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A ResNet mini architecture 
for brain age prediction
Xuan Zhang 1,5, Si‑Yuan Duan 2,5, Si‑Qi Wang 1,5, Yao‑Wen Chen 1, Shi‑Xin Lai 1, Ji‑Sheng Zou 1, 
Yan Cheng 3, Ji‑Tian Guan 4, Ren‑Hua Wu 4* & Xiao‑Lei Zhang 4*

The brain presents age-related structural and functional changes in the human life, with different 
extends between subjects and groups. Brain age prediction can be used to evaluate the development 
and aging of human brain, as well as providing valuable information for neurodevelopment and 
disease diagnosis. Many contributions have been made for this purpose, resorting to different 
machine learning methods. To solve this task and reduce memory resource consumption, we develop 
a mini architecture of only 10 layers by modifying the deep residual neural network (ResNet), named 
ResNet mini architecture. To support the ResNet mini architecture in brain age prediction, the brain 
age dataset (OpenNeuro #ds000228) that consists of 155 study participants (three classes) and the 
Alzheimer MRI preprocessed dataset that consists of 6400 images (four classes) are employed. We 
compared the performance of the ResNet mini architecture with other popular networks using the two 
considered datasets. Experimental results show that the proposed architecture exhibits generality 
and robustness with high accuracy and less parameter number.
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The human brain structure exhibits the age-related changes across the lifespan, which may reveal several risks of 
encountering health-related issues at different stages of life1. Age-related brain changes are associated with the 
etiology of brain diseases, especially neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and 
amyotrophic lateral sclerosis)2. The process of age-associated brain diseases varied greatly across the population, 
surprisingly neuroimaging such as structural magnetic resonance imaging (MRI) that allows brain tissues with 
visualizing details and subtle changes can provide a comprehensive solution for the task. Based on the different 
pathological manifestations of patients of different ages, brain age prediction through neuroimaging can be one 
of the important aspects of diagnosis.

In this context, neuroimaging-derived models aided by machine learning has been successful in solving dif-
ferent tasks of brain age prediction, mostly using MRI scans. Particularly, deep learning has become prevalent 
in manifold brain age estimation, allowing advanced ability to learn and represent image features3. In a recently 
reported literature1, an overview of brain age prediction and the available tools (deep learning architectures) 
have been summarized. This paper reviews the publications of brain age estimation using deep learning archi-
tectures from neuroimaging data, including convolutional neural network (CNN)3–10, ensemble CNNs11–13 and 
Transformer based models14–17. Despite the saturation of performance metrics on datasets and the intricate 
state-of-the-art advancements, it suggests that “computational complexity” is one of research niches that deserve 
further attention1. For this, Fisch et al.7 introduced a ResNet-based 2-layer 3D CNN architecture. They employed 
a preprocessing technique that involves brain image cropping to reduce the computational complexity of the 
model. However, this approach results in disconnected patches within the slices, leading to the loss of certain 
contextual features present in the images. In addition, Lam et al.18 proposed a 2D recurrent neural network for 
predicting brain age. The main objective was to reduce the parameter count. In comparison to 3D CNN models, 
the model had 10,680,605 parameters, which is half that of the 3D CNN model. Ballester et al.19 proposed slice-
level brain age prediction using a combination of CNNs and linear regression. Their work on brain age prediction 
was carried out through multivariate analysis, in which ensemble model integrates multiple networks to enhance 
predictive performance and price usually needs higher complexity of training. The challenges encountered are 
similar to those faced by other researchers, where reducing computational complexity becomes imperative 
while ensuring accuracy. Herein, we seek to break through this barrier. While the challenge of computational 
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complexity is well-acknowledged, our novel contribution in this paper is the introduction of a lightweight net-
work, which tackles imbalance in both efficiency and accuracy.

Our main contributions can be summarized as follows. To be effective, neural networks for brain age predic-
tion should be lightweight, in which the better spatial inductive biases allow networks to learn representations 
with fewer parameters. The more flexible deployment behaved by lightweight network would reduce the costs 
of using infrastructure and accelerate response speed. Towards this end, we develop a network with only 10 lay-
ers by modifying deep residual neural network (ResNet)20, named as ResNet mini (ResMini) architecture21, to 
extract the features of considered datasets. Case studies indicate that the proposed network exhibits competitive 
results when we comprehensively consider network accuracy and parameter number.

The rest of this paper is structured as follows. In section “Results”, we assess our ResMini by comparing it 
with ResNet1820, BHCnet22. We conclude our research in section “Discussion” and suggest avenues for future 
research. Section “Materials and methods” introduces the used datasets, and provide a detailed description of 
our proposed approach to address the challenge of computational complexity by ResMini.

Results
To tackle the study task, the ResMini based method is described in Fig. 1. To evaluate the advantages and dis-
advantages of our model in brain age prediction, we first use ResNet1820 and BHCnet22 to replace our ResMini 
block in the same experimental environment using the brain age dataset (OpenNeuro #ds000228) to achieve 
classification outcomes in three classes (https://​openn​euro.​org/​datas​ets/​ds000​228/​versi​ons/1.​1.0). To validate the 
generality and robustness of the ResMini, the Alzheimer MRI preprocessed dataset that consists of 6400 images 
(four classes) is also considered (https://​www.​kaggle.​com/​datas​ets/​sachi​nkuma​r413/​alzhe​imer-​mri-​datas​et).

Figure 2 shows the loss and accuracy curves of the three networks when they are applied to the brain age 
dataset. From the left column of Fig. 2, we find that the iterations of BHCnet and ResMini are more than that of 
ResNet18 in training loss, where the needed iteration of ResNet18 is only 25 iterations when the training loss 
approaches to the stability. However, there is high level of fluctuating in the validation loss of ResNet18. What is 
more, the terminal value of the validation loss obtained by ResMini is lower than those of BHCnet and ResNet18. 
At the same time, we compare the accuracy curves using the three networks, as shown in the right column of 
Fig. 2. It is found that the accurate convergence of training caused by the ResNet18 increases sharply, yet the 
high level of fluctuating exists in its validation accuracy curve. In contrast, BHCnet and ResMini show steady 
increasing tendency in the accuracy curves of training and validation.

Figure 3 shows the confusion matrices of the three networks on the brain age dataset. The test set consists of 
61 data, including 27 samples of 3–5 years old, 21 samples of 7–12 years old, and 13 samples of adult. By using 
the ResMini, 1 and 1 are wrongly predicted for 3–5 years old and 7–12 years old respectively, and 13 data is cor-
rectly predicted among 13 samples of adult. In BHCNet prediction, only 1 is wrongly predicted for 7–12 years 
old. It is found that 5 and 4 are wrongly predicted for 3–5 years old and 7–12 years old in ResNet18 prediction, 
respectively.

Table 1 summarizes the comparison results in terms of accuracy and efficiency, as well as the number of 
parameters, when ResMini, BHCnet and ResNet18 are applied to the test set for brain age prediction. The results 
show that the performance of the ResMini is almost same as that of the BHCnet and slightly exceeds ResNet18 
in terms of accuracy, while it outperforms the performance of BHCnet and ResNet18 in parameter number. The 
execution times of 70.25 s, 77.47 s, and 115.89 s are obtained by ResMini, BHCnet and ResNet18, respectively. 
Therefore, ResMini exhibits shorter execution times and higher efficiency. In addition, the results of Table 1 

Figure 1.   Overview of the ResMini based brain age prediction framework.

https://openneuro.org/datasets/ds000228/versions/1.1.0
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
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Figure 2.   The loss function curves and accuracy curves of the three networks when they are applied to the 
brain age dataset (OpenNeuro #ds000228). (A) BHCNet results, (B) ResNet18 results, (C) ResMini results.

Figure 3.   Confusion matrices of the three networks when they are applied to the brain age dataset (OpenNeuro 
#ds000228).
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reveal that the parameter number of ResMini are less than those of BHCnet and ResNet18, while the parameter 
number of ResMini is only 50.31% and 0.88% of its counterparts. Specifically, the prediction accuracy of ResMini 
for three age group categories are as follows: 100% for adults, 96.1% for 3–5 years old, and 95.4% for 7–12 years 
old (Table 2). Among these, the accuracy of adults is higher by 3.9% compared to 3–5 years old, which may be 
attributed to the imbalanced distribution of samples among different classes. Consequently, the model might 
tend to predict the class with a higher sample count more accurately, leading to discrepancies in accuracy across 
different classifications.

Table 3 illustrates the performance of ResMini before and after data augmentation when it is applied to the 
brain age dataset. The accuracy of 96.7% is obtained after data augmentation, which exhibits an improvement of 
22.6% compared to the pre-augmentation stage. Thus, data augmentation significantly contributes to enhanc-
ing the model’s generalization capability. It is noteworthy that the training set’s accuracy surpassed that of the 
testing set before data augmentation. However, this gap has been mitigated after data augmentation, effectively 
preventing overfitting.

Figure 4 presents the performance of ResMini on the Alzheimer MRI preprocessed dataset. The accuracy of 
96.4%, recall of 91.1% and precision of 97.1% are obtained by ResMini, respectively. It demonstrates that ResMini 
behaves the robust performance and generalization capability when it is applied to different dataset. It should be 
noted that there is a performance disparity of ResMini across different classes for Alzheimer MRI preprocessed 
dataset, where Class Moderate Demented exhibits an average accuracy decrease of 18.9% compared to that of 
other Classes. This is due to an imbalance in sample sizes, where the sample number of Class Moderate Demented 
is at least less than one order compared with other Classes.

Discussion
Aging is a gradual, multifactorial and time-dependent process, which characterized by functional loss, physi-
ological and psychological damage when age increases. During aging, the human brain structure undergoes 
changes, including brain atrophy, thinning of the cortex, and decreased white matter connectivity. These age-
associated alterations in brain morphology and function are implicated in the decline of cognitive faculties such 
as memory and processing speed, alongside an augmented susceptibility to neurodegenerative conditions like 
Alzheimer’s disease. Consequently, the prediction of brain aging holds promise for the early detection of age-
related neuropathological changes.

Magnetic Resonance Imaging (MRI) serves as a robust modality for delineating structural and morphological 
alterations within the brain attributable to neurodegenerative disorders, particularly affecting regions implicated 
in memory and cognition, such as the hippocampus and temporal cortex. Leveraging high-resolution structural 
MRI images, deep learning methodologies enable direct acquisition of salient features, thereby automating 

Table 1.   Performance of the three networks for the brain age dataset (OpenNeuro #ds000228) when we 
consider accuracy, parameter number, and overall execution time in test set.

ResMini ResNet-18 BHC_net

Accuracy 0.967 0.958 0.970

Total parameters 98,907 11,181,379 196,595

Execution time 70.25 s 77.47 s 115.89 s

Table 2.   Prediction results of three age group categories when ResMini is applied to the brain age dataset 
(OpenNeuro #ds000228).

OpenNeuro dataset

Accuracy

Adults 1

0.967Ages 3–5 0.961

Ages 7–12 0.954

Recall 0.972

Precision 0.972

Table 3.   Performance of the ResMini for the brain age dataset (OpenNeuro #ds000228) before and after data 
augmentation.

Sample number Train accuracy Test accuracy

Raw dataset 155 0.917 (± 0.02) 0.741

Dataset after data augmentation 310 0.983 (± 0.02) 0.967



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11185  | https://doi.org/10.1038/s41598-024-61915-5

www.nature.com/scientificreports/

internal representation refinement and feature extraction processes, thereby enhancing efficacy in brain age 
prediction. In this paper, we developed a ResNet mini architecture that can learn the features and achieve better 
classification results in the task of brain age prediction from MRI images. Particularly, the proposed network 
can reduce the parameter number as much as possible under the premise of ensuring high accuracy and saving 
computing resources, allowing facilitated operation in the medical equipment. It is noteworthy that the ResMini 
has demonstrated remarkable performance across two different datasets by significantly reducing execution time 
and decreasing the parameter number. In addition, the ResMini has the ability to maintain stable and remark-
able performance in dealing with imbalanced data distributions for the considered two datasets, allowing it to 
effectively handle the different sample numbers across different classes. The proposed ResMini architecture might 
be extended to solve the classification tasks for other similar neural images.

There are some limitations to this study. The medical diagnosis is a complex task, which needs to compre-
hensively consider the patient’s medical history, clinical symptoms, physical examination, imaging results and 
other information. To serve accurate pathological diagnosis in solving complex task, it is necessary to construct 
clinical datasets in the future to train and validate the model.

Materials and methods
Datasets
In this study, the brain age dataset (OpenNeuro #ds000228) that contains functional magnetic resonance imaging 
(fMRI) recordings from a sample of adults and children watching a Pixar short film23 is first used to evaluate the 
performance of considered networks in this experiment. This dataset that obtained from 155 study participants 
can be available at https://​openn​euro.​org/​datas​ets/​ds000​228/​versi​ons/1.​1.0, where the participants comprised 33 
adults ranging from ages 18 to 39 (Mage = 24.8, SDage = 5.3; 20 female) and 122 children (3–12 years old; Mage = 6.7, 
SDage = 2.3; 64 female).

Herein, we use two dimensional (2D) axial middle layer images of the brain age dataset. There are three age 
group categories: 3–5 years old, 7–12 years old and adults, as shown in Fig. 5. The 2D axial middle slice images 
are widely used in EEG MRI diagnosis, which can clearly show brain anatomy. By selecting an intermediate slice, 
it is possible to cover key areas of the brain, such as the cerebellum, cerebral hemispheres and brainstem, which 
helps doctors quickly understand the patient’s brain anatomy and its changes. In terms of lesion detection and 
evaluation, doctors can look for pathological changes such as signals, tumors, and infarct areas from the middle 
section, and evaluate the relationship between their shape, size, location, and surrounding anatomical structures.

The brain age dataset contains a total of 155 images, each with a pixel size of 95 × 79, which is insufficient 
to support deep learning training. To mitigate overfitting and prevent the network from memorizing precise 
details of the training images, we conducted preprocessing on the data. This involved introducing horizontal and 
vertical offsets to the images, and performing horizontal axis flipping as shown in Fig. 6. This approach aimed to 
augment the data set, providing a richer and more balanced set of images. Subsequently, a total of 310 samples 
are obtained, including adults of 66 samples, 3–5 years old of 130 samples, and 7–12 years old of 114 samples.

To validate the robustness and generalization capabilities of ResMini, the Alzheimer MRI dataset (https://​
www.​kaggle.​com/​datas​ets/​sachi​nkuma​r413/​alzhe​imer-​mri-​datas​et) is included in our experiment. The Alzheimer 
MRI dataset comprises four classes of images (Mild Demented, Moderate Demented, Non Demented, and Very 
Mild Demented) with sample sizes of 896, 64, 3200, and 2240, respectively.

In practice, each of the two datasets was partitioned into a training set and a test set at an 8:2 ratio. Addition-
ally, within the training set, a further division was made into a training set and a validation set at an 8:2 ratio.

Figure 4.   Prediction results of ResMini for the Alzheimer MRI preprocessed dataset.

https://openneuro.org/datasets/ds000228/versions/1.1.0
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
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ResMini block
In this section, we introduce the ResMini architecture that modified by the ResNet20. ResNet was originally 
designed to handle large data sets (such as ImageNet) and complex tasks (such as image classification, object 
detection, etc.), often at deep depths, such as ResNet-50, ResNet-101, etc. These deep networks perform well on 
large data sets due to their large number of parameters and complex structure, which allows them to capture 
high-level features and patterns in the data. However, the brain age dataset has a total of 310 samples after data 
enhancement, which is only 0.002% of ImageNet. Nevertheless, we tried the brain age dataset and found that 
10-layer ResNet worked well. The depth of ResMini is only 10 layers, which can significantly reduce network 
parameters while retaining the accuracy and reducing training time. Figure 7 depicts the ResMini architecture 
when we apply it to solve our study task. The details of the ResNet mini are briefly summarized as follows: it 
consists of a basic block called Conv_BN_ReLU24, followed by a maximum pooling layer, four residual modules, 
an average pooling layer, a fully connected layer, and finally a softmax.

In the Cov_BN_ReLU block, batch normalization (BN)25 is added between a convolutional layer with a kernel 
size of 3 × 3 and a step size of 1 and a padding of 3 pixels and the largest pooling layer with a core size of 3 × 3 
and a stride of 2 and a padding of 1 pixel. This integration significantly enhances model training efficiency and 
expedites convergence. The Residuals module comprises three Conv_BN_ReLU blocks, as depicted in the upper 
right corner of Fig. 7. As the network deepens, the number of filters in the residual module convolutional layer 
also doubles. Subsequently, the final residual module is linked to an average pooling layer, followed by a fully 
connected layer comprising three neurons for the brain age dataset, and four neurons for the Alzheimer’s MRI 
preprocessed dataset. Ultimately, the network yields the final classification result through the softmax function 
at its terminus.

Figure 5.   Example of 2D axial middle layer images in three age group categories of the brain age dataset 
(OpenNeuro #ds000228). Rows (A), (B) and (C) are randomly selected samples of 3–5 years old, 7–12 years old 
and adults, respectively.

Figure 6.   Image augmentation for the brain slice image of the brain age dataset (OpenNeuro #ds000228).
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Experimental platform
In this study, the multi-channel fusion model was implemented using Python (version 3.9.7), using the open-
source deep learning framework Tensorflow (version 2.5.0), the experimental platform was a Lenovo server, the 
physical memory was 32G, the CPU model was Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz, and the graphics 
card model was NVIDIA GeForce RTX 3080 Ti (12G) with Ubuntu 18.04.6 LTS installed on the physical machine.

Parameter setting
We chose the ADAM optimization algorithm. ADAM is a variation of the gradient descent algorithm, but the 
learning rate of the parameters in each iteration has a certain range, and the learning rate (step size) will not 
become large because the gradient is large, and the value of the parameters is relatively stable. We set the learning 
rate to 0.00002, the number of input network samples at a time is set to 24, and the number of training rounds 
is set to 200.

Data availability
The dataset used and/or analysed during the current study is available from OpenNEURO platform (https://​
openn​euro.​org/​datas​ets/​ds000​228/​versi​ons/1.​1.0) and the Kaggle platform (https://​www.​kaggle.​com/​datas​ets/​
sachi​nkuma​r413/​alzhe​imer-​mri-​datas​et).
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