
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11073  | https://doi.org/10.1038/s41598-024-61955-x

www.nature.com/scientificreports

Diagnosis of cervical lymphoma 
using a YOLO‑v7‑based model 
with transfer learning
Yuegui Wang 1,2, Caiyun Yang 1,2, Qiuting Yang 1, Rong Zhong 1, Kangjian Wang 1 & 
Haolin Shen 1*

To investigate the ability of an auxiliary diagnostic model based on the YOLO‑v7‑based model in the 
classification of cervical lymphadenopathy images and compare its performance against qualitative 
visual evaluation by experienced radiologists. Three types of lymph nodes were sampled randomly 
but not uniformly. The dataset was randomly divided into for training, validation, and testing. The 
model was constructed with PyTorch. It was trained and weighting parameters were tuned on the 
validation set. Diagnostic performance was compared with that of the radiologists on the testing set. 
The mAP of the model was 96.4% at the 50% intersection‑over‑union threshold. The accuracy values 
of it were 0.962 for benign lymph nodes, 0.982 for lymphomas, and 0.960 for metastatic lymph nodes. 
The precision values of it were 0.928 for benign lymph nodes, 0.975 for lymphomas, and 0.927 for 
metastatic lymph nodes. The accuracy values of radiologists were 0.659 for benign lymph nodes, 0.836 
for lymphomas, and 0.580 for metastatic lymph nodes. The precision values of radiologists were 0.478 
for benign lymph nodes, 0.329 for lymphomas, and 0.596 for metastatic lymph nodes. The model 
effectively classifies lymphadenopathies from ultrasound images and outperforms qualitative visual 
evaluation by experienced radiologists in differential diagnosis.

Cervical lymphoma often presents as an abnormal enlargement of lymph nodes in the neck and must be differ-
entiated from several other cervical lymphadenopathies (e.g., granulomatous inflammation, reactive inflamma-
tion, immune deficiency syndrome, tuberculosis, systemic lupus erythematosus, and metastasis) to develop an 
appropriate therapeutic  plan1,2. The current diagnostic standard for cervical lymphadenopathy is a pathological 
examination, though views differ on the proper biopsy sample method for obtaining sufficient tissue for histo-
logic examination of a given  lymphadenopathy3. Excision biopsy is generally recommended for classification 
of  lymphoma4–6, while only a needle biopsy is required for other cervical  lymphadenopathies7. Excision biopsy 
has a greater risk of trauma-related symptoms and complications than needle  biopsy8, so patients with enlarged 
cervical lymph nodes will usually be examined first with non-invasive imaging. If non-invasive imaging reveals 
benign lesions, patients can avoid the more invasive biopsy procedure.

Both computed tomography and ultrasound are commonly used for non-invasive diagnostic imaging of cer-
vical  lymphadenopathies9,10, though ultrasound is regarded as the first-line examination because it is radiation-
free11. Lymph node diagnostic accuracy in differentiating benign from malignant lymph nodes has been improved 
by a new predictive scoring system based on ultrasound  features12, while the diagnostic accuracy of lymphoma 
has improved with ultrasound-guided machine-learning  models13. However, health professionals often encoun-
ter challenging cases with overlapping imaging features in differentiating metastasis from lymphoma only with 
conventional B-mode US and even with Doppler  US14. It has been reported that a combination of ultrasound 
and contrast-enhanced ultrasound has good diagnostic value in distinguishing between cervical lymphadenitis 
and primary  lymphoma15. However, these methods still depend on the subjectivity of the radiologist’s judgment 
in ultrasound interpretation. Besides, contrast-enhanced ultrasound is expensive and cumbersome to operate, 
which is not conducive to widespread implementation in grassroots hospitals.

Computer vision approaches to diagnostic image interpretation may overcome such limitations. Multiple 
computer vision techniques have enabled that convolutional neural network (CNN) can show good potential for 
the detection and classification of cervical  lymphadenopathy16,17. Notably, CNNs have been demonstrated to be 
particularly suitable for computer vision, especially in image  interpretation18. Representative CNN algorithms 
include Region-based Convolution Neural Networks (R-CNN), Fast R-CNN, Single Shot MultiBox Detector 
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(SSD), and You Only Look Once (YOLO)19–21. YOLO is capable of identifying objects by localizing them with a 
bounding box and, at the same time, classifying them according to the probability to belong to a given  class22. 
The YOLO series represents one-stage algorithms, which are more suited to practical applications than two-stage 
algorithms (such as Faster R-CNN) owing to their better balance between accuracy and  speed23. Zhong et al.24 
pointed that the YOLO model was superior to the Faster R-CNN model for the Helicobacter pylori detection 
task. YOLO-v7 leverages a trainable bag-of-freebies approach, enabling significant improvements in precision 
for real-time detection tasks without incurring additional inference costs. By integrating extend and compound 
scaling, it effectively reduce the number of parameters and calculations, resulting in a substantial acceleration 
of the detection  rate25. To the best of our knowledge, no studies have applied this YOLO model to the diagnostic 
distinction of cervical lymphadenopathy.

In this study, we aimed to build an artificial intelligence diagnostic model based YOLO-v7 of cervical lym-
phadenopathy that would reduce subjective influence from radiologists and improve the accuracy of cervical 
lymphoma detection.

Materials and methods
This retrospective study was approved by the research ethics committee of Zhangzhou Affiliated Hospital of 
Fujian Medical University (Protocol No. 2022KYB138). All experiments were performed in accordance with 
relevant guidelines and regulations. The need for informed consent was waived by the ethical committee with 
Zhangzhou Affiliated Hospital of Fujian Medical University.

Dataset
Ultrasound images of cervical lymph nodes were collected from our hospital between January 2017 and June 
2022 retrospectively, including B-mode and Doppler ultrasound. All lymph nodes had determinate pathological 
results. Patients with incomplete information and unclear pathological results were excluded. The entire dataset 
comprises three categories: benign lymph nodes (n = 2807), lymphomas (n = 1108), and metastatic lymph nodes 
(n = 4580).

Ultrasound images were captured with the Mindray Resona 7S Ultrasound Scanner (Mindray BioMedical, 
Shenzhen, China), Acuson S3000 Scanner (Siemens Medical Solutions USA, Malvern, PA), and Hitachi Vision 
Preirus Scanner (Hitachi Medical Corp., Chiba, Japan).

Augmenting datasets, labeling images, and dividing image datasets
All images were resized to 640 × 640 pixels and then augmented via rotation and contrast changes to multiply and 
increase the sample size of the training dataset. Because the lymphoma sample set is relatively small, the amplifi-
cation ratio of this subset is higher than that of the other two diseases. Augmentation variations for benign lymph 
node and metastatic lymph node datasets were: rotation (10° clockwise, 10° counter-clockwise, 80° clockwise, 80° 
counter-clockwise, 90° clockwise, 100° clockwise, 150° clockwise) and contrast change (by factor 0.5 and 1.5). 
Augmentation variations for the lymphoma dataset were: rotation (10° clockwise, 10° counter-clockwise, 45° 
clockwise, 45° counter-clockwise, 50° clockwise, 50° counter-clockwise, 80° clockwise, 80° counter-clockwise, 90° 
clockwise, 90° counter-clockwise, 100° clockwise, 100° counter-clockwise, 150° clockwise) and contrast change 
(by a factor of 0.5, 0.6, 1.0 and 1.5). After augmentation, the total dataset reached 93,814 images distributed as: 
benign lymph node (n = 28,070), lymphoma (19,944), and metastatic lymph node (n = 45,800) (Table 1). We 
utilized the “random.sample” function in Python to randomly divide the total dataset into three subsets: training, 
validation, and testing. The sampling process did not consider the lymph node types and randomly distributed the 
entire dataset. The training set received 90% of the images while the validation and testing sets each received 5%. 
The number of lymph nodes in each dataset is detailed in Table 2. The training set was used to train the model. 
The validation set was used to adjust the weight parameters of the model. The testing set was used to compare 
with the conducted qualitative visual evaluation by experienced radiologists.

Table 1.  Number of images and enhancement rate for different types of lymph nodes.

Original images Amplification rate Total images

Benign lymph nodes 2807 10 28,070

Lymphomas 1108 18 19,944

Metastatic lymph nodes 4580 10 45,800

Table 2.  Cervical lymph node ultrasound images in different sets.

Dataset Benign lymph node Lymphoma Metastatic lymph node Total

Training 25,205 17,940 41,076 84,221

Validation 1388 988 2315 4691

Testing 1477 1016 2409 4902

Total 28,070 19,944 45,800 93,814
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An experienced radiologist (21 years) manually tagged images using the graphic marker software LabelImg. 
Using LabelImg software, the lymph node was selected with a rectangular bounding box and assign a category 
label to it, such as “benign lymph node”, “lymphoma” or “metastatic lymph nodes”. Then the result was saved 
into a .txt file (Fig. 1).

Training YOLO‑v7 model
We acquired both the source code document and the pre-trained YOLO-v7 weight model from GitHub. Origi-
nally trained on the MS COCO dataset from scratch by the primary  authors26, we further trained the model using 
our own images. Throughout the training process, the model automatically fine-tuned its network structure and 
optimized its loss function.

Model training was performed on a machine with an Intel Core i9-12900H processor, 32 GB RAM, and a 
GPU with 8 GB memory. The hardware and software parameters of the training system are shown in Table 3.

The YOLO-v7 model iterated 300 training epochs on the training set. The validation set was used to adjust 
weighting in the training model. The testing set was used to analyze the capability of the model. A block diagram 
of the complete methodology is shown in Fig. 2. The classification experiment was performed first on the valida-
tion subset and then on the testing subset, and the accuracy value, precision value, recall value, and F1 score of 

Figure 1.  Sample images from each of the three classes with visual aids as to where the lymph nodes are. The 
lymph node was selected using LabelImg software by drawing a rectangular bounding box and assigning a 
category label such as “benign lymph node,” “lymphoma,” or “metastatic lymph nodes.” The result was saved in a 
.txt file.

Table 3.  Hardware and software parameters of the training system.

Name Parameters

Operating system Windows 10, 64-bit

Processor 12th Gen Intel Core i9-12900H CPU 2.50 GHz

Installed RAM 32 GB

Graphics NVIDIA, Intel Iris Xe

Graphics memory 8 GB

Development environment Anaconda, PyCharm Community Edition 2022.2.3

Programming language Python

Deep learning framework PyTorch 1.11.6
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the model were automatically calculated by the software according to Eqs. (1)–(4). True Positive (TP) is a positive 
sample that is correctly classified. False Positive (FP) is a negative sample incorrectly classified as positive. True 
Negative (TN) is a negative sample that is correctly classified. False Negative (FN) is a positive sample incor-
rectly classified as negative. Background FN: The model misclassified the lesion into a background. Background 
FP: The model misclassified the background into a lesion. The mAP is used to measure the performance of the 
target detection algorithm. It is obtained from a comprehensive weighted average of the average accuracy of all 
categories detected. AP (average precision): For each category, calculate the area under its precision-recall curve 
to obtain AP. This represents the performance of the model at different levels of precision and recall. mAP (mean 
average precision): Take the average of all categories of AP to obtain mAP, which is a comprehensive evaluation 
of overall performance.

(1)Accuracy =
(TP+ TN)

Total number of images

(2)Precision =
TP

(TP + FP)

(3)Recall =
TP

(TP + FN)

(4)F1 Score = 2×
(Precison× Recall)

(Precison+ Recall)

(5)AP =

∫ 1

0
p(r)dr

(6)mAP =

∑k
i=1 APi

k

Figure 2.  Flow chart of proposed YOLO-v7 model-based automatic cervical. lymphadenopathy detection. 
Collected images are resized to 640 × 640 pixels and enhanced by rotation and contrast. The dataset was 
randomly divided into 3 subsets for training, validation, and testing. Images from training and validation 
sets were marked using LabelImg software and the YOLO-v7 model was trained with these sets. Parameters 
were adjusted and the test images were submitted to the model to obtain the lymph node classifications and 
probabilities.
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Visual evaluation by radiologists
The testing subset images were analyzed and diagnostically classified by two radiologists with more than 22 
and 29 years of experience in ultrasonography. Radiologists were blinded to patient clinical information and 
pathological results. The ultrasound features of cervical lymphadenopathy are shown in Fig. 3 and include: 
absence of echogenic hilum, non-circumscribed margin, necrosis, calcification, grid-like echo, and peripheral 
vascular  pattern27.

Results
Overall performance of YOLO‑v7 model
After 200 iterations, the mAP, which is an indicator for measuring the quality of the detection model, gradu-
ally stabilizes. The model had the highest mAP at an intersection-over-union threshold of 50% (Fig. 4). At an 
intersection-over-union threshold of 50%, the model mAP on the testing dataset of 4691 images is 96.4% (Fig. 5).

The loss function of the model (Fig. 6) shows that the YOLO-v7 algorithm curve gradually converges as the 
number of iterations increases and the loss value of classification decreases. After 300 iterations, the loss value 
of classification stabilizes near zero and the network essentially converges. The confusion matrix (Fig. 7) shows 
that the YOLO-v7 model has a recall value of 0.842, 0.925, and 0.882 for benign lymph nodes, lymphomas, and 
metastatic lymph nodes, respectively.

Comparison of performance between the YOLO‑v7 model and visual evaluation by radiologists
Table 4 shows the multi-class and individual class parameters for accuracy, recall, precision, and F1 score for the 
testing set. Visual evaluation by radiologists results were all lower. The recall value for lymphomas was only 0.237.

Discussion
Ultrasound is the preferred diagnostic method for cervical lymphadenopathy. However, the diagnostic accuracy 
of ultrasound depends critically upon image quality, the professional experience of the radiologists, and the 
ultrasound instrument  itself28,29. Object detector-based deep learning mode was used in detecting, segmenting, 
and classifying on  lesions30. Before the emergence of YOLO, object detection algorithms such as DCNN generally 
required generating a large number of candidate regions and then classifying targets among them. Compared to 
region based methods, YOLO-v7 does not require early detection of potential target regions. It can output the 

Figure 3.  Ultrasound features of cervical lymph nodes. (a) Metastatic lymph node showing a long axis diameter 
(L) of 51.4 mm, short axis diameter (S) of 37.7 mm, L/S ratio < 2, absence of echogenic hilum, and a non-
circumscribed margin (white arrows) with necrosis (red arrows); (b) Benign lymph node showing calcification 
(arrow); (c) Lymphoma showing grid-like echo (red arrows) and a peripheral vascular pattern; (d) Lymphoma 
showing a mixed vascular pattern.
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category and show the location information of all targets by browsing the image only once. We trained a YOLO-
v7 model that can identify the location of potential lesions on an entire ultrasound image and simultaneously 
classify lymph nodes as benign, lymphoma, or metastatic. The present study shows that the YOLO-v7 model is 
clearly superior to qualitative visual evaluation by experienced radiologists in a diagnostic test. The multi-class 
accuracy and F1 scores for the YOLO-v7 model were 0.952 and 0.912, respectively. And it indicated that the 
YOLO-v7 model can accurately identify lymphoma and also effectively distinguish benign and metastatic lymph 
nodes. To increase the amount of training data, the ultrasound images were augmented by rotation to train the 
model with a neural network having greater learning ability to discriminate features in a given image. A higher 
mAP indicates higher average detection accuracy and greater performance. Our model produced a maximum 
mAP of 96.4%, showing that the model can sensitively detect various classes of cervical lymphadenopathies, 
especially lymphomas; therefore, this model has achieved our goal. Compared with the YOLO-v7 model, the 
visual evaluation by experienced radiologists would miss most patients with lymphoma and cause unnecessary 
biopsies prior to lymph node resection.

In a study of ultrasound-based prenatal abnormality detection, the sensitivity range across different medi-
cal institutions was 27.5–96%31. This indicates that US is highly dependent on the experience and skills of the 
radiologists. So, it has become necessary to find a new technology that can overcome the subjectivity of US 
diagnosis. Our study showed that the precision value was only 0.329, indicating that many patients would be 
misdiagnosed with lymphoma and undergo unnecessary lymphadenectomies. This further indicates that visual 
evaluation by radiologists depends greatly on the personal experience of the radiologist and is therefore highly 
subjective. It remains difficult to accurately differentiate lymph node diseases, even for senior radiologists. To 
address these limitations, there were some studies combined conventional ultrasound, shear-wave elastography, 
and contrast-enhanced ultrasonography to detect the stiffness, perfusion pattern, and characteristics of lymph 
nodes. Experiments have shown that multimodal ultrasonography is a valuable tool for differentiating between 
benign and malignant  lymphadenopathies32. Some advanced automated ultrasound image analysis methods 
have been also developed to improve the objectivity, accuracy, and intelligence of ultrasound diagnostics and 
image-guided  intervention33,34. The most widely used method is an automated feature extraction and informatics 

Figure 4.  mAP value of YOLO-v7 model changed with different thresholds. The curve is a plot illustrating 
average precision values at various intersection-over-union thresholds. The x axis represents IoU thresholds, 
while the y axis represents the corresponding mAP. The model achieved the highest mAP at IoU thresholds of 
50%.
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analysis using radiomics, but the image segmentation step usually relies on manual delineation that introduces 
errors in image feature  calculation33. This paper presents an automated and accurate deep-learning-based cervical 
lymphadenopathy diagnostic technique that does not involve extra feature extraction operations. It is conveni-
ent and highly accurate. The accuracy, precision, recall and F1 score of the three pathological types of lymph 
nodes of the model are all better than the qualitative visual evaluation of experienced radiologists. Given this 
accuracy and stability, we believe that the YOLO-v7 model is superior to visual evaluation by radiologists for 
the differential diagnosis of lymphadenopathy.

In clinical practice, it’s common for US images to feature calipers and body markers. Consequently, these ele-
ments were retained in the US images utilized to train the YOLOv7 model. While this decision might introduce 
some interference during the training phase, it enhances the model’s ability to accurately identify target objects 
and minimize errors caused by non-target elements in subsequent applications.

Figure 5.  P–R curve of YOLO-v7 model. Precision is a measure of result relevance while recall is a measure of 
how many truly relevant results were returned. The average precision-recall values were 0.943, 0.986, and 0.964 
for benign lymph node, lymphoma, and metastatic lymph node, respectively. Precision recall for all classes 
overall was 0.964.

Figure 6.  (a) Classification of loss. With increasing iterations, the YOLO-v7 algorithm curve gradually 
converges and the loss value of classification decreases. (b) The mAP is an indicator of the quality of the 
detection model. With increasing iterations, the mAP@0.5 also increases and the model quality improves and 
stabilizes.
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The main limitation of this project is the scope; the study is retrospective and performed at a single institu-
tion. Prospective multicenter studies will be conducted in the future to further validate our findings. In addition, 
our study only focuses on ultrasound diagnostics. In future research, we will collect more data from computed 
tomography and magnetic resonance imaging to further train a more efficient YOLOv7 model.

In conclusion, The YOLO-v7 model classifies ultrasound images effectively and outperforms doctor’s recogni-
tion in the differential diagnosis of cervical lymphadenopathy. This suggests that the YOLO-v7 model has high 
clinical applicability and could be used for rapid screening at low cost.

Figure 7.  Confusion matrix for YOLO-v7 model. True Positive values were 662, 983, and 1149 for benign 
lymph nodes, lymphomas, and metastatic lymph nodes, respectively. FP False Positive, FN False Negative.

Table 4.  Comparison of performance between YOLO-v7 model and qualitative visual evaluation by 
experienced radiologists. QR qualitative visual evaluation by experienced radiologists.

Class Accuracy Precision Recall F1 score

YOLO-v7

 Benign 0.962 0.928 0.842 0.883

 Lymphoma 0.982 0.975 0.925 0.949

 Metastasis 0.960 0.927 0.882 0.904

 Multi-class 0.952 0.944 0.883 0.912

QR

 Benign 0.659 0.478 0.408 0.440

 Lymphoma 0.836 0.329 0.237 0.276

 Metastasis 0.580 0.596 0.689 0.639

 Multi-class 0.538 0.468 0.445 0.452
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Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Code availability
The source code of YOLO-v7 model was publicly obtained from Github. The project code has been uploaded to 
Github. (https:// github. com/ YCY20 23/ yolo- v7- code. git).
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