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Screw dislocation in a Rashba 
spin‑orbit coupled α‑T

3
 

Aharonov–Bohm quantum ring
Mijanur Islam * & Saurabh Basu 

In this paper we investigate the effect of a topological defect, such as a screw dislocation in an α‑T
3
 

Aharonov–Bohm quantum ring and scrutinized the effects of an external transverse magnetic field 
and Rashba spin‑orbit coupling therein. The screw dislocation yields an effective flux which reshape 
the periodic oscillations in the persistent current in both charge and spin sectors, with a period equal 
to one flux quantum. Moreover, they suffer a phase shift proportional to the degree of dislocation, 
and include scattering effects due to the dislocation present in the system. Such tunable oscillation 
of the spin persistent current highlights applications of our system as potential spintronic devices. 
Further, the behaviour of the current induced by the Burgers vector ( bz ) which denotes the strength 
of the dislocation is investigated in the absence and presence of an external magnetic field. In both 
the scenarios, an almost linear decrease in the current profile as a function of the Burgers vector is 
observed. Notably, without the external magnetic field, the Burgers current suffers a back flow for 
α = 1 (dice lattice), while in the presence of the external magnetic field, for other values of α (e.g., 
α = 0.5 ) this back flow occurs for a specific value of bz . Additionally, the presence of the distortion 
induces a chirality effect, giving rise to an additional chiral current even in the absence of an external 
field. Furthermore, in the absence of field, the Burgers spin current initially rises, attains a maximum 
before diminishing as bz is enhance for all values of α . However, such a non‑monotonicity in the 
Burgers spin current is conspicuously non‑existent in the presence of an external field. The chiral 
current discussed above may hold important applications to spintronics.

In recent years, quantum rings (QRs) have garnered significant attention due to their diverse technological 
applications, including their use in single-photon emitters, nano-flash  memories1,2, photonic  detectors1,3, and 
their role as qubits for spintronic quantum  computing1. Moreover, QRs serve as a rich subject for exploring 
topological effects in condensed matter  physics1. These nanostructures are remarkable due to their non-simply 
connected topology, which gives rise to intriguing energy  structures4. These structures differ from most other 
low-dimensional systems such as quantum dots, quantum wires, and quantum wells. QRs can be categorized into 
two primary types, one-dimensional (1D) rings with a constant  radius5–13 and two-dimensional rings (2D) with a 
variable  radius14–20. Of particular note, a special case within the 1D QR family has gained significant recognition 
in the literature, known as the Aharonov-Bohm (AB)  rings21–24. Currently, there are numerous works that delve 
into the properties of the AB rings, employing both theoretical and experimental approaches. For instance, AB 
rings have been studied in connection with the Aharonov-Casher  effect21–25, violations of Lorentz  symmetry23, 
mesoscopic  decoherence26, electromagnetic  resonators27, and the influence of Rashba spin-orbit  coupling24,28,29.

In the framework of geometric theory of  defects30,31, elastic deformations induced by topological defects 
in continuous media are described using a metric. These theory bears a resemblance to the theory of three-
dimensional gravity. Within this geometric formalism, the continuous elastic medium is represented as a Rie-
mann–Cartan manifold, where the curvature and torsion are associated with disclinations and dislocations, 
respectively, present in the medium. Consequently, the Burgers vector and Frank angle are respectively analo-
gous to torsion and curvature. The impact of topological defects on the quantum dynamics of electrons/holes 
in a crystal has been explored in various physical  scenarios32,33. Theoretical descriptions of quantum dynamics 
within a medium containing dislocations have been undertaken for quite some time. For instance,  Kawamura34 
and Bausch et al.35–37 investigated the scattering of a single particle within dislocated media using a distinct 
approach. They demonstrated that the equation describing the scattering of a quantum particle by a screw 
dislocation follows the Aharonov–Bohm  form38. The Aharonov–Bohm effect has also been explored using the 
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Katanaev–Volovich approach in media with a dislocation, as seen in Refs.39,40, and in the presence of disloca-
tions, as observed in Refs.33,41. In Ref.42, Aurell probed deeper into the influence of dislocations on the properties 
of quantum dots. More recently, the study of the impact of topological defects in mesoscopic systems has been 
conducted in Ref.43, particularly with regard to a quantum dot in presence of a dislocation. Additionally, the 
emergence of spintronics has sparked interest in topological defects on the dynamics of spinful carriers. The 
interaction of the topological defect with the carriers in a spin-orbit coupled environment leads to impact on the 
spin dynamics, and thus could aid in designing spintronic devices through dislocation engineering. Although 
spintronic research has predominantly focused on defect-free materials, however, defects, due to their ability 
to couple with the magnetic moments could prove their utility in design of spintronic devices. Furthermore, 
curvature, which has been proposed as a tool for enhancing electronic nanodevice design, complements the 
potential of defects in this  regard44.

A myriad of physical phenomena is induced by dislocations in real experiments. For instance, the time-
reversal symmetry-breaking superconducting state along the (110) lattice direction in Sr2RuO4

45, the influence 
of screw dislocations on the mechanical response of complex layered  materials46,47, etc. Further, the interplay 
between real-space topological lattice defects and the reciprocal space topology of energy bands, may result in 
one-dimensional topological modes bound to screw dislocations in three-dimensional topological insulators. 
Dislocation-induced helical  modes48, geometry-induced charge separation on a helicoidal  ribbon49, and other 
phenomena further highlight the diverse effects produced by dislocations.

Moreover, recent studies on position-dependent mass Schrödinger particles in space-like screw  dislocations50, 
as well as the application of quantum dots with screw dislocations in nonlinear  optical51 and magneto-optical 
 specifications52, have garnered significant attention in the scientific community.

Undoubtedly, one of the most promising materials of the century,  graphene53–56, has attracted substantial 
attention in both theoretical and experimental investigations of QR systems. This heightened interest primar-
ily arises from its remarkable properties. These include the involvement of linearly dispersive ‘massless’ Dirac 
 fermions57,58, the potential emergence of topological phases resulting due to the violation of time reversal 
 symmetry59, and the manifestation of Aharonov–Bohm oscillations in the presence of a magnetic  field60–64, 
among others. Recently, numerous studies have been carried out to unravel the microscopic intricacies of gra-
phene QRs under external magnetic fields, both with and without the introduction of spin-orbit  couplings63,65–76. 
These investigations have illuminated the potential applications of graphene QRs in future  optoelectronic77 and 
interferometric  devices78.

In recent years, the α-T3 system has garnered considerable interest. By adjusting the parameter α in the range 
of [0:1], the α-T3 lattice offers a smooth transition between the honeycomb structure of graphene ( α = 0 ) and 
the dice lattice ( α = 1)79–82. This system can be experimentally realized in heterostructures and optical lattice 
setups, as previously proposed in various  studies83–85. A nearest-neighbour tight-binding analysis reveals that 
the α-T3 lattice accommodates massless quasiparticles that obey the Dirac-Weyl equation, characterized by a 
generalized pseudospin dependent on the parameter α . Numerous investigations have been carried out in recent 
years to explore a wide array of equilibrium and nonequilibrium properties of the α-T3  lattice86–104. On another 
front, topological phases in the Haldane dice lattice  model102,112 and the Rashba dice  model83,113,114 have attracted 
significant attention in recent years. Additionally, the observation of a quantum spin Hall phase transition in 
the α-T3 lattice has been  noted103.

Driven by the promising potential of QRs, this study focuses onto the impact of a topological defect positioned 
at the center of the α-T3 QR, in presence of a Rashba spin-orbit coupling (RSOC). The interplay of RSOC and 
topological defect on the energy spectra and transport will comprise of the important discussions made in our 
paper. The introduction of this topological defect is achieved through a geometric description. Furthermore, 
our analysis involves into the dynamics of a charged particle constrained to navigate a QR with a fixed radius, 
all while being influenced by the presence of this topological defect. Additionally, we explore the Rashba SOC 
term, which adheres to the symmetries of the parent α-T3 ring. Notably, this term can be manipulated using an 
external electric  field115, adding heavy adatoms etc., that effectively breaks the mirror symmetry with respect to 
the α-T3 plane. This discussion underscores the necessity for a comprehensive investigation into the behaviour 
of an α-T3 QR with Rashba SOC and topological defect. To further elucidate the controllability of persistent cur-
rents, we incorporate an external magnetic field into our analysis. These explorations have sparked substantial 
research activity, particularly in the context of potential applications within the emerging field of spintronics. 
An intriguing avenue for further investigation involves the combination of Rashba SOC with α-T3 to examine 
various properties. At the theoretical level, it is imperative to gain a deeper understanding of the cumulative 
effects of a robust electric field from SOC, confinement, and disorder potentials, such as the topological defect 
considered by us. These factors directly impact charge transport and the spin-related attributes of electrons.

This work is structured as follows. In “α-T3 AB ring with screw dislocation in addition with RSOC”, we present 
the model incorporating a topological defect. “Results and discussions” provides an overview of the electronic 
properties of the system. The discussion of the effects of Burgers vector is included in “Current induced due to 
Burgers vector”. Finally, our findings are summarized in “Summary and conclusions”.

α‑T
3
 AB ring with screw dislocation in addition with RSOC

In this section we shall investigate the dynamics of particles in a medium with a screw dislocation along the 
z direction as shown in Fig. 1. Before going to the details, let us briefly discuss the screw dislocation. A screw 
dislocation is a type of linear crystallographic defect or a dislocation within a crystal lattice. Dislocations cause 
disruptions in the regular arrangement of atoms in a crystal structure, and a screw dislocation is characterized 
by a helical or spiral distortion of the atomic planes around a central axis, known as the dislocation line. The 
dislocation line refers to the line along which the atomic arrangement in a crystal lattice is disrupted or distorted 
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in the helical fashion. A dislocation plane is a theoretical surface or a plane that represents the boundary between 
two regions of a crystal lattice with different arrangements of atoms. In a screw dislocation, the dislocation plane 
is parallel to the dislocation line, the atomic planes on one side of the dislocation line are displaced relative to 
the planes on the other side. This displacement imparts a twisting or a screw-like distortion to the crystal lattice. 
Understanding the screw dislocation is crucial in analysing and predicting the behaviour of materials, especially 
in the context of mechanical properties, deformation, and plasticity. The Burgers vector, denoted as bz (see Fig. 1), 
represents the magnitude and direction of the lattice distortion associated with a dislocation. The Burgers circuit 
is a closed path around a dislocation line, and it is chosen in such a way that it encloses the dislocation and returns 
to the same lattice plane. The Burgers circuit provides information about the Burgers vector by examining the net 
translation of the crystal lattice around the dislocation. The displacement of the lattice planes along the Burgers 
circuit is equal to the Burgers vector.

The three-dimensional geometry of the medium, in this case, is characterized by non-trivial torsion which is 
identified with the surface density of the Burgers vector. Thus, the Burgers vector can be viewed as flux of torsion. 
The screw dislocation is described by the following metric, in cylindrical coordinates,

with ρ > 0 , 0 ≤ θ ≤ 2π , and −∞ ≤ z ≤ ∞ , and where η is a parameter related to the Burgers vector bz by 
η = bz/2π . A screw dislocation on a crystal surface is illustrated in Fig. 1. The illustration depicts a continu-
ous warping of the surface as the growth front advances in the anti-clockwise direction. This process results 
in the generation of a helix with a specific pitch through accretion. The growth spirals (or helices) are readily 
observed and have been experimentally found in many crystals. They can be measured precisely by multiple 
beam  interferometry116,117. In fact, several Burgers vectors may be found on a particular/single crystal surface.

Further, when we make a measurement of a physical vector quantity, however, we require the components 
of the vector in the original flat space (the laboratory coordinates). For example, the expectation value of the 
momentum is obtained by using the momentum operator,

where ζ ij = δij is the flat-space metric, and ψ is the wave function. If the wave function on the constrained surface 
is given, we transform the momentum operator as  follows118,119,

The coordinate indices in the curved space are given by Greek letters, and the curved space coordinates are 
denoted by x̃µ , with ∂̃µ being the covariant derivative in the curved space. Concisely, the momentum operators 
for the metric given in Eq. (1) can be written in vector form as,

(1)ds2 = gijdx
idyj = dρ2 + (dz + ηdθ)2 + ρ2dθ2,

(2)
p̂ = −i�∇ = −i�êiζ

ij∂j = −i�êi∂
i ,

�pi� = �ψ |p̂i|ψ�, i = x, y, z,

(3)p̂i = −i�∂ i = −i�gµν
∂xi

∂ x̃µ
∂

∂ x̃ν
= −i� ˜∂µxi ∂̃µ.

Figure 1.  (a) Schematic diagram of a screw dislocation. Dislocation line, dislocation plane, Burgers circuit, and 
Burgers vector have shown in the figure. A counter-clockwise rotation is combined with a translation along the 
z-axis, resulting in a helical or spiral distortion. (b) A schematic diagram of the α-T3 ring of radius R subjected to 
a transverse magnetic field B = B0ẑ and a screw dislocation. (c) Lattice structure of the α-T3 lattice is shown in 
the zoomed portion. Here, A, B, and C lattice sites are shown by black, blue, and red dots respectively. Hopping 
amplitude between the A and B sublattice is t, while between A and C is αt . Black arrows labelled by ê1 and ê2 
indicate the two translational vectors of the α-T3 lattice. The lattice is subjected to a screw dislocation.
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We shall use these momenta to study the Rashba spin-orbit coupled Aharonov–Bohm α-T3 ring in presence of 
a topological defect.

Now, we consider the α-T3 quantum ring system includes Rashba SOC. The corresponding Hamiltonian can 
be written as, H = H0 +HR , where H0 is the tight-binding term, and HR is the Rashba spin-orbit coupling term. 
We write the Hamiltonian  as120,

where σ =↑,↓ , spin indices and i, j, k are labels for the sites corresponding to A, B, and C sublattices respec-
tively. The first term is the electron hopping between the A and B sites, while the second one is that between 
the A and C sites. The summation of 〈ij〉 ( 〈ik〉 ) runs over the nearest neighbour sites of A–B (A–C). Further, the 
Rashba SOC induced by electric fields due to a gradient of the crystal  potential83,113,114, where �τ = (τx , τy , τz) is 
the Pauli matrix vector, D̂ij ( D̂ik ) is the unit vector along the direction of the cross product �Eij × �rij ( �Eik × �rik ) of 
the electric field �Eij ( �Eik ) and displacement �rij ( �rik ) for the bond ij (ik). �R is the strength of Rashba SOC between 
the A and the B sites, while α�R is that between the A and the C sites. In momentum space, the Hamiltonian of 
the α-T3 lattice becomes,

we defined γk = 1+ eik1 + eik2 and γk± = 1+ ei(k1±2π/3) + ei(k2±4π/3) , where the components are along the axes 
indicated in Fig. 1c as ki = �k · êi . Our basis is (c1k↑, c2k↑, c3k↑, c1k↓, c2k↓, c3k↓).

In the vicinity of a Dirac point (namely, K), and taking the momentum correction (4) due to screw dislocation 
into account, the Hamiltonian (6) corresponding to an ideal α-T3 ring is given  by6,73,74,121–125,

where tan ξ = α and �vF = 3at/2 cos ξ . The eigenstates of the ring Hamiltonian can be obtained as,

where the integer m labels the orbital angular momentum quantum number, k is the momentum along the z 
direction and χi ’s denote the amplitudes corresponding to the three sublattices. Here, we investigate the elec-
tronic behaviour at a given value of radius ρ , namely ρ = R , such that the radial part is rendered frozen in the 

(4)

px = −i�
[

cos θ
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∂ρ
− sin θ

ρ
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ρ
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eigensolutions. For the sake of the hermiticity of the Hamiltonian in ring geometry, we made the replacements 
ρ → R and ∂

∂ρ
→ − 1

2R and obtain the energy spectrum as,

where κ = ±1 is the particle-hole index and ǫ = �vF
R  . E1 is the zero energy flat band, E2 and E3 correspond to the 

energies for the ↑-spin and ↓-spin bands respectively. The energy spectra at the K-valley in presence of Rashba 
SOC and screw dislocation are expressed in Eq. (9). Further, the scattering effects due to the presence of screw 
dislocation are included as follows. In fact, the phase shift suffered by a particle incoming with a momentum k 
and scattered with angular momentum quantum number m by a screw dislocation may be derived as follows. 
The detailed calculations are provided in Ref.126. The resulting phase shifts can be expressed  as127–129,

where η is a parameter related to the screw dislocation, namely, η = | �bz |
2π

 . This alteration in phase, induced by the 
presence of the screw dislocation, will have implications for the transport properties of the system. A detailed 
discussion on such effects will be presented in the subsequent sections.

Results and discussions
No magnetic field
Without screw dislocation ( kη = 0)
We exclude the effects of topological defect, or what we call as screw dislocation ( kη = 0 ) to begin with. Fig-
ure 2a,b display the energies as a function of the ring radius, R, for various values of α at a fixed �R value. One can 
easily verify the results of the α-T3 quantum ring without the RSOC  term125 by setting �R = 0 ( kη = 0 anyway) 
in Eq. (9). In this case, we have considered a particular value for the RSOC, namely, �R = 0.5t corresponding to 
α = 0.5 and 1, and plotted only the m = −1 , 0, and 1 bands represented by red, green, and blue curves, respec-
tively. When �R = 0 , the system exhibits three bands, with one being a flat band. However, with a non-zero 
�R the original three bands split into six spin dependent bands, including two non-dispersive flat bands and 
four dispersive bands as described by Eq. (9). From Fig. 2, it is evident that all the energy branches have a 1/R 
dependence and approach E → 0 for very large radii, irrespective of the value of α . Additionally, the dispersive 
bands remain non-degenerate, in contrast to the case of the pseudospin-1 α-T3 QR without SOC. Moreover, the 
dispersive ↑-spin and ↓-spin bands split as well. Specifically, for m = 0 , the energies are given by,

and

(9)

E1 = 0

E2 = κ
ǫ

2

{[

1+ 4
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2
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2π

| − |m|
)

= −π

2

(
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2
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(a) kη = 0
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(b) kη = 0
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Figure 2.  The spin-split energy spectra in the absence of a magnetic field for the α-T3 AB ring are depicted as 
a function of the ring radius, R, for quantum numbers m = 0 (green curves), m = 1 (blue curves), and m = −1 
(red curves) in absence of a topological defect are presented in panels (a) for α = 0.5 and (b) for α = 1 . The 
Rashba coupling parameter is all the while set at �R = 0.5t . In the inset, we show the zoomed version for the 
same.
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It can be observed that the ↑-spin energy band, E2 is independent of α , while the ↓-spin band, E3 has a depend-
ency on α . This is an interesting result, since the ↑-spin band energies are insensitive to whether we are talking 
about graphene or the dice lattice. Consequently, the splitting between the m = 0 bands (green curves in Fig. 2) 
increases with increasing values of α . Whereas, the splitting between the bands with m = −1 (red curves in 
Fig. 2) and m = 1 (blue curves in Fig. 2) decreases as α increases. Furthermore, the energy splitting decreases 
with increase of |m| values for all values of α . In addition to that, the energy splitting increases with an increase 
of �R . An intriguing observation is that for α = 1 , i.e., the dice lattice, the energies are given by,

and

Thus, E2 is a even function of m, making it two-fold degenerate corresponding to m = ±1,±2,±3, . . . etc. On 
the other hand, the E3 band is an odd function of m, resulting in it being non-degenerate as illustrated in Fig. 2b.

With screw dislocation ( kη  = 0)
The scenario involving a topological defect arises when we implement the transformation via m′ → (m− kη) 
in the results of the Euclidean model. Consequently, upon examining Eq. (9), it becomes apparent that, unlike 
the situation where kη = 0 , all the energy levels for both ↑-spin and ↓-spin states, including the m = 0 bands, 
become dependent on the parameters α and �R . Hence, the splitting between the spin-split bands hinges on the 
presence of dislocations in the system, the parameter α , the strength of the Rashba coupling, �R , as dictated by 
Eq. (9). Furthermore, for α = 1 , it is worth noting that E2 and E3 are non-degenerate, in contrast to the previ-
ous case. These findings are illustrated in Fig. 3a,b. Additionally, the quantum number m undergoes a shift that 
depends on η , which is associated with the Burgers vector. This shift is a manifestation of the Aharonov–Bohm 
effect, akin to what is observed in the context of a one-dimensional quantum ring penetrated by a magnetic  flux4. 
The energy levels as a function of the strength of the screw dislocation are presented in Fig. 4 for two distinct 
cases, namely, α = 0.5 and α = 1 (dice lattice). Moreover, Eq. (9) makes it clear that the dispersive energy levels 
exhibit a hyperbolic dependence on the screw dislocation. It is important to note that the energy spectrum 
depends on the Burgers vector, bz = 2πη , as well as the radius, R of the ring, and hence associated with the 
geometry of the system.

Additionally, there are energy extrema, with maxima in the valence bands and minima in the conduction 
bands, that pertain to different spin bands. The positions of these extrema are determined by the strength of 
dislocation as follows. For the ↑-spin bands, the extrema are found at

(12)E3 =
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Figure 3.  The spin-split energy spectra in the absence of a magnetic field for the α-T3 AB ring are depicted as 
a function of the ring radius, R, for quantum numbers m = 0 (green curves), m = 1 (blue curves), and m = −1 
(red curves) in the presence of a topological defect with a magnitude of kη = 0.3 are presented in panels (a) for 
α = 0.5 and (b) for α = 1 . The Rashba coupling parameter is all the while set at �R = 0.5t.
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which is independent of �R . For the dice case ( α = 1 ), the extrema occur at kη = m . However, for the ↓-spin 
bands, the extrema occurs at

The expression above shows a dependency on �R and hence we shall observe an interplay between the dislocation 
and RSOC. In fact, this interplay gives rise to interesting consequences as we shall see later. Furthermore, for 
each value of m, a band crossing point exists for α < 1 . However, in the case of α = 1 , no band crossings occur, 
instead, the bands touch each other at certain specific kη values, depending upon the parameter �R.

The energy levels as a function of the Burgers vector ( bz ) (in unit of the lattice constant) in the absence of 
a magnetic field are shown in Fig. 5a for α = 0.5 and (b) for α = 1 . For a particular value of α , increasing bz 
results in a linear increase in the conduction band energy levels corresponding to negative m values and a linear 
decrease in the energy levels for the positive values of m. Additionally, for α < 1 (here α = 0.5 ), the energy level 
of the ↑-spin in the m = 0 band increases, while that for the ↓-spin level decreases. Moreover, when α = 1 , the 
energy levels associated with the m = 0 bands decrease as bz increases (shown in green curves in Fig. 5b). In 
the valence band, an opposite trend is observed where the energy levels for negative m decrease linearly, while 
the energy levels for positive m increase linearly. Furthermore, for α < 1 , the ↓-spin energy level of the m = 0 
band increases, while that for the ↑-spin level decreases. With increase in α , the energy difference between the 
spin-split bands diminishes (see Fig. 5a,b). However, it is worth noting that the m = 0 bands remain as the low-
energy bands in the absence of a magnetic field. The scenario in presence of the magnetic field is described later.
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Figure 4.  Energy levels in the absence of a magnetic field, as a function of the screw dislocation parameter 
kη , are depicted for (a) α = 0.5 and (b) α = 1 , with a fixed ring radius of R = 50 nm. The energy levels 
corresponding to different total angular momentum quantum numbers, namely m = −1,−2 (red curves), 
m = 0 (green curves), and m = 1, 2 (blue curves), are presented. The Rashba coupling parameter remains 
constant at �R = 0.5t.
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Figure 5.  The energy spectra as a function of the Burgers vector in absence of magnetic field (a) for α = 0.5 
and (b) for α = 1 . The quantum number m ranges from −1 to 1. Positive values of m represented by blue curves, 
m = 0 depicted by green curves, and negative values by red curves.
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Effect of magnetic field
Now let us discuss the case when the α-T3 ring is threaded by a perpendicular magnetic field B = B0ẑ . The only 
non-zero component of the vector potential is Aθ = Bρ/2 . Notice that, in the non-Euclidean metric of the dis-
location, the vector potential that produces the uniform magnetic field, is identical to the flat space (Euclidean) 
potential vector. The spectrum of the system is modified by the field flux as follows,

where � = πR2B0 is magnetic flux through the ring and �0 is the usual flux quantum ( = h/e ). The Zeeman 
coupling has been neglected at small enough values of the field. The addition of a magnetic field, represented 
by a U(1) minimal coupling with flux � threading the ring, breaks the time reversal symmetry allowing for the 
emergence of persistent charge  currents130 which we shall discuss later.

Without screw dislocation ( kη = 0)
In Fig. 6, we show the dependence of a few energy levels on the ring radius, R, considering B0 = 3 T for the two 
aforementioned cases i.e., α = 0.5 and 1 with �R = 0.5t . Each level exhibits a non-monotonic behaviour as a 
function of the radius R. The energy levels attain an extremum (minimum for conduction band and maximum 
for valence band) at a particular value of R. However, the positions of these extrema depend on the values of 
m, α and �R explicitly. In the limit of small R, all the energy levels vary inversely with R. On the other hand, the 
energy scales as, E ∼ |R| in limit of large R. Additionally, for a fixed magnetic field and for large m, the locations 
of the extrema points for different m depend on R as R ∝ √|m| irrespective of α . Thus, the concept of large radii 
differs for different values of m. Consequently, for negative values of m, the extrema points of the energy exhibit 
a scaling behaviour, namely, Emin ∝ 1/

√|m| , resulting in a diminishing of the spectral gap with increasing |m|. 
Conversely, for positive values of m, the energy extrema scales as, Emin ∝ √

m . Furthermore, from Eq. (17), it 
is evident that in presence of a magnetic field, the energy splitting between the bands of the m = 0 level as well 
as the m  = 0 levels decreases with the increase in the values of the parameters α and �R . Again, from Eq. (17) it 
is noted that for α < 1 , there are two points where the spin bands cross each other as a function of R for m = 0 
and negative values of m, i.e., m = −1,−2,−3, . . . etc. bands, whereas there is only one band crossing point for 
the positive values, namely, m = 1, 2, 3 . . . . These crossings obey the following condition,

Equation (18) can be checked against the plot shown in Fig. 6a. Now, for the dice lattice case ( α = 1 ), the above 
mentioned condition requires m+ �

�0
= 1

2
 , which implies that along the radius R, the energy band crossing 

points occur at R =
√
2l0

√
(1/2−m) , where l0 =

√
�/(eB0) is the magnetic length. Consequently, there is only 

one band crossing point for m = 0 and m = −1,−2,−3, . . . etc. bands. Furthermore, band crossing is prohibited 
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Figure 6.  The energy spectra as a function of the ring radius R of the α-T3 quantum ring under the influence of 
an external magnetic field with a strength of B0 = 3 T at the K-valley are presented in panels (a) for α = 0.5 and 
(b) for α = 1 , without topological defect. The parameters used in these calculations are �R = 0.5t and t = 1eV . 
The quantum number m ranges from −2 to 2, with positive values of m represented by blue curves, m = 0 
depicted by green curves, and negative values by red curves.
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for positive values of m as there are no real values of R for m > 0 , indicating that the corresponding spin bands 
do not cross each other and hence there will not be any degeneracy as illustrated in Fig. 6b by the blue curves.

The energy levels as a function of the external magnetic flux ( �/�0 ) are depicted in Fig. 7a,b for a quantum 
ring with R = 10 nm, considering two cases, namely, α = 0.5 and α = 1 respectively with �R = 0.5 in unit of t. The 
curves are represented by red, green, and blue colors corresponding to m = −1 , m = 0 , and m = 1 , respectively. 
The magnetic field dependence of the energy spectra becomes evident when we rewrite Eq. (17) as,

and

Thus, the energies display a hyperbolic dependence on the applied magnetic field, exhibiting extrema at the flux 
values given by,

for ↑-spin band E2 , the extrema points are independent of the strength of the Rashba coupling, but depends on 
the values of m and the parameter α . For the dice lattice ( α = 1 ), the extrema occur at �/�0 = −m . However, 
the extrema for the ↓-spin band E3 occur at

showing a dependency on the strength of Rashba SOC, α and m. For the dice lattice, the extrema are obtained at 
�/�0 = −m− 1

2
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 . The energy gaps at the extrema points, that is, the minimum values of the gap are given by,
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Figure 7.  The energy levels in absence of screw dislocation ( kη = 0 ) as functions of the external magnetic flux 
�/�0 with a fixed ring radius of R = 10 nm, maintain the same conventions for the quantum number m as in 
the previous plots for (a) α = 0.5 , �R = 0.5t , and (b) α = 1 , �R = 0.5t.
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Therefore, it is observed that for a fixed value of Rashba coupling, the energy gaps for both the spin bands increase 
with increase in α . However, the minimum energy gap for both the spin bands is independent of m. Also the ↓
-spin bands, namely, E3 have lower energies than the ↑-spin bands ( E2 ). The ↑-spin E2 and ↓-spin E3 bands are 
illustrated in the Fig. 7a. For the dice lattice case, and for �R = 0.5t , the energy gaps are obtained as, �E2 ≈ 74 
meV and �E3 ≈ 64 meV which can be verified from the Fig. 7b. Furthermore, from Fig. 7 it is evident that 
E2(m)  = E2(−m) and E3(m)  = E3(−m) , indicating the existence of finite spin currents.

With screw dislocation ( kη  = 0)
Let us now delve into the impact of a topological defect, specifically a screw dislocation, on the electronic spectra 
of the α-T3 QR. Referring to Eq. (17), we find that all of the previously discussed characteristics remain unaltered, 
except we may consider that m as an effective quantum number, let us call it as m′ with m′ → (m− kη) which 
has a shift in the m values by an amount of kη . The results are visually represented in Fig. 8a,b, while considering 
α values of 0.5 and 1, with the parameter kη set to a modest value, say kη = 0.3 . Again, for the case of α = 1 , the 
band crossing points emerge at R =

√
2l0

√{1/2− (m− kη)} , signifying a shift to the right as depicted in Fig. 8b.
Furthermore, the conditions for the extremal points defined in Eqs. (21) and (22) are also modified due to 

m′ → (m− kη) , resulting in a displacement of these extremal points by an amount equal to kη in the positive 
direction, as illustrated in Fig. 9a–d. It is important to note that the energy gaps at these extremal points, as per 
Eq. 23, are not influenced by the presence of the topological defect ( kη ), their dependencies solely rely on the 
parameters α and �R . To demonstrate this, we have considered two values of �R , namely, �R = 0.5t and �R = 0.8t . 
The energy gap values for the α = 1 case are presented in the respective figures (see Fig. 9).

In this particular scenario, we are dealing with a one-dimensional quantum ring in the presence of a screw 
dislocation and Aharonov–Bohm flux. The energy spectrum displays a parabolic dependence on the Burgers 
vector, similar to its dependence on the magnetic flux. Upon analysing our findings, we can infer that a particle 
within a space featuring a topological defect behaves similarly to a particle in a Euclidean space in the pres-
ence of an effective magnetic flux traversing the ring. This effective flux is a combination of two contributions, 
the first is of a topological nature stemming from the topological defect, while the other is due to the magnetic 
flux � . By adjusting the magnetic flux as an external fine-tuning parameter to counterbalance the topological 
contribution introduced by the defect, we can nullify the Aharonov-Bohm effect in the ring. In such cases, the 
energy spectrum resembles that of a particle moving in a quantum ring within a space devoid of any topological 
defect. This is a very important result. It provides a clue how the effects of a topological defect can be totally or 
partially compensated by an external field with regard to the observation of the AB effect. Further consequences 
on the spin and charge currents are elucidated below.

The energy levels as a function of the Burgers vector in presence of a magnetic field of B0 = 3 T are illustrated 
in Fig. 10a for α = 0.5 and (b) for α = 1 . The plots show a deviation from the previous scenario corresponding 
to zero magnetic field. In this case, the energy levels of both the conduction and the valence bands remain nearly 
unchanged as a function of bz . Notably, the m = 0 bands no longer represent the lowest energy states, instead, 
the negative m bands possess lower energy than the m = 0 bands in presence of the magnetic field. These bands 
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Figure 8.  The energy spectra as a function of the ring radius R of the α-T3 quantum ring under the influence 
of an external magnetic field with a strength of B0 = 3 T at the K-valley are presented in panels (a) for α = 0.5 
and (b) for α = 1 , we introduce a screw dislocation with a magnitude of kη = 0.3 . The parameters used in these 
calculations are �R = 0.5t and t = 1 eV. The quantum number m ranges from −2 to 2, with positive values of m 
represented by blue curves, m = 0 depicted by green curves, and negative values by red curves.
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Figure 9.  The energy levels, as functions of the external magnetic flux �/�0 with a fixed ring radius of R = 10 
nm, maintain the same conventions for the quantum number m as in the previous plots. We explore various 
combinations of α , �R , and kη as follows: (a) α = 0.5 , �R = 0.5t , and kη = 0.3 , (b) α = 1 , �R = 0.5t , and 
kη = 0.3 , (c) α = 0.5 , �R = 0.8t , and kη = 0.3 , and (d) α = 1 , �R = 0.8t , and kη = 0.3.
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contribute significantly to the transport properties of the system. As the quantum number m becomes more nega-
tive, the energy difference between the valence and the conduction bands decreases. Specifically, for m = −6 , 
the system exhibits the minimum spectral gap. Subsequently, the gap between the conduction bands and valence 
bands increase with |m|, as illustrated in Fig. 10a,b. Additionally, as α increases, the energy difference between 
the spin-split bands for negative m decreases, while that for the m ≥ 0 bands increases. Thus, a screw dislocation, 
among other things, presents distinct spectral properties in presence and absence of an external magnetic field.

Charge persistent current
The charge persistent current in the low-energy state can be calculated using the linear response formula, 
jQ = −∑

m,κ
∂E
∂�

 , where the sum refers to all (and only) the occupied states (for the valence band ( κ = −1 )) 
and the m values are chosen carefully to perform the summation. Since the current is periodic in �/�0 with a 
period of 1 (that is � = �0 ), we restrict the discussion to the window −1 ≤ �/�0 ≤ 1 . The analytical form for 
the charge current is obtained as,

The spin branches closest to the Fermi energy exhibit non-monotonic behaviour, resulting in two distinct con-
tributions to the charge current coming from the ↑-spin and ↓-spin components. Since we are calculating the 
current contributions arising from the low-energy states, it is clear from Fig. 7 that for a certain range of �/�0 , 
only one energy state labelled by a particular value of m is present. Hence, the sum in Eq. (24) comprises of only 
one value of m. Furthermore, based on the observations in Fig. 7, we can discern that the low-energy states when 
α = 0.5 encompass both the spin bands. Consequently, in our current calculations, we considered contributions 
from both the spin branches. In contrast, for the α = 1 scenario, the low-energy state exclusively comprises the 
↓-spin branches, and thus, we only have accounted for the contributions from the ↓-spin to compute the persis-
tent current. The outcomes of these calculations are depicted in Fig. 11 for both α = 0.5 and α = 1 , considering 
various combinations of �R and kη , all the while maintaining a fixed ring radius of R = 10 nm. The asymmetric 
spectral features between the two spin branches allows for the possibility of a net spin currents, as we shall see 
below. For all values of α , the persistent currents oscillate periodically with �/�0 , with a periodicity of �/�0 = 1 . 
Figure 11a,b illustrate that the persistent currents can be tuned by adjusting the parameter α for a fixed value 
of the Rashba coupling ( �R ). Moreover, the charge persistent currents can be manipulated via �R for a fixed α , 
(see Fig. 11a,c,e) since the Rashba parameter can be controlled by a gate voltage. Further, it is worth noting the 
presence of a kink in the current profile when α < 1 . This kink arises because different spin bands contribute 
to the current, as indicated by the distinctions denoted by ↑ and ↓ for their respective spin bands. However, this 
kink phenomenon is absent for the dice lattice ( α = 1 ), as evident in Fig. 11b,d,f. The reason being, in this case, 
only the ↓-spin bands contribute to the current, as mentioned earlier.

Furthermore, the topological defect plays a pivotal role in the behaviour of the charge current. As illustrated 
in Fig. 11, we can observe that, for a fixed value of �R , the screw dislocation induces a phase shift in the current, 
regardless of the specific value of α . For example, every point of the current profile is shifted by the same amount 
as the strength of the topological defect as shown in the middle panel of Fig. 11. However, the topological defect 
does not influence the current profile itself. A desired shift in the current profile may be achieved via the con-
trollable parameter kη . Further, the Rashba coupling, �R plays a role as well. The depth in the kink of the current 
profile decreases with the increasing �R (see bottom panel of Fig. 11). This can be understood from the lower 
panel of Fig. 7, as the increase in �R results in a decrease in the ↑-spin contribution in the low-energy state within 
a certain range of �/�0 . However, the overall oscillation period remains unaltered.

In summary, we can manipulate the persistent current profile by fine-tuning the Rashba coupling, and we 
have the ability to shift the phase of the current to suit our specific applications by adjusting the strength of the 
topological defect.

Equilibrium spin currents
We shall now study equilibrium spin currents. In contrast to the formalism for obtaining the charge current, 
one can obtain the spin currents by accounting for distinct velocities for different spin branches. Thus, we define 
equilibrium spin current as,

We have calculated the equilibrium spin currents following the procedure discussed earlier. The peculiar separa-
tion of the spin branches results in differences of the velocities between the two spin projections, giving rise to 
a spin current, as shown in Fig. 12. The figure illustrates a significant spin current for small values of the flux, 
which can be attributed to the large charge current originating from a single spin branch.

The striking feature is that the magnitude as well as the pattern of the spin currents depend upon the param-
eters α and the strength of the Rashba coupling ( �R ). We present results for α = 0.5 , and α = 1 with different 
values of �R and topological defect kη for a ring of radius, R = 10 nm. The presence of the Rashba coupling breaks 
inversion symmetry (in addition to the σz symmetry) in the plane even for small �R . The symmetry breaking 
determines the spin labelling of the energy branches that take part in yielding the spin currents. Additionally, the 
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spin currents exhibit periodic behaviour with �/�0 , with a periodicity equal to one flux quantum, irrespective 
of α . Similar to the case of charge persistent current, we also notice a phase shift introduced by the topological 
defect. The magnitude of this phase shift precisely corresponds to the strength of the defect.

To gain further insights, we present a color plot illustrating the equilibrium spin current ( jS ) as a function 
of the strength of Rashba SOC and the topological defect in Fig. 13. The color map allows us to observe the 
interplay between these two parameters at a specific value of the magnetic flux, namely, �/�0 = 0.3 . Further, 
we have considered the angular momentum quantum number fixed at m = 0 , which is most relevant for the 
flux used here. The observed behaviour reveals that the spin persistent current oscillates between negative and 
positive values as we tune the strength of the topological defect for a fixed value of �R . For α < 1 (see Fig. 13a), 
we observe a significant variation as a function of the defect in the spin persistent current for all values of �R 
(in unit of t). In contrast, for α = 1 (as depicted in Fig. 13b), the variation is less pronounced for small values of 
�R , whereas it becomes more significant as we increase �R . Furthermore, the color map suggests that to achieve 
the maximum spin persistent current for a spintronic device, one requires a high value of �R and the strength 
of the topological defect to have close to 0.5. The role played by �R is known in literature, while that due to the 
topological defect and their interplay are less known. It is also worth noting that the results are presented for a 
value �/�0 = 0.3 , however the qualitative nature of the plot remains consistent for other magnetic flux values 
and angular momentum quantum numbers (m). In practical applications, by fine-tuning external parameters 
such as magnetic flux, dislocation, and the strength of the Rashba SOC, one can tailor the spin current to suit 
specific device requirements. However, we have to note that the qualitative characteristics of the plot remain 
consistent even if �R/t > 1 , that is, achieving maximum spin persistent current necessitates high values of �R and 
the strength of the topological defect ( kη ). Further, the detailed behaviour of the plots may vary depending on the 
quantum number m. As we increase the values of �R/t , different m values start contributing to the spin current.

These findings underscore the potential of α-T3 quantum rings as key components for spintronic applications, 
where we can manipulate the performance of the devices by adjusting both the strength of the Rashba coupling 
and the topological defect.
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Figure 11.  The charge persistent currents are plotted as functions of the external magnetic flux, considering 
the low-energy states without accounting for the topological defect, in panels (a) for α = 0.5 and (b) for α = 1 , 
with �R = 0.5t . In panels (c) and (d), the same currents are presented in the presence of the screw dislocation 
term kη = 0.3 , for α = 0.5 and α = 1 respectively. Panels (e) and (f) highlight the impact of the Rashba SOC 
as we increase the �R parameter to 0.8t, while keeping kη = 0.3 fixed for α = 0.5 and 1, respectively. In panels 
(a) and (b), the labels ↑ and ↓ denote the currents from the corresponding spin bands. In panels (c) and (d), 
the phase shift is represented by the blue arrows. Here, a.u. refers to arbitrary unit where we have considered 
� = e = vF = 1.
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Dipole moment of the ring: applications to spintronics
Continuing with the aforementioned studies, we now can compute the induced dipole moment of the α-T3 ring. 
This is attributed to the persistent currents flowing in the charge and spin sectors circulating around the ring. By 
defining the induced dipole moment as the product of the charge current density ( jQ ) or the spin current density 
( jS ) and the area of the quantum ring, denoted as µ , we may get useful information. In Fig. 14, we illustrate 
the dipole moments for various scenarios, namely, ↑-spin charge current for α = 0.5 (Fig. 14a), ↑-spin charge 
current for α = 1 (Fig. 14b), ↓-spin charge current for α = 0.5 (Fig. 14c), and ↓-spin charge current for α = 1 
(Fig. 14d). Additionally, in Fig. 14e,f, we display the total spin dipole moment for α = 0.5 and α = 1 , respectively. 
The parameters �R = 0.5t and kη = 0.3 are held constant throughout. It is apparent from Fig. 14 that the dipole 
moments originating from different spin branches are neither uniform nor equivalent, instead, they exhibit oscil-
latory behavior with a period of �0 . Such charge and spin dipole moments have the prospects of inducing spin 
torque in the ring system, a key aspect in the realm of spintronic devices. Moreover, the ability to manipulate 
both the charge and spin persistent currents, along with the dipole moments, through parameters such as α , � , 
and �R , coupled with modulation by the degree of dislocation ( kη ), highlights the system’s controllability. This 
opens up avenues for tailored applications in spintronics.

Current induced due to Burgers vector
In general the Hamiltonian of the system in a screw dislocated medium given in Eq. (1) can be represented in 
the form,

where Aµ(µ = 0, x, y, z) denote the components of the gauge field. The non-Abelian potential A captures the 
effects (including the spin-orbit coupling) if one makes the following identifications where A0 = − e�

mc B
aτ a 

and Aind is the screw dislocation induced vector potential (contained in the spatial coordinates x, y, z). Ba is 
the external magnetic field and τ a = Sa/2 are the generators of SU(2) corresponding to the spin-1 operator. The 
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Figure 12.  The equilibrium spin currents are plotted as functions of the external magnetic flux, considering the 
low-energy states without accounting for the topological defect, in panels (a) for α = 0.5 and (b) for α = 1 , with 
�R = 0.5t . In panels (c) and (d), the same currents are presented in the presence of the screw dislocation term 
kη = 0.3 , for α = 0.5 and α = 1 , respectively. Panels (e) and (f) highlight the impact of the Rashba SOC as we 
increase the �R parameter to 0.8t, while keeping kη = 0.3 fixed for α = 0.5 and 1, respectively. In panels (c) and 
(d), the phase shift is represented by the blue arrows.
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external magnetic field is in the z-direction. Further, even in absence of an external magnetic field, the screw 
dislocation effectively acts as an artificial gauge field that gives rise to a pseudo-magnetic field, Bs = (∇ ×Ai)z 
perpendicular to the α-T3 lattice plane.

Following the formalism of Refs.131–134, due to this effective field Fi0 = ∂iA0 − ∂tAi − i[Ai ,A0] , there is a 
dissipative current jai  which is conjugate to the effective field. Calculating the time derivative of the expectation 
value of H (given in Eq. (26)) we find that,

Armed with the gauge invariant Hamiltonian and the variational definition of jai  , we are ready to calculate the 
equilibrium charge and spin currents induced by the screw dislocation. Following the same technique as earlier in 
the presence of an external magnetic field, one naturally expects an orbital response in the form of a diamagnetic 
current. This current is given by the derivative of the energy E[A a

i ](= �H�) with respect to A a
i  . As E[A a

i ] is 
gauge invariant, it can depend only on the effective gauge field, namely,

A particular form of the invariant is determined by the symmetry of a particular system. Firstly, we assume that 
the external magnetic field is zero, i.e., A0 = 0 . Since in the absence of A a

i  the system is rotationally invariant, 
the first spin-orbit (SO) correction to the energy must be proportional to tr(FijFij) that is,

where � is a constant (on dimensional grounds � ∼ pD−2
F /m , where pF is the Fermi momentum and D > 1 is the 

dimension of space). Thus, the current due to the effective field yields,

We may define the current induced by the screw dislocation as the Burgers current which can be expressed as, 
jbz = − δESO

δbz  . Further, the induced spin current, which we may define as the Burgers spin current can also be 
written as, jS,bz = jbz (↑)− jbz (↓) . Equation (27) is precisely the Yang-Mills magnetostatic equation. Intuitively, 
the results are analogous to the case of an external magnetic field. However, there is a difference in the spatial 
distribution of the currents induced by the screw dislocation.

In Fig. 15, we depict the Burgers current for different spin sectors as a function of the Burgers vector corre-
sponding to the lowest energy level of the valence band in the absence of an external magnetic field for α = 0.5 
(refer to Fig. 15a ( ↑-spin),c ( ↓-spin), and for α = 1 (Fig. 15b ( ↑-spin), d ( ↓-spin)). These plots correspond to a 
fixed value of the Rashba spin-orbit coupling, namely, �R = 0.5t . Equation (9) reveals that even in the absence 
of an external magnetic field, there exists an effective field due to the topological defect represented by the screw 
dislocation. This effective field contributes to the generation of Burgers current. For the scenario without an 
external magnetic field and α = 0.5 (refer to Fig. 15a,c), the Burgers current steadily decreases with an increase 
in the Burgers vector. Moreover, for α = 1 and only for the ↑-spin branch (Fig. 15b), the Burgers current under-
goes a sign change at an approximate value of bz ∼ 0.4 (in unit of the lattice constant). This change in sign (can 
be interpreted as a back flow) of the current is attributed to the behaviour of the energy spectrum. Since the 
spectral properties undergo a change in slope and the current being proportional to that, a sign change occurs. 
One can clearly see that the variation in the ↑-spin Burgers current, jbz ,↑ , and the ↓-spin Burgers current, jbz ,↓ 
with respect to bz are strikingly dissimilar and opposite in nature, rather than being equal and opposite, in the 
α = 0.5 scenario. These currents depict two circulating spin currents moving in opposite directions within the 
ring, potentially resulting in a chirality effect even without an external magnetic field. However, for α = 1 , the 
situation significantly altered. Here, the chirality persists up to a certain threshold of screw dislocation ( bz ∼ 0.4 ), 
beyond which both spin ( ↑ and ↓ ) currents align in the same direction. Summarizing, the manifestation of the 
chiral current induced solely by the screw dislocation offers valuable insights with implications for future tech-
nological advancements.

Additionally, in Fig. 16, we depict the Burgers current as a function of the Burgers vector corresponding to 
the lowest energy level of the valence band in presence of an external magnetic field for α = 0.5 (refer to Fig. 16a 
( ↑-spin), c ( ↓-spin) and α = 1 (refer to Fig. 16b ( ↑-spin), d ( ↓-spin). In the presence of an external magnetic field 
the bands corresponding to negative quantum number, and in particular m = −6 bands emerge as the lowest 
energy states, and these remain nearly constant with the Burgers vector. These plots are for a fixed value of the 
Rashba spin-orbit coupling ( �R = 0.5t ). In the presence of a magnetic field, the sign-change feature of the Burgers 
current is observed for α = 0.5 only for the ↓-spin branch (refer to Fig. 16c), while there is a steady decrease in 
the Burgers current for α = 1 (refer to Fig. 16d). Here, chirality persists only for α = 0.5 up to a certain threshold 
of screw dislocation ( bz ∼ 0.5 ), beyond which both spin currents align in the same direction. However, for α = 1 
there is no chirality present in the system.

Next,the Burgers spin current as a function of the Burgers vector for the scenarios mentioned above are 
illustrated in Fig. 17. The presence of the Rashba spin-orbit coupling in the system results in spin-split energy 
branches, leading to the emergence of Burgers spin current defined as the difference in Burgers current between 
the two spin branches. In the absence of an external magnetic field, we observe an initial increase in the Burgers 
spin current with the Burgers vector. Beyond a certain maximum value, it decreases for any value of α . Notably, 

d

dt
�H� =

∫

drjai F
a
i0.

(27)Fij = ∂iAj − ∂jAi − i[Ai ,Aj].

(28)ESO = �

4

∫
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ijF

a
ij ,
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Figure 15.  Burgers current as a function of the Burgers vector induced by the topological screw dislocation in 
absence of external magnetic field. Upper panel: corresponds to ↑-spin (a) for α = 0.5 and (b) for α = 1 . Lower 
panel: corresponds to ↓-spin (c) for α = 0.5 and (d) for α = 1 . The Rashba spin-orbit coupling parameter is 
taken as �R = 0.5t.
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Figure 16.  Burgers current as a function of the Burgers vector induced by the topological screw dislocation in 
presence of external magnetic field of B0 = 3 T. Upper panel: corresponds to ↑-spin (a) for α = 0.5 and (b) for 
α = 1 . Lower panel: corresponds to ↓-spin (c) for α = 0.5 and (d) for α = 1 . The Rashba spin-orbit coupling 
parameter is taken as �R = 0.5t.
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the Burgers vector corresponding to the maximum Burgers spin current increases with higher values of α . For 
α = 1 , the maximum of jS,bz occurs at bz ∼ 0.4 (in unit of the lattice constant) (refer to Fig. 17b). Since the Burg-
ers vector signifies the amount of screw dislocation in the system, maximizing the Burgers spin current would 
require large screw dislocations, and the behaviour is more for large values of α . Moreover, the presence of an 
external magnetic field eliminates this upturn in jS,bz , as depicted in Fig. 17c,d, where the Burgers spin current 
steadily decreases with increasing bz.

Burgers dipole moment
Another interesting contribution to the dipole moment may come from the chiral current in the spin sector which 
arise even in the absence of an external magnetic field. The dipole moment, as expected, shows a non-monotonic 
behaviour (shown in Fig. 18) as a function of the strength of the dislocation (i.e. bz ) which hints towards an 
efficient ‘operating region’ for our system to yield large spin torque.

Summary and conclusions
In summary, we have conducted a comprehensive investigation of the properties of Rashba spin-orbit coupling 
in the context of an α-T3 pseudospin-1 Fermionic Aharonov–Bohm quantum ring, considering the presence 
of a special type of topological defect. Our exploration covered aspects such as the energy spectrum, persistent 
currents, their dependencies on spin-orbit couplings, screw dislocations, and magnetic fields. Our key findings 
are as follows.

The introduction of the spin-orbit coupling parameter, �R , results in a spectrum composed of six bands, 
including two non-dispersive flat bands one for each spin, and four dispersive spin-split valence and conduction 
bands. The flat bands encompass a multitude of degenerate levels at zero-energy, which remain unaffected by 
applied magnetic fields. In the absence of a magnetic field, the energy levels in both the conduction and valence 
bands exhibit inverse dependence on the ring radius, denoted as R, and are independent of α . Notably, ↑-spin 
energy levels are two-fold degenerate for α = 1 , except for the m = 0 level, while the ↓-spin bands are non-
degenerate for all α values. The presence of a screw dislocation, serving as a topological defect, renders splitting 
of degeneracy, although other features remain unaltered. Under the influence of a perpendicular magnetic field, 
the energy levels deviate significantly from their usual R-dependence, showcasing behaviours of ∼ 1/R for small 
R and ∼ R for larger R. The presence of the topological defect introduces a topological term, effectively acting 
as a magnetic flux traversing the ring. This effective flux is the result of two contributions, one stemming from 
the topological nature of the defect and the other from the external magnetic flux.
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Figure 17.  Burgers spin current as a function of the Burgers vector induced by the topological screw 
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of B0 = 3 T (c) α = 0.5 and (d) α = 1 . The Rashba spin-orbit coupling parameter is taken as �R = 0.5t.
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The spin-split energy bands corresponding to different quantum number (m) exhibit distinct characteristics 
as a function of the Burgers vector in presence and absence of an external magnetic field. In the absence of an 
external magnetic field, the bands associated with quantum number m = 0 represent the lowest energy states. 
Additionally, the energy levels demonstrate a nearly linear increase (or decrease) as a function of the Burgers 
vector. On the other hand, in the presence of an external magnetic field, the bands corresponding to negative 
quantum number, and in particular m = −6 bands emerge as the lowest energy states, and these remain nearly 
constant with the Burgers vector.

Furthermore, the persistent currents in both the spin and charge sectors exhibit periodic oscillations with a 
periodicity of �0 , featuring distinct patterns corresponding to different α and �R values. Notably, the presence 
of a topological defect shifts the phase of current oscillation by an amount equal to the strength of the defect. 
We have also derived equilibrium spin currents by combining the charge current contributions from different 
spin branches, underscoring the potential utility of our system in spintronic applications. Equilibrium spin 
currents are present for all α values, with a � = �0 periodic behaviour. Similar to the charge persistent current, 
the presence of a topological defect shifts the phase of the oscillations in the spin current profile by an amount 
proportional to the defect.

The Burgers current exhibits an almost linear decrease with the Burgers vector, both in the presence and 
absence of an external magnetic field. However, without the external field, these current undergoes a sign change 
for α = 1 , whereas in the presence of the external magnetic field, this sign change occurs for α = 0.5 at specific 
values of the Burgers vector. Additionally, the presence of distortion in the α-T3 lattice induces a chirality effect 
within the system, giving rise to an additional chiral current even in the absence of an external magnetic field. 
Moreover, in the absence of an external magnetic field, the Burgers spin current initially increases with an 
increase in the Burgers vector. After attaining a maximum, the current decreases with further increase in bz for 
all values of α . However, this phenomenon disappears in the presence of an external magnetic field.

In conclusion, by adjusting the parameters α , kη , � , and �R , we have comprehensively shown the ability to 
manipulate the persistent currents, rendering them as controllable features in our system. To emphasize the 
role of the α-T3 ring system in spintronic devices, we have computed the induced dipole moment of the ring. 
Particularly, the contribution of the Burgers spin current yields useful information on the prospects of it being 
used for spintronic applications.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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