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Investigation of rank order centroid 
method for optimal generation 
control
T. Varshney 1,9, A. V. Waghmare 2,9, V. P. Singh 2, M. Ramu 3, N. Patnana 3, V. P. Meena 4*, 
Ahmad Taher Azar 5,6,7* & Ibrahim A. Hameed 8*

Multi-criteria decision-making (MCDM) presents a significant challenge in decision-making processes, 
aiming to ascertain optimal choice by considering multiple criteria. This paper proposes rank order 
centroid (ROC) method, MCDM technique, to determine weights for sub-objective functions, 
specifically, addressing issue of automatic generation control (AGC) within two area interconnected 
power system (TAIPS). The sub-objective functions include integral time absolute errors (ITAE) for 
frequency deviations and control errors in both areas, along with ITAE of fluctuation in tie-line power. 
These are integrated into an overall objective function, with ROC method systematically assigning 
weights to each sub-objective. Subsequently, a PID controller is designed based on this objective 
function. To further optimize objective function, Jaya optimization algorithm (JOA) is implemented, 
alongside other optimization algorithms such as teacher–learner based optimization algorithm 
(TLBOA), Luus–Jaakola algorithm (LJA), Nelder–Mead simplex algorithm (NMSA), elephant herding 
optimization algorithm (EHOA), and differential evolution algorithm (DEA). Six distinct case analyses 
are conducted to evaluate controller’s performance under various load conditions, plotting data to 
illustrate responses to frequency and tie-line exchange fluctuations. Additionally, statistical analysis 
is performed to provide further insights into efficacy of JOA-based PID controller. Furthermore, to 
prove the efficacy of JOA-based proposed controller through non-parametric test, Friedman rank test 
is utilized.
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Every decision necessitates a thorough consideration of the decision-making process to enhance its effectiveness. 
Decision-making serves as a mechanism for problem-solving, integrating various variables to arrive at a favora-
ble  outcome1. Implicit or explicit assumptions influenced by diverse factors such as physiological, biological, 
cultural, and social elements can shape this process. Nowadays, the complexity of decision-making problems 
can be addressed through computer programs, statistical techniques, economic theories, and mathematical 
equations, offering automated calculation and solution estimation. Among these tools, multi-criteria decision 
making (MCDM) stands out as widely utilized across various  fields2.

MCDM involves evaluating, prioritizing, ranking, or selecting alternatives from a finite set of options, taking 
into account multiple, often conflicting  criteria3. The weighting of criteria is significant in MCDM models as it 
reflects the relative importance of the criteria under consideration. The combined impact of all weighted criteria 
determines the overall performance of the system in question. Additionally, MCDM, also known as multiple 
criteria decision analysis (MCDA), represents a research field that encompasses the evaluation of diverse criteria 
within a given context or research domain. MCDA techniques are broadly categorized into two components: 
non-compensatory and compensatory  techniques4. Non-compensatory techniques focus solely on better-per-
forming criteria for weight determination, disregarding poorly performing ones. Conversely, compensatory 
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techniques consider both poorly performing and better-performing criteria, with the latter compensating for 
the former. Rank order centroid (ROC) method is a promising non-compensatory technique for criteria weight 
 determination5. ROC method possesses benefits like:

• Simplicity: The ROC method is straightforward and easy to implement, making it accessible to decision-
makers with varying levels of expertise.

• Transparency: It provides a clear rationale for criteria weighting, as it considers the relative ranks of alterna-
tives rather than requiring complex calculations or subjective judgments.

• Flexibility: The ROC method can handle both quantitative and qualitative criteria, allowing for a compre-
hensive assessment of decision alternatives.

• Robustness: It is less sensitive to outliers or extreme values compared to some other MCDM techniques, 
making it suitable for decision-making in diverse contexts.

• Intuitiveness: The method aligns with human intuition by emphasizing the relative ordering of alternatives 
based on their performance across criteria, which resonates with decision-makers’ cognitive processes.

Overall, the ROC method offers a practical and effective approach to criteria weighting in MCDM, striking a 
balance between simplicity, transparency, flexibility, robustness, and  intuitiveness6.

ROC method, originally proposed by Barren and Barrot, serves as a weight estimation technique that aims 
to minimize the maximum error associated with each weight  assignment6. This is achieved by determining the 
centroid of all potential weight distributions while preserving the rank order of  objectives3. Various researchers 
have applied the ROC method across diverse engineering domains for the assessment and prioritization of mul-
tiple  criteria7–9. Esangbedo et al. introduced a relaxed variant of the ROC method in their  study10, employing it 
for subcontractor selection in photothermal power station construction projects. In another work by Kim et al.11, 
ROC was utilized alongside other weight determination techniques to assign maintenance demand weights based 
on traffic load classifications. Ribeiro et al.12 utilized the ROC method to select appropriate current transducers 
for a smart plug project development. Yadav et al. proposed a novel approach involving the use of a grey-wolf 
optimizer and ROC-based technique to reduce the order of robotic-cycle  controller13.

Several researchers have integrated MCDA techniques in their  studies14–16 to rank and determine appropriate 
weights for each sub-objective function within an overall objective function designed for automatic generation 
control (AGC) systems. In AGC, key factors essential for maintaining the overall power balance of the system 
include frequency deviation, area control errors, and tie-line power  deviation17. Controllers employed in AGC 
play a crucial role in mitigating imbalances within the  system18–20. Optimizing controller parameters is vital 
to ensure reliable and efficient power flow. During controller design, selecting a suitable objective function is 
imperative for enhancing and optimizing parameter tuning. This objective function typically comprises sub-
objective functions representing error indices related to frequency deviation, area control errors, and tie-line 
power  deviation21–23. Prioritizing sub-objective functions and assigning appropriate ranks and weights are crucial 
for obtaining an optimal solution to the objective function. Subsequently, further optimization of the objective 
function is necessary once the weights have been determined.

This study employs the ROC technique as a systematic approach to evaluate the weights associated with sub-
objective functions of tuning of proportional-integral-derivative (PID) controller for AGC problem of TAIPS. 
Controller tuning is achieved through Jaya optimization algorithm (JOA). JOA relies solely on the population 
size and the total number of iterations, devoid of any specific controlling parameters unique to the algorithm. 
Consequently, optimization processes become more accurate and less complex when employing the  JOA15. 
Integral time absolute errors (ITAE) of frequency deviations and control errors for areas 1 and 2, along with 
ITAE of fluctuation in tie-line power, serve as sub-objective functions. The weighted sub-objective functions 
are then aggregated to form the comprehensive objective function. Differing from prior studies, this research 
adopts the ROC method to systematically determine the weights of sub-objective functions, departing from 
assigning equal or random values. To validate the efficacy of the JOA utilized in the proposed method, compara-
tive analyses are presented through tables and response evaluations. The optimization results obtained from 
JOA are analysed against those from other optimization techniques, including teacher-learner based optimiza-
tion algorithm (TLBOA), Luus-Jaakola algorithm (LJA), Nelder-Mead simplex algorithm (NMSA), elephant 
herding optimization algorithm (EHOA), and differential evolution algorithm (DEA). Furthermore, to assess 
applicability, six distinct case analyses under varying load deviations are considered. The primary highlights of 
this contribution include:

• ROC method is implemented for AGC problem of TAIPS. The ROC method facilitates a systematic assess-
ment of weights associated with sub-objective functions.

• Based on the constructed objective function, which incorporates ITAEs of frequency deviations, control 
errors for areas 1 and 2, and fluctuation in tie-line power as sub-objective functions, a PID controller is 
designed.

• To minimize the objective function, JOA is employed in this study. The outcomes obtained from JOA are 
then compared with TLBOA, LJA, NMSA, EHOA, and DEA, for validation purposes.

• Furthermore, six case studies are conducted considering various load variations to evaluate the system’s 
responses to frequency fluctuations and tie-line exchange.

• Additionally, non-parametric and statistical analyses are employed to demonstrate the practical significance 
of JOA-based PID controller.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11267  | https://doi.org/10.1038/s41598-024-61945-z

www.nature.com/scientificreports/

The paper is organized as follows: “ROC method” provides a brief introduction to the ROC method. In “System 
under consideration”, the model description of TAIPS is presented. “ROC based controller design” discusses the 
implementation of the ROC method for TAIPS, formulation of the objective function, and introduction of the 
JOA. In “Results and discussions”, the simulation outcomes are tabulated, discussed, and presented in the form 
of plots. Finally, “Conclusion” summarizes the conclusions drawn from the results and discussions.

ROC method
ROC method offers a straightforward approach to determining  weights13. It involves ranking multiple solutions 
(objectives) based on their significance and assigning weights accordingly. The essence of the ROC method lies in 
minimizing the errors associated with each weight by identifying the centroid of potential weights while preserv-
ing the ranking order of objectives. This method ensures a uniform distribution of weights across all objectives.

Consider a scenario where there are N sub-objectives contributing to an overall objective function. Let ωM 
represent the weight of the Mth sub-objective, where M = 1, 2, . . . ,N , and let RM denote its rank. The formula 
for weight determination using the ROC method is presented in ((1)).

The methodical procedure for employing the ROC method for weight determination is outlined below: 

1. Step 1: Begin by identifying the sub-objective functions and prioritize them based on their significance.
2. Step 2: Associate weights to each of the sub-objective functions.
3. Step 3: Provide ranks to the sub-objective functions according to the priorities established in Step 1.
4. Step 4: Define the total number of sub-objectives as N, with the rank of the Mth sub-objective denoted as 

RM , and the weight of the Mth sub-objective as ωM.
5. Step 5: Utilize the formula (1) to compute the weight of the sub-objective having M = 1 by substituting the 

values of N, RM , and ωM.
6. Step 6: After computation, increment the value of M by 1.
7. Step 7: Repeat Step 5 and Step 6 until the value of M equals N.

The sequential execution of the ROC method for weight determination is depicted in Fig. 1.

System under consideration
The schematic representation of the TAIPS is illustrated in Fig. 2. This system configuration, outlined  in15, 
encompasses two thermal power plants, each contributing 1000 MW to the total load, thereby establishing a 
combined capacity of 2000 MW. This setup mirrors a realistic interconnected power system. The transfer func-
tions corresponding to the various blocks depicted in Fig. 2 are detailed below:

• Turbine’s transfer functions for area 1 and area 2 are given in (()) and ((3)), respectively. 

(1)ωM =
1

N

N
∑

M=1

1

RM
.

(2)TFT01 =
1

1+ sτT01

(3)TFT02 =
1

1+ sτT02

Figure 1.  Stepwise implementation of ROC method.
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• Generator’s transfer functions for area 1 and area 2 are given in ((4)) and ((5)), respectively. 

• Transfer function of system dynamics for area 1 and area 2 are given in ((6)) and ((7)), respectively. 

• Transfer function for torque coefficient between area 1 and area 2 is given in ((8)). 

The variables used in Fig. 2 and (2)–(8) are tabulated in Table 1.

ROC based controller design
PID controller
PID controllers have been widely employed in industrial and process control applications for many years. 
Renowned for their ease of tuning, straightforward structure, and user-friendly implementation, PID control-
lers remain a popular choice. A PID controller takes an error signal (E(s)) as input and produces a desired output 
(U(s)). Its general representation is provided in Eq. (9).

The PID controller utilized in this study integrates a filter F with the derivative gain to mitigate the impact of 
noise. Area control errors serve as inputs to the controller, while the generated outputs are control inputs. The 
controller representations for area 1 and area 2 are depicted in Eqs. (10) and (11), respectively.

(4)TFG01 =
1

1+ sτG01

(5)TFG02 =
1

1+ sτG02

(6)TF01 =
K01

1+ sτ01

(7)TF02 =
K02

1+ sτ02

(8)TFTC =
T0102

s

(9)U(s) =

[

ψP +
ψI

s
+ ψDs

]

E(s)

Figure 2.  Two area interconnected power system.
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The equations for ACE01 and ACE02 are presented in (12) and (13).

Objective function formulation
In ensuring a balanced power flow between area 1 and area 2, it is imperative to uphold their frequencies, mini-
mize area control errors, and maintain tie-line powers. Considering these three aspects, an objective function is 
formulated. This objective function amalgamates three weighted sub-objective functions, each representing the 
integral time absolute error (ITAE) of the aforementioned concerns. Denoting these sub-objective functions as 
X1 , X2 , and X3 , their formulations are presented in Equations (14), (15), and (16).

(10)µ01 =

[

ψP +
ψI

s
+ ψD

1

1
s +

1
N

]

ACE01

(11)µ02 =

[

ψP +
ψI

s
+ ψD

1

1
s +

1
N

]

ACE02

(12)ACE01(s) =�Z0102(s)+ β01.�f01(s)

(13)ACE02 =− A0102.�Z0102(s)+ β02.�f02(s)

(14)X1 =

∫ Tst

0

�f01tdt +

∫ Tst

0

�f02tdt

(15)X2 =

∫ Tst

0

ACE01tdt +

∫ Tst

0

ACE02tdt

(16)X3 =

∫ Tst

0

�Z0102tdt

Table 1.  TAIPS parameters and constraints.

TAIPS parameters

Area 1 Area 2

Parameter Variable Value (unit) Parameter Variable Value (unit)

Frequency f 60 Hz Frequency f 60 Hz

Frequency deviation �f01 – Frequency deviation �f02 –

Area control error ACE01 – Area control error ACE02 –

Bias factor β01 0.05 pu MW/Hz Bias factor β02 0.05 pu MW/Hz

Control input µ01 – Control input µ02 –

Governer’s speed regulation constant R01 2.4 Hz/pu Governer’s speed regulation constant R02 2.4 Hz/pu

Governer’s time constant τG01 0.08 s Governer’s time constant τG02 0.08 s

Turbine’s time constant τT01 0.3 s Turbine’s time constant τT02 0.3 s

System’s gain constant K01 120 Hz/pu MW System’s gain constant K02 120 Hz/pu MW

System’s time constant τ01 20 s System’s time constant τ02 20 s

Governer power deviation �PG01 – Governer power deviation �PG02 –

Turbine power deviation �PT01 – Turbine power deviation �PT02 –

System’s load change �PL01 – System’s load change �PL02 –

Tie-line

Parameter Variable Value (unit)

Torque coefficient T0102 0.545 pu

Tie-line ratio A0102 − 1

Tie-line power deviation �Z0102 –

Constraints

Parameter Max value Min value

Proportional gain ψmax
P = 3 ψmin

P = 0

Integral gain ψmax
I = 3 ψmin

I = 0

Derivative gain ψmax
D = 3 ψmin

D = 0

Filter Fmax
= 500 Fmin

= 0
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X1 encompasses the ITAEs of frequency variation in area 1 and area 2, while X2 and X3 account for the ITAEs 
of area control errors in area 1 and area 2 and the ITAE of variation in tie-line power, respectively. The resultant 
objective function, formed by combining the weighted sub-objectives described in Eqs. (14), (15), and (16), is 
presented in Eq. (17).

Substituting values of X1 , X2 and X3 from (14), (15) and (16), respectively in (17), (17) is modified to (18).

The weights ω1 , ω2 , and ω3 are determined using Eq. (1), as explained in “Introduction”. Since there are three sub-
objectives, N in Eq. (1) is 3, and M takes values from 1 to 3. The values of ω1 , ω2 , and ω3 are calculated as follows:

Substituting values of ω1 , ω2 and ω3 from (19) in (18), overall objective function is modified to (20).

To minimize the objective function, this article employs the JOA, as discussed in “Jaya optimization algorithm-
Jayaalgorithm”. Constraints are imposed on the controller parameters to confine the search space during mini-
mization. These constraints are expressed in (21), and their specific values are presented in Table 1.

Jaya optimization algorithm
The Jaya optimization algorithm (JOA), initially devised to handle both constrained and unconstrained opti-
mization problems, draws its inspiration from the concept of “victory”, symbolized as “Jaya” in  Sanskrit24,25. 
Mimicking the principle of “survival of the fittest” observed in nature, solutions within the Jaya population 
tend to converge towards the global optimum by discarding less suitable solutions. Remarkably, this algorithm 
operates solely based on the total number of iterations and the population size, obviating the need for specific 
controlling parameters.

Let N represents the termination criteria, P denote the population size, and D indicate the total number of 
decision parameters. In JOA, a solution is denoted as σa,b , where a = 1, 2, . . . , P represents the population and 
b = 1, 2, . . . ,D signifies the decision parameters. The updated solution for the ath population and the bth decision 
parameter at the ith iteration is given by

where,

In (23), the random variables V1 and V2 are introduced, each ranging from 0 to 1, to facilitate the algorithm’s 
exploration. Following each iteration, an updated solution is generated. This updated solution is deemed accept-
able for further iterations only if it outperforms the previous solution. A visual representation of the steps 
involved in the JOA, along with the procedural details, is provided in Fig. 3.

Results and discussions
In this section, we conduct an analysis of AGC problem within the framework of TAIPS. The objective is to 
address three distinct goals by integrating them into a unified objective function (20), with their respective 
weights determined using ROC technique. Subsequently, the minimization of (20) is undertaken utilizing JOA, 
while adhering to the constraints outlined in (21). To evaluate the effectiveness and applicability of the proposed 
methodology, six different case studies, as detailed in Table 2, are simulated in the time domain, encompass-
ing various load conditions. The simulation results encompass fitness values of the objective and sub-objective 

(17)X = ω1(X1)+ ω2(X2)+ ω3(X3).

(18)

X = ω1

(

∫ Tst

0

�f01tdt +

∫ Tst

0

�f02tdt
)

+ ω2

(

∫ Tst

0

ACE01tdt +

∫ Tst

0

ACE02tdt)+ ω3

(

∫ Tst

0

�Z0102tdt
)

(19)

M = 1,ω1 =
1
3

[

1+ 1
2
+

1
3

]

= 0.61

M = 2,ω2 =
1
3

[

1
2
+

1
3

]

= 0.28

M = 3,ω3 =
1
3

[

1
3

]

= 0.11

(20)

X = 0.61

(

∫ Tst

0

�f01tdt +

∫ Tst

0

�f02tdt
)

+ 0.28

(

∫ Tst

0

ACE01tdt +

∫ Tst

0

ACE02tdt)+ 0.11

(

∫ Tst

0

�Z0102tdt
)

(21)

ψmin
P < ψP < ψmax

P
ψmin
I < ψI < ψmax

I
ψmin
D < ψD < ψmax

D
Fmin < F < Fmax

(22)σ i
′

a,b = σ i
a,b + σ1 + σ2

(23)
σ1 = V1(σ

i
best,b − σ i

a,b)

σ2 = −V2(σ
i
worst,b − σ i

a,b)

}
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functions (X, X1 , X2 , and X3 ), decision parameters pertaining to controller settings ( ψP , ψI , ψD , and F), settling 
times for �f01 , �f02 , and �Z0102 , as well as their peak overshoots. In order to validate the simulation outcomes 
of the JOA-based PID controller, we include PID controllers optimized using alternative algorithms such as 
TLBOA, LJA, NMSA, DEA, and EHOA. Furthermore, to substantiate the validation, a comprehensive statistical 
analysis is conducted for the JOA, TLBOA, LJA, NMSA, DEA, and EHOA-based PID controllers. This analysis 
compares their mean, minimum, and maximum values, along with their respective standard deviations. Finally, 
a Friedman rank test is performed across all the algorithms, computing their mean ranks, Q value, and p value 
for comparison and validation purposes.

Figure 3.  Steps and flowchart for JOA.

Table 2.  Case analysis.

Case analysis

Step load 
variations

Area 1 Area 2

I 0.025 0

II 0 0.025

III 0.025 0.025

IV 0.025 − 0.025

V 0.025 0.05

VI 0.05 0.025
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The outcomes of case analysis I are systematically arranged and displayed in Table 3. Visual representations of 
frequency deviations for area-1 ( �f01 ) and area-2 ( �f02 ), as well as tie-line power deviation ( �Z0102 ), are depicted 
in Figs. 4, 5, and 6, respectively. These visualizations clearly indicate the superior performance of the JOA-based 
PID controller over other PID controllers. The enhanced response of the JOA-based PID controller is evident 
from the graphical representations. This observation is corroborated by the quantitative analysis presented in 
Table 3, which highlights that the PID controller employing the JOA achieves the fastest settling time compared 
to PID controllers utilizing alternative algorithms. Notably, the JOA-based PID controller achieves the optimal 
outcome, as evidenced by the minimum value of the objective function X, underscoring its efficacy in enhancing 
system performance. Similarly, the utilization of the JOA-based PID controller results in the minimum values of 
the sub-objective functions X1 , X2 , and X3 , further emphasizing its effectiveness.

Table 4 presents the simulation results obtained from case analysis II. The graphical responses of �f01 , �f02 , 
and �Z0102 are depicted in Figs. 7, 8, and 9, respectively. As observed in case analysis I, the graphical representa-
tions in this analysis also indicate the superiority of the JOA-based PID controller over other PID controllers. 
Quantitative analysis reveals that the PID controller utilizing the JOA achieves the quickest settling time com-
pared to controllers employing alternative algorithms. Furthermore, the JOA-based PID controller attains the 
optimal outcome, as evidenced by the lowest value of the overall objective function.

In Table 5, the results of case analysis III are presented. It is evident from the findings that the JOA-based 
PID controller outperformed all other controllers based on different algorithms. The JOA-based PID controller 
exhibited the lowest values for both the objective function and sub-objective functions, and it also demonstrated 

Table 3.  Results for case analysis I.

Jaya TLBO LJ NMS DE EHO

Fitness

X 0.02871 0.05415 0.03766 0.06752 0.04271 0.04320

X1 0.04366 0.08484 0.05700 0.10319 0.06622 0.06706

X2 0.01257 0.02060 0.01667 0.02834 0.01748 0.01755

X3 0.01877 0.03415 0.02491 0.04451 0.02692 0.02722

Decision parameters

ψP 2.16059 1.76926 2.87764 2.13088 2.15090 2.22966

ψI 2.99912 2.49640 2.87080 2.00520 2.67464 2.72155

ψD 0.64783 1.15718 1.14092 1.24553 1.12530 1.20696

F 470.811 433.201 273.225 177.700 347.197 349.361

Settling time (s)

�f01 1.96728 4.16135 2.25437 3.00036 3.51075 3.63759

�f02 3.29440 5.00388 4.36248 4.88952 3.46296 3.48559

�Z0102 3.44821 5.41281 4.49584 4.99229 3.64359 3.65955

Peak overshoots (p.u.)

�f01 0.06215 0.04876 0.04771 0.04713 0.04895 0.04716

�f02 0.03065 0.02182 0.01968 0.01982 0.02127 0.01997

�Z0102 0.01031 0.00824 0.00687 0.00779 0.00768 0.00730

Figure 4.  Case 1: Frequency fluctuations for area-1.
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the fastest settling time. This superior performance of the JOA-based PID controller is illustrated through graphi-
cal representations in Figs. 10, 11, and 12, which depict �f01 , �f02 , and �Z0102 respectively.

The results for case analysis IV are presented in Table 6, accompanied by graphical representations of �f01 , 
�f02 , and �Z0102 in Figs. 13, 14, and 15 respectively, providing a visual understanding of the data. As observed 
in Table 6, the JOA-based PID controller exhibits the shortest settling time among PID controllers using differ-
ent algorithms. Additionally, it achieves the lowest values for the sub-objective functions X, X1 , and X2 , as well 
as for the objective function X3.

Table 7 provides an overview of the findings from case analysis V, while the corresponding responses for 
�f01 , �f02 , and �Z0102 are illustrated in Figs. 16, 17, and 18, respectively. The results highlight the superior per-
formance of the JOA-based PID controller compared to controllers based on other algorithms. Specifically, the 
JOA-based PID controller achieved the lowest values for both the objective and sub-objective functions, while 

Figure 5.  Case 1: Frequency fluctuations for area-2.

Figure 6.  Case 1: Tie-line power fluctuation.
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also demonstrating the shortest settling time. These outcomes underscore its effectiveness relative to the other 
controllers considered.

The results for case analysis VI are presented in Table 8, while the corresponding responses for �f01 , �f02 , 
and �Z0102 are depicted in Figs. 19, 20, and 21, respectively. As observed in previous cases, the JOA-based PID 
controller consistently achieves the lowest values for both the objective and sub-objective functions, as well 
as the shortest settling time across all three responses. This reaffirms its superiority over the other controllers.

A statistical comparison is conducted among algorithms based on JOA, TLBOA, LJA, NMSA, DEA, and 
EHOA across all six case studies. Table 9 presents the results of this analysis, including mean values ( XMean ), 
minimum values ( XMin ), maximum values ( XMax ), and standard deviations ( XSD ). Upon comparing the results 
across all algorithms, it becomes evident that the JOA-based controller consistently outperforms TLBOA, LJA, 
NMSA, DEA, and EHOA algorithms. Across case studies I to VI, the JOA consistently yields the lowest mean 
and minimum values. Furthermore, the standard deviations associated with the JOA algorithm are the lowest 
among all six cases, indicating its superior performance and reliability.

A Friedman rank test is employed for non-parametric analysis to compare the optimization performances of 
the JOA, TLBOA, LJA, NMSA, DEA, and EHOA algorithms. This test assesses the mean rank of each algorithm, 
along with the overall Q and p values for all algorithms. The algorithm with a mean rank of 1 is considered to 
have the best performance. For the test to be validated, the Q value must be positive and the p value must be 
less than 5%.

Table 10 presents the mean ranks for each algorithm, as well as the overall Q value and p value. Among the 
algorithms JOA, TLBOA, LJA, NMSA, DEA, and EHOA, their respective mean ranks are 1, 3.83333, 4, 3.83333, 

Table 4.  Results for case analysis II.

Jaya TLBO LJ NMS DE EHO

Fitness

X 0.01184 0.02270 0.01556 0.02803 0.01802 0.01412

X1 0.01559 0.03030 0.02035 0.03683 0.02395 0.01874

X2 0.00449 0.00735 0.00595 0.01012 0.00627 0.00514

X3 0.00670 0.01219 0.00889 0.015897 0.00972 0.00759

Decision parameters

ψP 2.16059 1.76926 2.87764 2.13088 2.22966 2.41632

ψI 2.99912 2.49640 2.87080 2.00520 2.72155 2.98598

ψD 0.64783 1.15718 1.14092 1.24553 1.20696 1.05261

F 470.811 433.201 273.225 177.700 349.360 198.015

Settling time (s)

�f01 3.29437 5.00398 4.36258 4.88862 3.48559 3.45161

�f02 1.96760 4.16162 2.25420 2.99960 3.63764 1.79290

�Z0102 3.44822 5.41279 4.49594 4.99236 3.65956 3.61091

Peak overshoots (p.u.)

�f01 0.01095 0.00779 0.00703 0.00707 0.00713 0.00778

�f02 0.02219 0.01741 0.01704 0.01681 0.01684 0.01802

�Z0102 0.00368 0.00294 0.00245 0.00278 0.00260 0.00272

Figure 7.  Case 2: Frequency fluctuations for area-1.
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3.16667, and 5.16667. It is evident from these values that the JOA algorithm outperforms the others, having 
the lowest mean rank of 1. This finding is further supported by a positive Q value of 16.47619 and a p value of 
0.005608, which is significantly lower than the 5%.

Figure 8.  Case 2: Frequency fluctuations for area-2.

Figure 9.  Case 2: Tie-line power fluctuation.
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Conclusion
MCDM techniques are widely acknowledged for their effectiveness in various applications. This paper employed 
ROC method, a type of MCDM technique, to determine the weights of objective functions. These objective 
functions are derived from ITAE evaluations of frequency deviations, control errors, lie-line power deviation 
for AGC problem of a two-area power system. Using these objective functions, a PID controller is designed. 
The JOA algorithm is then employed to minimize the objective function. The system’s performance is evaluated 
under six different load variations.

To demonstrate the effectiveness of the JOA algorithm-based controller, optimization is also conducted using 
TLBOA, LJA, NMSA, DEA, and EHOA. Their outcomes are compared for each of the six load variations, with 
comparisons presented in both graphical and tabular formats. Key metrics considered for comparison include 
objective function values, decision parameters, settling time, and peak overshoots. The results indicated that the 
JOA algorithm consistently outperforms the other algorithms for all considered load variations. Additionally, 
statistical analysis and a Friedman rank test confirm the superiority of the JOA algorithm-based PID control-
ler over other controllers. In future, fractional order  controllers26,27, fuzzy  controllers28–33 and learning based 
 controllers34,35, along with learning based optimization  techniques36, can be implemented for optimal generation 
control.

Table 5.  Results for case analysis III.

Jaya TLBO LJ NMS DE EHO

X 0.01561 0.02777 0.03377 0.02350 0.02201 0.02412

X1 0.02141 0.03810 0.04632 0.03224 0.03019 0.03309

X2 0 0 0 0 0 0

X3 0.00910 0.01619 0.01968 0.01370 0.01283 0.01406

Fitness
Decision parameters

ψP 1.59717 1.63668 2.67985 1.93034 1.77656 2.06715

ψI 2.88401 2.32600 2.63987 2.68327 2.67970 2.72281

ψD 0.43334 0.48760 1.32552 0.76246 0.68293 0.82655

F 218.226 369.819 440.721 300.938 321.602 228.822

Settling time (s)

�f01 1.26864 2.87640 3.58554 2.47070 2.23259 2.61891

�f02 1.26864 2.87640 3.58554 2.47070 2.23259 2.61891

�Z0102 0 0 0 0 0 0

Peak overshoots (p.u.)

�f01 0.03024 0.02907 0.01707 0.02356 0.02505 0.02252

�f02 0.03024 0.02907 0.01707 0.02356 0.02505 0.02252

�Z0102 0 0 0 0 0 0

Figure 10.  Case 3: Frequency fluctuations for area-1.



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11267  | https://doi.org/10.1038/s41598-024-61945-z

www.nature.com/scientificreports/

Figure 11.  Case 3: Frequency fluctuations for area-2.

Figure 12.  Case 3: Tie-line power fluctuation.



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11267  | https://doi.org/10.1038/s41598-024-61945-z

www.nature.com/scientificreports/

Table 6.  Results for case analysis IV.

Jaya TLBO LJ NMS DE EHO

Fitness

X 0.02141 0.03810 0.04632 0.03224 0.03019 0.03309

X1 0.02128 0.02759 0.02196 0.02516 0.029657 0.02430

X2 0.00958 0.01811 0.01506 0.01322 0.02038 0.01496

X3 0.01272 0.02820 0.02271 0.01866 0.03393 0.02372

Decision parameters

ψP 2.29451 2.33687 2.94046 1.97933 2.74871 2.79796

ψI 2.97746 2.35083 2.60156 2.44598 2.74842 2.98638

ψD 0.80115 1.67075 1.57187 0.91227 2.74868 2.14128

F 251.695 428.201 269.611 433.240 375.556 410.815

Settling time (s)

�f01 3.32060 4.55333 4.39178 3.73260 4.96781 4.34881

�f02 3.32060 4.55333 4.39178 3.73260 4.96781 4.34881

�Z0102 3.58304 6.12057 4.86206 3.85087 7.81936 6.56500

Peak overshoots (p.u.)

�f01 0.01890 0.01346 0.01383 0.01803 0.01039 0.01179

�f02 0.01890 0.01346 0.01383 0.01803 0.01039 0.01179

�Z0102 0.00649 0.00496 0.00443 0.00640 0.00406 0.00416

Figure 13.  Case 4: Frequency fluctuations for area-1.
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Figure 14.  Case 4: Frequency fluctuations for area-2.

Figure 15.  Case 4: Tie-line power fluctuation.
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Table 7.  Results for case analysis V.

Jaya TLBO LJ NMS DE EHO

Fitness

X 0.02719 0.04401 0.04942 0.04141 0.04113 0.08085

X1 0.03667 0.05946 0.06631 0.05616 0.05557 0.10959

X2 0.00420 0.00604 0.00651 0.00511 0.00565 0.00935

X3 0.01557 0.02527 0.02948 0.02354 0.02362 0.04632

Decision parameters

ψP 1.57790 2.41757 1.24749 1.61030 2.62420 2.94945

ψI 2.86765 2.67030 2.31084 2.83715 2.84232 2.71181

ψD 0.49063 0.74965 0.30254 0.80291 0.84047 2.58650

F 456.862 453.404 267.357 406.203 423.436 416.925

Settling time (s)

�f01 2.35130 3.88179 3.71026 3.53821 3.84897 7.09332

�f02 2.23253 2.93474 3.04536 3.38719 2.89593 6.41211

�Z0102 3.01128 4.31432 4.04959 4.04802 4.29372 7.51010

Peak overshoots (p.u.)

�f01 0.03567 0.02702 0.04420 0.02919 0.02503 0.01500

�f02 0.05401 0.04343 0.06495 0.04406 0.04094 0.02259

�Z0102 0.00460 0.00332 0.00592 0.00361 0.00303 0.00200

Figure 16.  Case 5: Frequency fluctuations for area-1.
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Figure 17.  Case 5: Frequency fluctuations for area-2.

Figure 18.  Case 5: Tie-line power fluctuation.
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Table 8.  Results for case analysis VI.

Jaya TLBO LJ NMS DE EHO

Fitness

X 0.02579 0.04125 0.03346 0.03228 0.03504 0.05286

X1 0.03467 0.05545 0.04514 0.04373 0.04728 0.07147

X2 0.00403 0.00553 0.00499 0.00479 0.00517 0.00690

X3 0.01499 0.02434 0.01920 0.01812 0.02010 0.03037

Decision parameters

ψP 1.73345 2.45255 2.10758 2.10018 1.97645 2.85085

ψI 2.97574 2.83102 2.82148 2.92659 2.69841 2.64804

ψD 0.48790 0.41136 0.67913 0.79286 0.50773 0.61215

F 241.425 192.983 307.822 403.370 423.315 308.163

Settling time (s)

�f01 2.00491 3.57692 2.19407 2.03995 2.56470 3.56396

�f02 2.39376 4.16908 3.12192 2.77544 3.29122 4.63191

�Z0102 3.09728 4.87530 3.59863 3.36761 3.70750 5.05689

Peak overshoots (p.u.)

�f01 0.05351 0.05344 0.04607 0.04310 0.05177 0.04595

�f02 0.03477 0.03327 0.02922 0.02727 0.03326 0.02804

�Z0102 0.00447 0.00426 0.00364 0.00336 0.00425 0.00346
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Figure 19.  Case 6: Frequency fluctuations for area-1.
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Figure 20.  Case 6: Frequency fluctuations for area-2.



19

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11267  | https://doi.org/10.1038/s41598-024-61945-z

www.nature.com/scientificreports/

0 1 2 3 4 5 6

Time(sec)

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Z 01
02

 p
.u

.

10-3

Jaya
TLBO
LJ
NMS
DE
EHO

Figure 21.  Case 6: Tie-line power fluctuation.

Table 9.  Statistical analysis.

Cases Statistical measures Jaya TLBO LJ NMS DE EHO

I

XMean 0.01288 0.04039 0.02418 0.03091 0.02003 0.03148

XMin 0.01225 0.02573 0.01588 0.02034 0.01701 0.02202

XMax 0.01390 0.05881 0.02943 0.04373 0.02158 0.03784

XSD 0.00066 0.01227 0.00633 0.00948 0.00178 0.00729

II

XMean 0.01236 0.04208 0.02726 0.03531 0.02118 0.02863

XMin 0.01188 0.02271 0.01556 0.02804 0.01802 0.01413

XMax 0.01382 0.05721 0.04132 0.05300 0.02615 0.04722

XSD 0.00032 0.01291 0.01109 0.01074 0.00342 0.01270

III

XMean 0.02751 0.04245 0.06347 0.02994 0.04614 0.03676

XMin 0.01561 0.02778 0.03377 0.02350 0.02201 0.02412

XMax 0.03373 0.05305 0.09527 0.08924 0.03495 0.04847

XSD 0.00397 0.01057 0.02912 0.02789 0.00597 0.00879

IV

XMean 0.01927 0.03884 0.03110 0.03677 0.03073 0.03132

XMin 0.01759 0.02672 0.02141 0.02203 0.02983 0.02311

XMax 0.02079 0.05984 0.03661 0.04879 0.03318 0.03913

XSD 0.00136 0.01425 0.00609 0.01070 0.00138 0.00623

V

XMean 0.03545 0.08731 0.07835 0.09125 0.08055 0.09417

XMin 0.02719 0.04401 0.04942 0.04141 0.04113 0.08085

XMax 0.05501 0.12775 0.14871 0.14832 0.10149 0.12126

XSD 0.01139 0.03617 0.04159 0.03834 0.02454 0.01568

VI

XMean 0.03368 0.07293 0.06080 0.07426 0.05033 0.08873

XMin 0.02579 0.04125 0.03346 0.03228 0.03504 0.05286

XMax 0.03992 0.11652 0.08347 0.12428 0.06271 0.12256

XSD 0.00531 0.02814 0.01820 0.03302 0.01161 0.03083

Table 10.  Friedman rank test.

Friedman rank test

Jaya TLBO LJ NMS DE EHO

Mean rank 1 3.83333 4 3.83333 3.166667 5.166667

Q value Q=16.47619

p value p=0.005608
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