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Identifying potential
(re)hemorrhage among sporadic
cerebral cavernous malformations
using machine learning

Xiaopeng Li%*, Peng Jones** & Mei Zhao®*

The (re)hemorrhage in patients with sporadic cerebral cavernous malformations (CCM) was the
primary aim for CCM management. However, accurately identifying the potential (re)hemorrhage
among sporadic CCM patients in advance remains a challenge. This study aims to develop machine
learning models to detect potential (re)hemorrhage in sporadic CCM patients. This study was based
on a dataset of 731 sporadic CCM patients in open data platform Dryad. Sporadic CCM patients
were followed up 5 years from January 2003 to December 2018. Support vector machine (SVM),
stacked generalization, and extreme gradient boosting (XGBoost) were used to construct models.
The performance of models was evaluated by area under receiver operating characteristic curves
(AUROC), area under the precision-recall curve (PR-AUC) and other metrics. A total of 517 patients
with sporadic CCM were included (330 female [63.8%], mean [SD] age at diagnosis, 42.1 [15.5] years).
76 (re)hemorrhage (14.7%) occurred during follow-up. Among 3 machine learning models, XGBoost
model yielded the highest mean (SD) AUROC (0.87 [0.06]) in cross-validation. The top 4 features of
XGBoost model were ranked with SHAP (SHapley Additive exPlanations). All-Elements XGBoost
model achieved an AUROCs of 0.84 and PR-AUC of 0.49 in testing set, with a sensitivity of 0.86 and
a specificity of 0.76. Importantly, 4-Elements XGBoost model developed using top 4 features got

a AUROCs of 0.83 and PR-AUC of 0.40, a sensitivity of 0.79, and a specificity of 0.72 in testing set.
Two machine learning-based models achieved accurate performance in identifying potential (re)
hemorrhages within 5 years in sporadic CCM patients. These models may provide insights for clinical
decision-making.

Keywords Cerebral cavernous, Malformations, Intracerebral hemorrhage, Machine learning, 4-Elements
model, Outcome prediction

Cerebral cavernous malformations (CCM), mostly caused by loss-of-function of mutations genes’, are vascular
lesions of the brain with a risk of causing intracerebral hemorrhage (ICH)'~*. CCM show a familial or sporadic
form*, and also could be detected after radiation therapy®, almost 20% of CCM found with multiple locations®”’.
These CCM-related ICH mainly caused headaches, seizures, impaired consciousness, and focal neurological
deficits®. A meta-analysis with 7 patient cohorts demonstrated that a 5-year ICH risk for CCM was 15.8% using
reported standards’. As the most feared complication, symptomatic (re)hemorrhage is the primary aim for CCM
management, especially repetitive hemorrhage leading to being disabled and fatal'®!’. Most previous studies
focused on identifying risk factors of ICH among CCM patients”'*"'%. A report with a dataset containing 731
CCM patients followed up from 2003 to 2018 based on Cox proportional hazards model showed that prior ICH
and brainstem localization were associated with a higher risk of (re)-hemorrhage'®. Using this large and invalu-
able dataset, machine learning models also could be constructed to detect potential (re)-hemorrhage with several
clinical records of CCM patients. Identifying the potential (re)bleeding in advance among CCM patients and
initiating prompt treatment, such as surgical resection, conservative treatment"* or long-term antithrombotic
therapy use'®™", is essential for CCM management.
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However, the established machine learning model for detecting potential (re)hemorrhage among CCM
patients is still lacking. The prediction models based on machine learning algorithms showed robust performance
in various areas including medical events**~>*. Thus, we suppose that machine learning algorithms might make it
possible to yield accurate prediction models, even providing limited medical information about CCM patients.

The present study aimed to develop and validate prediction models that could distinguish sporadic CCM
patients of potential (re)hemorrhage from those without risk of (re)hemorrhage within 5 years. Here, we report
machine learning models with comparatively high predictability for identifying potential (re)hemorrhage within
5 years, which may provide insights for clinical decision-making for the treatment of sporadic CCM patients.

Methods

Participants

This study included a dataset of 731 sporadic CCM patients in the data platform Dryad, the collection of which
was approved by university institutional review and written consent was acquired from all patients'>**. These con-
secutively admitted patients were prospectively followed up 5 years from January 1, 2003, to December 31, 2018".
Hemorrhage during registration and occurrence of (re)hemorrhage in follow-up were evaluated by reported
standards, and 64% completeness of follow-up with a high censoring rate was due to surgical treatment'”.

Study design and feature selection

We selected 517 sporadic CCM patients and 12 features in this dataset, which include: age at diagnosis, sex,
supratentorial CCM, CCM at brain stem, CCM at infratentorial nonbrain stem, CCM volume, developmental
venous anomaly (DVA), hypercholesterolemia, hypertension, diabetes, prior ICH, (re)hemorrhage during follow-
up within 5 years. For patients with prior ICH, CCM volume was measured via the sum of CCM lesion and
hemorrhage lesion". Patients during follow-up without (re)hemorrhage receiving surgical treatment and those
with missing information about surgery information in follow-up were excluded. Missing values in features of
hypercholesterolemia, diabetes, and hypertension were imputed using multiple imputation by chained equations
(MICE) with the aid of python module miceforest®*.

Machine learning algorithm and dealing with imbalanced data

Support vector machine (SVM), one robust supervised machine learning method, is used for analyzing datasets
for classification and regression*>?”. Extreme gradient boosting (XGBoost) is an ensemble learning algorithm
based on decision trees?, showing accurate performance in the medical field***. Stacked generalization, often
termed as stacking, super learning, or stacked regression®"*2, combines multiple base classifiers with a final clas-
sifier aiming at reducing biases. Stacking is a common method to ensemble various algorithms into a powerful
learner®'. For our stacking model, we implemented decision trees®?, random forests, gradient boosted decision
trees (GBDT)*, SVM, multi-layer perceptron®, and k nearest neighbors®® as the base estimators, and logistic
regression as the final estimator.

Among all included 517 sporadic CCM patients, 76 patients occurred (re)hemorrhage during follow-up,
yielding imbalance. Dealing with imbalanced data for machine learning algorithms is challenging in academia
and industry*’. Random under-sampling has been adopted to reduce the majority class**?!, to aid the algorithm
in identifying the minority class. In the training and validation cohort, we applied random under-sampling to
reduce the size of sporadic CCM patients without (re)hemorrhage.

Model development and feature importance
The dataset was randomly split into the training and validation cohort (80%) and the testing cohort (20%). The
prediction models were built with the aid of the efficient tool scikit-learn (version 1.0.2) and other modules
(pandas, numpy, matplotlib). The hyperparameters were tuned to maximize the area under the receiver operat-
ing characteristic curves (AUROC) with the aid of GridSearchCV in the training and validation cohort. We
trained three models using three repeats of five-fold stratified cross-validation. Models performance, including
precision, recall, and F-score, was also calculated in the process of cross-validation. The search space for hyper-
parameters and the chosen values for all models are shown in Supplementary Table S1. Other parameters were
set as default values.

We explored the importance ranking of features based on the XGBoost model interpreted by SHAP (SHapley
Additive exPlanations). The 4-Elements model was built using the top 4 features (CCM volume, prior ICH, CCM
at brain stem, age at diagnosis).

Model performance in testing cohort

To validate the performance of the XGBoost models, we calculated the AUROC and the area under the precision
recall curve (PR-AUC). The evaluation metrics, including sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), positive likelihood ratio, and negative likelihood ratio, were also computed.

Statistical analysis

The normally distributed continuous variable was analyzed via a two-sided t-test, whereas the Mann-Whitney
test was conducted for nonnormally distributed continuous variables. Categorical data were performed via x? test
including continuity correction in case of low frequencies. Statistical significance was set at p <0.05 (two-sided).
Statistical analyses were conducted with the use of SAS software, version 9.4 (SAS Institute Inc).
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Ethical considerations

The dataset of sporadic CCM patients is sourced from the open data platform Dryad. Standard protocol and
registrations of patients were approved by the institutional review board of Duisburg-Essen University (review
board identification 14-5751-BO and 19-8662-BO)">. The written consent was also acquired from all patients'®.
All procedures of this study involving human participants were in accordance with the ethical guidelines of the
declaration of Helsinki.

Results

Baseline characteristics

A total of 517 sporadic CCM patients were included in this study cohort (330 female patients [63.8%], mean [SD]
age at diagnosis, 42.1 [15.5] years), among whom 76 patients (14.7%) experienced (re)hemorrhage during 5-year
follow-up. The dataset was randomly assigned to the training set and the testing set. The baseline features of the
two groups are shown in Table 1. The flow diagram of the modeling has been illustrated in Fig. 1.

Comparison of model’s performance in cross-validation

3 prediction models were developed using 11 features of sporadic CCM patients. For the evaluation of metrics
of models, sporadic CCM patients who occurred (re)hemorrhage during follow-up were treated as true positives
whilst those without risk of bleeding were considered to be true negatives. ROC curves and the performance of
three prediction models resulting from three repeats of five-fold stratified cross-validation are shown (Fig. 2).
Among these algorithms, the XGBoost model achieved the highest mean (SD) AUROC of 0.87 [0.06] with a
recall of 0.78 and a precision of 0.79. Therefore, we selected XGBoost algorithm to build prediction models.

Training and validation cohort (n=413) | Testing cohort (n=104) | P value

Age at diagnosis, years; mean (SD) 41.5 (15.8) 44.6 (14.2) 0.065
Female (%) 263 (63.7) 67 (64.4) 0.888
Supratentorial CCM (%) 257 (62.2) 64 (61.5) 0.897
CCM at Infratentorial nonbrain stem (%) 40 (9.7) 9(8.7) 0.748
CCM at brain stem (%) 126 (30.5) 32 (30.8) 0.959
CCM volume, cm* median (IQR) 0.54 (0.18-2.00) 0.72 (0.17-1.90) 0.918
Associated DVA (%) 168 (40.7) 39 (37.5) 0.554
Prior ICH (%) 175 (42.4) 45 (43.3) 0.869
Hypertension (%) 89 (21.5) 30 (28.8) 0.114
Hypercholesterolemia (%) 27 (6.5) 13 (12.5) 0.0422
Diabetes (%) 15(3.6) 4(3.8) 1.000
Outcome: (re)hemorrhage (%)

Yes 62 (15) 14 (13.5)

No 351 (85) 90 (86.5) 0.6%

Table 1. Baseline characteristics of the patients cohort. IQR interquartile range, CCM cerebral cavernous

malformations, DVA developmental venous anomaly, ICH intracerebral hemorrhage. *P <0.05.

731 Patients with sporadic cerebral cavernous malformations(CCM) were followed

up 5 years between January 1, 2003, and December 31, 2018

214 Excluded
207 Patients without (re)hemorrhage in follow-up underwent surgery
7 Missing information about surgery in follow-up

v

5-Fold stratified cross-validation

v y

330 Training cohort 83 Validation cohort 104 Testing cohort

Figure 1. Flow diagram of study.
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Figure 2. The Performance of Models in Identifying the Potential (Re)hemorrhage in Cross-Validation. (A)
The receiver operating characteristic (ROC) curves of machine-learning based models using 3 repeats of fivefold
stratified cross-validation. (B) Representative performance of 3 machine learning models. AUC area under the
curves, CCM cerebral cavernous malformations, SVM support vector machine, Stacking stacked generalization,
XGBoost extreme gradient boosting.

Feature Importance analysis and development of 4-Elements model
To shed light on the feature importance, Shapley values based on the XGBoost model were calculated. The feature
importance ranking, determined by the sum of the Shapley value magnitudes, is illustrated in Fig. 3, each point
with color on behalf of the feature value of one patient.

For easy usage of prediction models for clinicians, the 4-Elements model based on the top 4 features (CCM
volume, prior ICH, CCM at brain stem, age at diagnosis) using XGBoost was built. It should be noted that, for
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Figure 3. Summary plot of SHAP (SHapley Additive exPlanations) based on XGBoost model. The plot shows
the ranking of all 11 features affecting the output of the XGBoost model. Each point in every feature is on

behalf of a concrete sporadic CCM patient, with a Shapley value for the respective feature. Feature importance
is ranked by the sum of Shapley values in a descending manner. CCM cerebral cavernous malformations, ICH
intracerebral hemorrhage, DVA developmental venous anomaly.
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those sporadic CCM patients with prior ICH, CCM volume was measured as the sum of CCM lesion and hem-
orrhage lesion. The ROC curves of 4-Elements model in cross-validation are demonstrated in Supplementary
Fig. S1.

Performance of all-Elements model and 4-Elements model on testing cohort
Figure 4 shows ROC curves and PR curves of all-Elements model and 4-Elements model for testing cohort.
The all-Elements model generated AUROCs of 0.84, whereas this value for 4-Elements model was 0.83. The all-
Elements model and 4-Elements model demonstrated a PR-AUC of 0.49 and 0.40, respectively.

Table 2 demonstrates the representative performance of developed models. The sensitivity and specificity of
all-Elements model based on XGBoost were 0.86 and 0.76. 4-Elements model achieved a sensitivity of 0.79 and
a specificity of 0.72.

Discussion

To the best of our knowledge, the all-Elements model and 4-Elements model are the first developed machine-
learning based models for detecting the potential (re)hemorrhage among sporadic CCM patients, especially the
readily used 4-Elements model. The present developed all-Elements model using XGBoost algorithm achieved
an AUROC of 0.84, with a sensitivity of 0.86 and a specificity of 0.76, demonstrating a comparatively accurate
performance in identifying the potential (re)hemorrhage among CCM patients within 5 years. Importantly,
the 4-Elements model yielded accurate performance as well in detecting the potential (re)hemorrhage, with an
AUROC of 0.83, a sensitivity of 0.79, and a specificity of 0.72.

Compared to SVM model and stacking model, the developed XGBoost model yields higher AUROC in
predicting the potential (re)hemorrhage using 11 clinical records of CCM patients. Shapley values have been
adopted to interpret feature importance?*?>?** and feature importance based on the XGBoost model was ranked
with the aid of Shapley values. For easy and ready usage in clinical practice, previous studies have built machine
learning models using only several top features®>***. For our XGBoost model, the top 4 features are CCM vol-
ume, presence of ICH, CCM at brain stem, and age at diagnosis, with which we try to build 4-Elements model.
Researchers identified prior hemorrhage as a major risk factor for subsequent hemorrhage”**~**. Localized in
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Figure 4. The ROC curves and precision recall curves for all-Elements model and 4-Elements model on the
testing set. ROC curves (A) and precision recall curves (B) for evaluating all-Elements model and 4-Elements
model on the testing set. ROC curves are receiver operating characteristic curves. AUC area under the curves.

Sensitivity Specificity PPV NPV LR+ LR-
XGBoost
All-Elements model 0.86 0.76 0.35 0.97 3.51 0.19
4-Elements model 0.79 0.72 0.31 0.96 2.83 0.30

Table 2. The performance of all-Elements model and 4-Elements model on testing cohort. PPV positive
predictive value, NPV negative predictive value, LR + positive likelihood ratio, LR- negative likelihood ratio.
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deep regions of the brain, brainstem CCM and thalamic CCM took up approximately one-third* and it was
found that CCM lesions at the brainstem increased hemorrhage rate!>*-4,

Abundant evidence links age with the risk of (re)hemorrhage among CCM patients. Based on 242 patients
with brainstem CCM, Li et al. found that the interval of rehemorrhage-free was significantly shorter in patients
aged 50 years or older*’ and subsequent studies also showed that patients aged 55 years or older were associated
with hemorrhage®®. However, the finding related to the role of age in (re)hemorrhage of CCM patients is not
consistent. Young age (<40 years or < 45 years) was suggested to be associated with CM hemorrhage'**!. In con-
trast with the above conclusion, several studies also demonstrated that age was not associated with subsequent
symptomatic hemorrhage among CCM patients*”*%. From the sight based on machine learning, we identified
age at diagnosis of CCM as a risk factor for (re)hemorrhage.

Although decades of surgical excision for CCM patients, surgical treatment remains controversial*. Neuro-
surgical excision of CCM is executed to prevent symptomatic ICH and the risk of CCM resection includes death
or nonfatal stroke**. To prevent potential hemorrhage, surgical excision could be considered in asymptomatic
CCM patients in noneloquent areas®*. CMs located in proximity to the ventricular system or easily accessible
solitary CMs in non-eloquent areas may be in need of neurosurgical treatment®. Surgery for CCMs at critical
supratentorial areas caused significant mainly transient morbidity, and these could be recovered over time®.
Performing surgery in a subacute phase 2-4 weeks after bleeding is suggested for CCM patients.

It is worth noting that several findings concluded CCM size was not a risk factor for the hemorrhage
rate*”°1525758 However, one study based on anatomical location also found that CCM with volume (=1 cm?)
at infratentorial cavernous lesions was associated with a high risk of CM rupture whereas that at supratentorial
cavernous lesions did not show any relating sign'®. It is clearly shown that all the top 4 features interpreted by
Shapley values have been suggested to be associated with CCM hemorrhage, which may ensure the accurate
performance of our 4-Elements model. Interestingly, CCM volume in our prediction model has been demon-
strated as the top 1 feature for distinguishing potential (re)hemorrhage of CCM patients from those without (re)
hemorrhage risk. We suppose the underlying mechanism may be that machine learning algorithms do not view
solitary features and complex relationships between features significantly influencing the resulting classification
may be constructed? in the process of building a model. CCM volume in this study was measured by the sum
of CCM lesion and hemorrhage lesion in the case of CCM patients with prior ICH'™.

Although we impute missing values in features of hypercholesterolemia, hypertension and diabetes, these
features weakly affect the output of XGBoost model by viewing Shapley values. Further, features used to build
the 4-Elements model do not contain missing values.

Surgical resection is a definitive cure for selected CCM patients though remains conflicting due to substantial
operative risks>*. Antithrombotic therapy use in a long-term lowered the risk of ICH in CCM patients'®. CCM
patients labeled by the two machine learning models as potential (re)hemorrhage should, therefore, be considered
by clinicians as requiring prompt treatment. Further, CCM patients who are predicted by two models without
risk of potential (re)hemorrhage could avoid unnecessary treatment. Our all-Elements model and 4-Elements
model fill the gap that the potential (re)hemorrhage CCM patients within 5 years among CCM patients could
be recognized in advance.

This study has inherent limitations. 517 sporadic CCM patients were included in this study, and large data-
sets may need to further validate the all-Elements model and 4-Elements model. Moreover, collecting sufficient
clinical records of sporadic CCM patients may facilitate select important features greatly influencing the output
of the model.

In conclusion, we developed all-Elements XGBoost model and 4-Elements XGBoost model for identifying
potential (re)hemorrhage within 5 years among sporadic CCM patients, both achieving comparatively accurate
performance. Importantly, the 4-Elements model is convenient for clinical usage. The two models will aid clinical
decision-making, such as initiating prompt treatment for the potential (re)hemorrhage or avoiding unnecessary
treatment for those without (re)hemorrhage risk. We are limited by the size of institutions to collect follow-up
data of CCM patients for external validation, and we also could not find a dataset of CCM patients in the open
platform. Further validating the all-Elements model and 4-Elements model with large datasets of sporadic CCM
patients is necessary.

Data availability
The data and code supporting this study is available from the corresponding author upon reasonable request.

Received: 8 June 2023; Accepted: 10 May 2024
Published online: 14 May 2024

References

1. Chohan, M. O. et al. Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the
natural history of a difficult disease: A review. JAMA Neurol. 76(4), 492-500. https://doi.org/10.1001/jamaneurol.2018.3634 (2019).

2. Taslimi, S., Modabbernia, A., Amin-Hanjani, S., Barker, E. G. 2nd. & Macdonald, R. L. Natural history of cavernous malformation:
Systematic review and meta-analysis of 25 studies. Neurology 86(21), 1984-1991. https://doi.org/10.1212/wnl.0000000000002701
(2016).

3. Chen, B. et al. Modifiable cardiovascular risk factors in patients with sporadic cerebral cavernous malformations: Obesity matters.
Stroke 52(4), 1259-1264. https://doi.org/10.1161/strokeaha.120.031569 (2021).

4. Akers, A. et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: Consensus recommenda-
tions based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel. Neurosurgery
80(5), 665-680. https://doi.org/10.1093/neuros/nyx091 (2017).

5. Gastelum, E. et al. Rates and characteristics of radiographically detected intracerebral cavernous malformations after cranial
radiation therapy in pediatric cancer patients. J. Child. Neurol. 30(7), 842-849. https://doi.org/10.1177/0883073814544364 (2015).

Scientific Reports |

(2024) 14:11022 https://doi.org/10.1038/s41598-024-61851-4 nature portfolio


https://doi.org/10.1001/jamaneurol.2018.3634
https://doi.org/10.1212/wnl.0000000000002701
https://doi.org/10.1161/strokeaha.120.031569
https://doi.org/10.1093/neuros/nyx091
https://doi.org/10.1177/0883073814544364

www.nature.com/scientificreports/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.

29.

30.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

. Al-Shahi Salman, R. et al. Untreated clinical course of cerebral cavernous malformations: A prospective, population-based cohort

study. Lancet Neurol. 11(3), 217-224. https://doi.org/10.1016/s1474-4422(12)70004-2 (2012).

. Flemming, K. D,, Link, M. J., Christianson, T. J. & Brown, R. D. Jr. Prospective hemorrhage risk of intracerebral cavernous mal-

formations. Neurology 78(9), 632-636. https://doi.org/10.1212/WNL.0b013e318248de9b (2012).

. Al-Shahi Salman, R., Berg, M. J., Morrison, L. & Awad, I. A. Hemorrhage from cavernous malformations of the brain: definition

and reporting standards Angioma Alliance Scientific Advisory Board. Stroke 39(12), 3222-3230. https://doi.org/10.1161/strok
eaha.108.515544 (2008).

. Horne, M. A. et al. Clinical course of untreated cerebral cavernous malformations: A meta-analysis of individual patient data.

Lancet Neurol. 15(2), 166-173. https://doi.org/10.1016/s1474-4422(15)00303-8 (2016).

Arauz, A. et al. Rebleeding and outcome in patients with symptomatic brain stem cavernomas. Cerebrovasc. Dis. 43(5-6), 283-289.
https://doi.org/10.1159/000463392 (2017).

Dammann, P. ef al. Solitary sporadic cerebral cavernous malformations: Risk factors of first or recurrent symptomatic hemorrhage
and associated functional impairment. World Neurosurg. 91, 73-80. https://doi.org/10.1016/j.wneu.2016.03.080 (2016).
Labauge, P, Brunereau, L., Laberge, S. & Houtteville, J. P. Prospective follow-up of 33 asymptomatic patients with familial cerebral
cavernous malformations. Neurology 57(10), 1825-1828. https://doi.org/10.1212/wnl.57.10.1825 (2001).

Kashefiolasl, S. et al. A benchmark approach to hemorrhage risk management of cavernous malformations. Neurology 90(10),
€856-¢863. https://doi.org/10.1212/wnl.0000000000005066 (2018).

Abla, A. A. et al. Cavernous malformations of the brainstem presenting in childhood: surgical experience in 40 patients. Neuro-
surgery 67(6), 1589-1598. https://doi.org/10.1227/NEU.0b013e3181f8d1b2 (2010).

Chen, B. et al. Hemorrhage from cerebral cavernous malformations: The role of associated developmental venous anomalies.
Neurology 95(1), €89-€96. https://doi.org/10.1212/wnl.0000000000009730 (2020).

Bervini, D., Jaeggi, C., Mordasini, P, Schucht, P. & Raabe, A. Antithrombotic medication and bleeding risk in patients with cerebral
cavernous malformations: a cohort study. J. Neurosurg. 1, 1-9. https://doi.org/10.3171/2018.1.Jns172547 (2018).

Flemming, K. D,, Link, M. J., Christianson, T. J. & Brown, R. D. Jr. Use of antithrombotic agents in patients with intracerebral
cavernous malformations. J. Neurosurg. 118(1), 43-46. https://doi.org/10.3171/2012.8.Jns112050 (2013).

Schneble, H. M. et al. Antithrombotic therapy and bleeding risk in a prospective cohort study of patients with cerebral cavernous
malformations. Stroke 43(12), 3196-3199. https://doi.org/10.1161/strokeaha.112.668533 (2012).

Zuurbier, S. M. et al. Long-term antithrombotic therapy and risk of intracranial haemorrhage from cerebral cavernous malforma-
tions: A population-based cohort study, systematic review, and meta-analysis. Lancet Neurol. 18(10), 935-941. https://doi.org/10.
1016/s1474-4422(19)30231-5 (2019).

Laqueur, H. S., Smirniotis, C., McCort, C. & Wintemute, G. J. Machine learning analysis of handgun transactions to predict firearm
suicide risk. JAMA Netw. Open 5(7), €2221041. https://doi.org/10.1001/jamanetworkopen.2022.21041 (2022).

Ogata, S. et al. Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour
heatstroke alerts. Nat. Commun. 12(1), 4575. https://doi.org/10.1038/s41467-021-24823-0 (2021).

Pfaff, E. R. et al. Identifying who has long COVID in the USA: A machine learning approach using N3C data. Lancet Digit. Health
4(7), e532-e541. https://doi.org/10.1016/s2589-7500(22)00048-6 (2022).

Dayan, 1. et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 27(10), 1735-1743.
https://doi.org/10.1038/s41591-021-01506-3 (2021).

Chen, B. et al. Hemorrhage from cerebral cavernous malformations: The role of associated developmental venous anomalies. Dryad
https://doi.org/10.1111/ene.15574 (2021).

Wilson, S. Miceforest. AnotherSamWilson/miceforest (2020). https://miceforest.readthedocs.io/_/downloads/en/latest/pdf/.
Cortes, C. & Vapnik, V. N. Support-vector networks. Mach. Learn. 20, 273-297. https://doi.org/10.1007/BF00994018 (1995).
Boser, B. E., Guyon, I. M., & Vapnik, V. N. A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory: 1992; pp. 144-152 (1992). https://doi.org/10.1145/130385.130401.

Chen, T, & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining: 2016, pp. 785-794 (2016). https://doi.org/10.1145/2939672.2939785.

Zachariah, F. J., Rossi, L. A., Roberts, L. M. & Bosserman, L. D. Prospective comparison of medical oncologists and a machine
learning model to predict 3-month mortality in patients with metastatic solid tumors. JAMA Netw. Open 5(5), €2214514. https://
doi.org/10.1001/jamanetworkopen.2022.14514 (2022).

Abe, D. et al. A prehospital triage system to detect traumatic intracranial hemorrhage using machine learning algorithms. JAMA
Netw. Open 5(6), €2216393. https://doi.org/10.1001/jamanetworkopen.2022.16393 (2022).

. Kurz, C. E, Maier, W. & Rink, C. A greedy stacking algorithm for model ensembling and domain weighting. BMC Res. Notes 13(1),

70. https://doi.org/10.1186/s13104-020-4931-7 (2020).

. Wolpert, D. H. Stacked generalization. Neural Netw. 5(2), 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1 (1992).
. Breiman, L. Classification and regression trees (Routledge, 2017). https://doi.org/10.1201/9781315139470.
. Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 1, 1189-1232. https://doi.org/10.1214/

20s/1013203451 (2001).

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. The elements of statistical learning: Data mining, inference, and predic-
tion, vol. 2 (Springer, 2009).

Zhang, Z. Introduction to machine learning: k-nearest neighbors. Ann. Transl. Med. 4(11), 1. https://doi.org/10.21037/atm.2016.
03.37 (2016).

He, H. & Garcia, E. A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263-1284. https://doi.org/10.1109/
TKDE.2008.239 (2009).

Thorsen-Meyer, H. C. et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care
unit: A retrospective study of high-frequency data in electronic patient records. Lancet Digit. Health 2(4), e179-e191. https://doi.
0rg/10.1016/52589-7500(20)30018-2 (2020).

Astner-Rohracher, A. et al. Development and validation of the 5-SENSE score to predict focality of the seizure-onset zone as
assessed by stereoelectroencephalography. JAMA Neurol. 79(1), 70-79. https://doi.org/10.1001/jamaneurol.2021.4405 (2022).
Liang, W. et al. Early triage of critically ill COVID-19 patients using deep learning. Nat. Commun. 11(1), 3543. https://doi.org/10.
1038/s41467-020-17280-8 (2020).

Gross, B. A, Du, R,, Orbach, D. B, Scott, R. M. & Smith, E. R. The natural history of cerebral cavernous malformations in children.
J. Neurosurg. Pediatr. 17(2), 123-128. https://doi.org/10.3171/2015.2.Peds14541 (2016).

Tian, K. B. et al. Clinical course of untreated thalamic cavernous malformations: Hemorrhage risk and neurological outcomes. J.
Neurosurg. 127(3), 480-491. https://doi.org/10.3171/2016.8.Jns16934 (2017).

Jeon, J. S. et al. A risk factor analysis of prospective symptomatic haemorrhage in adult patients with cerebral cavernous malforma-
tion. . Neurol. Neurosurg. Psychiatry 85(12), 1366-1370. https://doi.org/10.1136/jnnp-2013-306844 (2014).

Ding, D., Starke, R. M., Crowley, R. W. & Liu, K. C. Surgical approaches for symptomatic cerebral cavernous malformations of the
thalamus and brainstem. J. Cerebrovasc. Endovasc. Neurosurg. 19(1), 19-35. https://doi.org/10.7461/jcen.2017.19.1.19 (2017).
Cantu, C. et al. Predictive factors for intracerebral hemorrhage in patients with cavernous angiomas. Neurol. Res. 27(3), 314-318.
https://doi.org/10.1179/016164105x39914 (2005).

Scientific Reports |

(2024) 14:11022 https://doi.org/10.1038/s41598-024-61851-4 nature portfolio


https://doi.org/10.1016/s1474-4422(12)70004-2
https://doi.org/10.1212/WNL.0b013e318248de9b
https://doi.org/10.1161/strokeaha.108.515544
https://doi.org/10.1161/strokeaha.108.515544
https://doi.org/10.1016/s1474-4422(15)00303-8
https://doi.org/10.1159/000463392
https://doi.org/10.1016/j.wneu.2016.03.080
https://doi.org/10.1212/wnl.57.10.1825
https://doi.org/10.1212/wnl.0000000000005066
https://doi.org/10.1227/NEU.0b013e3181f8d1b2
https://doi.org/10.1212/wnl.0000000000009730
https://doi.org/10.3171/2018.1.Jns172547
https://doi.org/10.3171/2012.8.Jns112050
https://doi.org/10.1161/strokeaha.112.668533
https://doi.org/10.1016/s1474-4422(19)30231-5
https://doi.org/10.1016/s1474-4422(19)30231-5
https://doi.org/10.1001/jamanetworkopen.2022.21041
https://doi.org/10.1038/s41467-021-24823-0
https://doi.org/10.1016/s2589-7500(22)00048-6
https://doi.org/10.1038/s41591-021-01506-3
https://doi.org/10.1111/ene.15574
https://miceforest.readthedocs.io/_/downloads/en/latest/pdf/
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1001/jamanetworkopen.2022.14514
https://doi.org/10.1001/jamanetworkopen.2022.14514
https://doi.org/10.1001/jamanetworkopen.2022.16393
https://doi.org/10.1186/s13104-020-4931-7
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1201/9781315139470
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1016/s2589-7500(20)30018-2
https://doi.org/10.1016/s2589-7500(20)30018-2
https://doi.org/10.1001/jamaneurol.2021.4405
https://doi.org/10.1038/s41467-020-17280-8
https://doi.org/10.1038/s41467-020-17280-8
https://doi.org/10.3171/2015.2.Peds14541
https://doi.org/10.3171/2016.8.Jns16934
https://doi.org/10.1136/jnnp-2013-306844
https://doi.org/10.7461/jcen.2017.19.1.19
https://doi.org/10.1179/016164105x39914

www.nature.com/scientificreports/

46. Eisner, W. et al. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery
37(2), 255-265. https://doi.org/10.1227/00006123-199508000-00010 (1995).

47. Porter, P. J., Willinsky, R. A., Harper, W. & Wallace, M. C. Cerebral cavernous malformations: natural history and prognosis after
clinical deterioration with or without hemorrhage. J. Neurosurg. 87(2), 190-197. https://doi.org/10.3171/jns.1997.87.2.0190 (1997).

48. Gross, B. A,, Batjer, H. H., Awad, I. A. & Bendok, B. R. Brainstem cavernous malformations. Neurosurgery 64(5), E805-E818.
https://doi.org/10.1227/01.Neu.0000343668.44288.18 (2009).

49. Li, D. et al. Hemorrhage risk, surgical management, and functional outcome of brainstem cavernous malformations. J. Neurosurg.
119(4), 996-1008. https://doi.org/10.3171/2013.7.Jns13462 (2013).

50. Kong, L. et al. Five-year symptomatic hemorrhage risk of untreated brainstem cavernous malformations in a prospective cohort.
Neurosurg. Rev. 45(4), 2961-2973. https://doi.org/10.1007/s10143-022-01815-2 (2022).

51. Aiba, T. et al. Natural history of intracranial cavernous malformations. J. Neurosurg. 83(1), 56-59. https://doi.org/10.3171/jns.
1995.83.1.0056 (1995).

52. Kondziolka, D., Lunsford, L. D. & Kestle, J. R. The natural history of cerebral cavernous malformations. J. Neurosurg. 83(5), 820-824.
https://doi.org/10.3171/jns.1995.83.5.0820 (1995).

53. Harris, L., Poorthuis, M. H. E, Grover, P, Kitchen, N. & Al-Shahi Salman, R. Surgery for cerebral cavernous malformations: A
systematic review and meta-analysis. Neurosurg. Rev. 45(1), 231-241. https://doi.org/10.1007/s10143-021-01591-5 (2022).

54. Kuroedov, D., Cunha, B., Pamplona, ., Castillo, M. & Ramalho, J. Cerebral cavernous malformations: Typical and atypical imaging
characteristics. J. Neuroimaging 33(2), 202-217. https://doi.org/10.1111/jon.13072 (2023).

55. Vercelli, G. G. et al. Natural history, clinical, and surgical management of cavernous malformations. Methods Mol. Biol. 2152,
35-46. https://doi.org/10.1007/978-1-0716-0640-7_3 (2020).

56. Pasqualin, A., Meneghelli, P, Giammarusti, A. & Turazzi, S. Results of surgery for cavernomas in critical supratentorial areas. Acta
Neurochir. Suppl. 119, 117-123. https://doi.org/10.1007/978-3-319-02411-0_20 (2014).

57. Moriarity, J. L. et al. The natural history of cavernous malformations: A prospective study of 68 patients. Neurosurgery 44(6),
1166-1171. https://doi.org/10.1097/00006123-199906000-00003 (1999).

58. Robinson, J. R., Awad, I. A. & Little, J. R. Natural history of the cavernous angioma. J. Neurosurg. 75(5), 709-714. https://doi.org/
10.3171/jns.1991.75.5.0709 (1991).

Author contributions

Concept and design: MZ. Acquisition, analysis, or interpretation of data: all authors. Drafting of the manuscript:
MZ. Critical revision of the manuscript: PJ and XL. Statistical analysis: all authors. Supervision: MZ. All authors
approved the final manuscript.

Funding
This study was supported by the Kaifeng Science and Technology Development Plan Project (Grant No. 2003042).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/s41598-024-61851-4.

Correspondence and requests for materials should be addressed to M.Z.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:11022 https://doi.org/10.1038/s41598-024-61851-4 nature portfolio


https://doi.org/10.1227/00006123-199508000-00010
https://doi.org/10.3171/jns.1997.87.2.0190
https://doi.org/10.1227/01.Neu.0000343668.44288.18
https://doi.org/10.3171/2013.7.Jns13462
https://doi.org/10.1007/s10143-022-01815-2
https://doi.org/10.3171/jns.1995.83.1.0056
https://doi.org/10.3171/jns.1995.83.1.0056
https://doi.org/10.3171/jns.1995.83.5.0820
https://doi.org/10.1007/s10143-021-01591-5
https://doi.org/10.1111/jon.13072
https://doi.org/10.1007/978-1-0716-0640-7_3
https://doi.org/10.1007/978-3-319-02411-0_20
https://doi.org/10.1097/00006123-199906000-00003
https://doi.org/10.3171/jns.1991.75.5.0709
https://doi.org/10.3171/jns.1991.75.5.0709
https://doi.org/10.1038/s41598-024-61851-4
https://doi.org/10.1038/s41598-024-61851-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identifying potential (re)hemorrhage among sporadic cerebral cavernous malformations using machine learning
	Methods
	Participants
	Study design and feature selection
	Machine learning algorithm and dealing with imbalanced data
	Model development and feature importance
	Model performance in testing cohort
	Statistical analysis
	Ethical considerations

	Results
	Baseline characteristics
	Comparison of model’s performance in cross-validation
	Feature Importance analysis and development of 4-Elements model
	Performance of all-Elements model and 4-Elements model on testing cohort

	Discussion
	References


