects of different entity on propagation  patterns19,20, in future studies it would be 
important to adapt our stochastic algorithm and tissue model to integrate other fibrosis effects. Atrial cell currents 
were models according to an electrically-remodeled CNR  model46, where the steep restitution curve produced 
spontaneous wavefront break-up in the absence of fibrosis. Electrical remodeling precedes and/or accompanies 
structural remodeling under many disease conditions, thus the patterns observed in this study, arising from 
the combined effects of electrical and structural  remodeling3, should better represent reentry dynamics in AF 
than simply implementing structural alterations. Frequency-domain analysis was applied to synthetic EGMs 
to provide a quantitative description of the emerging patterns, in terms of clinically-interpretable  indices52,54. 
Since DF and RI indices describe solely the rhythmic properties of the activation process, they may be profitably 
complemented by techniques assessing wave morphology and  fragmentation51,55,56. As well, information-based 
measurements may improve coupling estimation allowing propagation tracking through the assessment of causal 
links between  sites57,58.

Our results showed a prevalent dependence of propagation pattern characteristics on fibrosis amount, where 
the increase of fibrosis density determined a reduction in activation rate and overall increase in the regular-
ity and coupling of re-entrant waves, albeit with higher stochasticity of behaviors. The decrease of conduction 
velocity and DF with fibrosis is generally consistent among fibrosis simulation studies, while the appearance of 
regular propagation patterns with augmented fibrosis is more controversial. Previous studies simulating diffuse 
fibrosis showed that the increase of fibrosis amount determined a transition from unstable to stable spirals via 
suppression of spiral wave break-up37,38. This process was explained in the light of a fibrosis-induced slowing 
of re-entrant waves with a shift of the system to a part of restitution curve with shallow slope, thus suppressing 
the steep-restitution spiral break-up38. Re-entrant wave period was similarly shown to increase superlinearly 
with the increase of fibrosis level and, despite irregular appearing of spatiotemporal wave patterns, the electrical 
activation was highly periodic and regular due to the instauration of a mother  rotor37. In imaging-based atrial 
models, compact fibrosis was also shown to organize and stabilize re-entrant  waves23,31. Rotors were anchored 
by proximal fibrotic regions and the enlargement of these regions decreased the frequency and widened the 
excitable gap of the re-entry, converting the fibrillatory process into an excitable gap re-entry31. Heterogeneous 
distributions of fibrosis slowed and stabilized rotors, which moved in the slow-conducting border zone sur-
rounding inner regions of dense  fibrosis23. In contrast with the described organizing effects, augmented pattern 
complexity, fragmentation into multiple wavefronts, and zig-zag propagation accompanied the reduction of 
conduction velocity and DF at higher fibrosis levels in an anatomically-realistic biatrial  model20. Differences in 
results may be mainly related to the higher complexity of the model  in20, which included realistic anatomies and 
fiber structures and modeled fibrosis in terms of cell-coupling with fibroblasts and myofibroblasts. Although we 
observed an overall organizing effect of fibrosis, higher variability and stochasticity of the propagation patterns 
and EGM-derived indices were present at high fibrosis density, especially for compact and patchy fibrosis ele-
ments (Figure S2). High stochasticity of simulation results and dependence of propagation patterns on the specific 
location of fibrotic cells was observed at higher fibrosis density in 2D ventricular lattice models with heterogene-
ous fibrosis  distributions37. Non-uniform distribution of fibrosis, notwithstanding the identical overall fibrosis 
amount, substantially affected the arrhythmogenesis of patchy and compact fibrosis in anatomically-detailed 
ventricular  models40. Our results showed no statistically-significant direct association between the frequency-
domain indices and the size parameter pth (Tables S3 and S4). This suggests that a single index of fibrotic element 
dimension may be insufficient to determine the emerging patterns, and a multiparametric description of fibrotic 
element distribution and  clustering36,40 may be required to associate fibrosis patterns with specific arrhythmic 
mechanisms. In addition to fibrosis amount and size, we analyzed the effects of patchy fibrosis, mimicked by 
elongated fibrotic elements, on the propagation dynamics. Patchy fibrosis favored wave propagation along the 
channels determined by fibrosis and hindered propagation in the orthogonal direction, as testified by DCxy 
values, but it did not change the rate, regularity, or overall coupling, nor the stability of the patterns. Similar to 
our results, in a 2D lattice monolayer model, obstacle elongation produced anisotropic propagation and zig-zag 
conduction of planar wavefronts with longitudinal velocity increased and transverse direction decreased with 
 elongation39. In a bilayer atrial model under pacing condition, stringy fibrosis produced prolongation and local 
fluctuation of activation times and increased anisotropy, but not zig-zag conduction as observed in monolayers, 
since 3D-like pathways were available for impulse  propagation34. In a realistic 3D ventricular  model40, patchy 
fibrosis exerted effects dependent on its spatial distribution and was associated with propagation patterns of 
intermediate complexity with respect to those produced by diffuse and compact fibrosis. In our study, the slow-
ing and organization of impulse propagation at increased fibrosis amount led to a stabilization of the re-entrant 
activity, with a progressively higher fraction of simulated activity persisting along the 5 s observation window. 
Arrhythmia stabilization by fibrosis is consistent with simulation, experimental, and clinical  findings6,7. Focus-
ing on in-silico  studies26,40, AF was induced and sustained only with higher degrees of fibrosis in anatomically-
detailed atrial  models26, and the likelihood of sustaining re-entry in 3D ventricular  models40 was higher as the 
intensity of fibrosis increased independently of fibrosis texture.

Our study has several limitations, which hinders the direct transferability of our findings to the real AF case, 
where additional mechanisms may concur to re-entry formation and stability. First, the spherical geometry we 
adopted is an oversimplification of the atrial anatomy and does not reproduce its topology. In the real atrial 
anatomy, the presence of holes, associated with the pulmonary vein orifices and the valves, as well as atrial cur-
vature differences, may concur to stabilize re-entrant waves, and the location of the fibrotic elements with respect 
to anatomic features may influence the patterns. The relative contribution of anatomical components and fibrosis 
in stabilizing the patterns may depend on fibrosis amount and the propagation pattern considered. Previous 
simulation  studies30 showed that at higher degrees of fibrosis, the presence of large quantities of slow conducting 
fibrotic tissue facilitated the anchoring of re-entrant waves to the fibrotic patches, while at lower fibrosis burden 
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re-entrant drivers moved near small fibrotic patches or drifted towards and anchored to the pulmonary veins 
and mitral valve annulus, due to the underlying atrial curvature. Moreover, the uncertainty in anatomy was more 
important for determining macro-re-entries and terminations, while uncertainty in fibrosis distribution was more 
important for functional re-entries, suggesting a specific role of the two factors in relation to different arrhythmic 
 mechanisms24. Given these considerations, it is likely that our results, mostly relying on functional re-entries, 
may hold in a realistic geometry in the case of higher amounts of fibrosis, while at lower amounts, where our 
pattern was dominated by spiral break-up, the integration of anatomical structures may stabilize the re-entrant 
activity around an anatomical obstacle, organizing the activity at the local or global level. As a second limita-
tion, we implemented a monolayer model with homogeneous conductivity values except for fibrosis, without 
including atrial thickness, nor fibre structure and conduction anisotropy. The presence of atrial wall thickness 
gradients per se, or in combination with fibrosis patterns, may create a 3D substrate for AF, attracting drivers 
and favouring the occurrence of intramural re-entries and breakthroughs. In the seminal experimental study by 
Zhao et al.12 in the isolated heart, AF re-entrant driver location correlated with specific structural characteristics, 
such as intermediate atrial wall thickness and fibrosis in regions with twisted transmural myofiber orientations. 
Simulation  studies32,59 showed that the relative contribution to re-entry of atrial thickness and fibrosis differed 
in the two atrial chambers and in the presence of different fibrosis amounts, and that the two factors exerted 
competing influences in the drift and anchoring of AF re-entrant drivers. In a simplified slab model without 
fibrosis, re-entrant drivers drifted toward and then along steps of atrial wall thickness, due to the presence of a 
large source-to-sink mismatch in regions of high atrial wall thickness  gradients32. The addition of fibrosis acted 
as a competing attractor for the re-entrant drivers, which localized in regions between the step and fibrosis. In 
realistic atrial anatomies and thickness distributions, both fibrosis and atrial thickness gradients affected re-
entrant driver locations in the right atrium (RA), while in the left atrium (LA) locations were mainly determined 
by fibrosis or anatomical structures, due to the absence of large atrial wall thickness  gradients32. Chamber specific 
effects of atrial wall thickness were confirmed in a recent study, which showed that AF driver regions were thicker 
and had more variable thickness than non-driver regions in the RA, while they were thinner than non-driver 
regions in the LA. The effects of fibre structure on conduction present also significant chamber dependence and 
interplay with  fibrosis33. The RA and LA display significant differences in terms of fibre organization, both for 
gross structure and fibre  architecture60. The RA is dominated by prominent gross structures, while the major part 
of the LA is smooth-walled, albeit with a multilayered and entangled fibre architecture and high inter-patient 
variability. Given the complexity of fibre architecture and the difficulty of clinical measurements in the single 
patient, recent  studies29,33 proposed the use of isotropic conduction in LA models, based on the assumption 
that the composition of different fibre orientations across wall thickness and along the atrial surface produced 
an effective “isotropization” of propagation in the LA, which resulted in a low sensitivity of local activation 
times and gross propagation patterns to differences in fibre organization. The accuracy of LA activation maps 
produced by a fibre-independent isotropic models with tuned diffusion coefficients was proven high (i.e., 96% 
for focal and 93% for rotor arrhythmias) and consistent with a model incorporating myocardial fibres with the 
same  geometry29. The dependence of AF driver location on atrial fibre field further decreased in the presence 
of fibrotic remodelling and electrical heterogeneity, when the micro re-entrant substrate became more spatially 
 variegated61. These studies partially support the use of an isotropic monolayer in our study and the validity of 
our results to reproduce functional re-entry dynamics in the LA. However, the assumption of fully-transmural 
fibrosis, inherent to the monolayer, makes our model unsuitable for the analysis of 3D propagation phenomena. 
In the majority of simulation studies where atrial thickness was integrated, fibrosis was also assumed to be fully-
transmural or transmurally-projected, while only a few recent studies evaluated 3D phenomena using bi or 
multi-layer simulation models, with layer-dependent microstructure, coupling, and  fibrosis12,25,34,35. Different 
degrees of AF complexity, with different numbers of waves, breakthroughs and epi-endocardial dissociation, as 
observed in patients, were recently reproduced in a multilayer model, which included accurate fiber organiza-
tion and different patterns of patchy or uniform fibrosis, located in the sole epicardial  layer25. Generation of 
single-layer fibrosis patterns by our stochastic generator algorithm and integration in multilayer models may be 
pursued in future studies to extend our analysis to the 3D dynamics of re-entries.

Conclusions
In this study we performed a systematic analysis of the effects of fibrosis geometrical features on the rhythmic 
properties and stability of re-entrant waves in an electrically-remodeled atrial tissue. We showed that the increase 
of fibrosis amount determined a progressive slowing and overall organization of the re-entrant waves, leading 
to an augmented stability. At the increase of fibrosis, the variety and stochastic nature of re-entrant patterns 
increased, especially in the presence of compact and patchy fibrosis. These results strengthen the evidence that 
fibrosis amount and spatial distribution play a crucial role in dictating re-entry dynamics. Further studies are 
needed to investigate how these mechanisms may interact with other proarrhythmic factors in supporting AF 
maintenance.

Data availability
The datasets generated and/or analyzed in the current study are available from the corresponding author on 
reasonable request.
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