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Identifying potential  
(re)hemorrhage among sporadic 
cerebral cavernous malformations 
using machine learning
Xiaopeng Li 1,4, Peng Jones 2,4 & Mei Zhao 3*

The (re)hemorrhage in patients with sporadic cerebral cavernous malformations (CCM) was the 
primary aim for CCM management. However, accurately identifying the potential (re)hemorrhage 
among sporadic CCM patients in advance remains a challenge. This study aims to develop machine 
learning models to detect potential (re)hemorrhage in sporadic CCM patients. This study was based 
on a dataset of 731 sporadic CCM patients in open data platform Dryad. Sporadic CCM patients 
were followed up 5 years from January 2003 to December 2018. Support vector machine (SVM), 
stacked generalization, and extreme gradient boosting (XGBoost) were used to construct models. 
The performance of models was evaluated by area under receiver operating characteristic curves 
(AUROC), area under the precision-recall curve (PR-AUC) and other metrics. A total of 517 patients 
with sporadic CCM were included (330 female [63.8%], mean [SD] age at diagnosis, 42.1 [15.5] years). 
76 (re)hemorrhage (14.7%) occurred during follow-up. Among 3 machine learning models, XGBoost 
model yielded the highest mean (SD) AUROC (0.87 [0.06]) in cross-validation. The top 4 features of 
XGBoost model were ranked with SHAP (SHapley Additive exPlanations). All-Elements XGBoost 
model achieved an AUROCs of 0.84 and PR-AUC of 0.49 in testing set, with a sensitivity of 0.86 and 
a specificity of 0.76. Importantly, 4-Elements XGBoost model developed using top 4 features got 
a AUROCs of 0.83 and PR-AUC of 0.40, a sensitivity of 0.79, and a specificity of 0.72 in testing set. 
Two machine learning-based models achieved accurate performance in identifying potential (re)
hemorrhages within 5 years in sporadic CCM patients. These models may provide insights for clinical 
decision-making.

Keywords Cerebral cavernous, Malformations, Intracerebral hemorrhage, Machine learning, 4-Elements 
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Cerebral cavernous malformations (CCM), mostly caused by loss-of-function of mutations  genes1, are vascular 
lesions of the brain with a risk of causing intracerebral hemorrhage (ICH)1–3. CCM show a familial or sporadic 
 form4, and also could be detected after radiation  therapy5, almost 20% of CCM found with multiple  locations6,7. 
These CCM-related ICH mainly caused headaches, seizures, impaired consciousness, and focal neurological 
 deficits8. A meta-analysis with 7 patient cohorts demonstrated that a 5-year ICH risk for CCM was 15.8% using 
reported  standards9. As the most feared complication, symptomatic (re)hemorrhage is the primary aim for CCM 
 management4, especially repetitive hemorrhage leading to being disabled and  fatal10,11. Most previous studies 
focused on identifying risk factors of ICH among CCM  patients7,12–14. A report with a dataset containing 731 
CCM patients followed up from 2003 to 2018 based on Cox proportional hazards model showed that prior ICH 
and brainstem localization were associated with a higher risk of (re)-hemorrhage15. Using this large and invalu-
able dataset, machine learning models also could be constructed to detect potential (re)-hemorrhage with several 
clinical records of CCM patients. Identifying the potential (re)bleeding in advance among CCM patients and 
initiating prompt treatment, such as surgical resection, conservative  treatment1,4 or long-term antithrombotic 
therapy  use16–19, is essential for CCM management.
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However, the established machine learning model for detecting potential (re)hemorrhage among CCM 
patients is still lacking. The prediction models based on machine learning algorithms showed robust performance 
in various areas including medical  events20–23. Thus, we suppose that machine learning algorithms might make it 
possible to yield accurate prediction models, even providing limited medical information about CCM patients.

The present study aimed to develop and validate prediction models that could distinguish sporadic CCM 
patients of potential (re)hemorrhage from those without risk of (re)hemorrhage within 5 years. Here, we report 
machine learning models with comparatively high predictability for identifying potential (re)hemorrhage within 
5 years, which may provide insights for clinical decision-making for the treatment of sporadic CCM patients.

Methods
Participants
This study included a dataset of 731 sporadic CCM patients in the data platform Dryad, the collection of which 
was approved by university institutional review and written consent was acquired from all  patients15,24. These con-
secutively admitted patients were prospectively followed up 5 years from January 1, 2003, to December 31,  201815. 
Hemorrhage during registration and occurrence of (re)hemorrhage in follow-up were evaluated by reported 
standards, and 64% completeness of follow-up with a high censoring rate was due to surgical  treatment15.

Study design and feature selection
We selected 517 sporadic CCM patients and 12 features in this dataset, which include: age at diagnosis, sex, 
supratentorial CCM, CCM at brain stem, CCM at infratentorial nonbrain stem, CCM volume, developmental 
venous anomaly (DVA), hypercholesterolemia, hypertension, diabetes, prior ICH, (re)hemorrhage during follow-
up within 5 years. For patients with prior ICH, CCM volume was measured via the sum of CCM lesion and 
hemorrhage  lesion15. Patients during follow-up without (re)hemorrhage receiving surgical treatment and those 
with missing information about surgery information in follow-up were excluded. Missing values in features of 
hypercholesterolemia, diabetes, and hypertension were imputed using multiple imputation by chained equations 
(MICE) with the aid of python module  miceforest25.

Machine learning algorithm and dealing with imbalanced data
Support vector machine (SVM), one robust supervised machine learning method, is used for analyzing datasets 
for classification and  regression26,27. Extreme gradient boosting (XGBoost) is an ensemble learning algorithm 
based on decision  trees28, showing accurate performance in the medical  field29,30. Stacked generalization, often 
termed as stacking, super learning, or stacked  regression31,32, combines multiple base classifiers with a final clas-
sifier aiming at reducing biases. Stacking is a common method to ensemble various algorithms into a powerful 
 learner31. For our stacking model, we implemented decision  trees33, random forests, gradient boosted decision 
trees (GBDT)34, SVM, multi-layer  perceptron35, and k nearest  neighbors36 as the base estimators, and logistic 
regression as the final estimator.

Among all included 517 sporadic CCM patients, 76 patients occurred (re)hemorrhage during follow-up, 
yielding imbalance. Dealing with imbalanced data for machine learning algorithms is challenging in academia 
and  industry37. Random under-sampling has been adopted to reduce the majority  class20,21, to aid the algorithm 
in identifying the minority class. In the training and validation cohort, we applied random under-sampling to 
reduce the size of sporadic CCM patients without (re)hemorrhage.

Model development and feature importance
The dataset was randomly split into the training and validation cohort (80%) and the testing cohort (20%). The 
prediction models were built with the aid of the efficient tool scikit-learn (version 1.0.2) and other modules 
(pandas, numpy, matplotlib). The hyperparameters were tuned to maximize the area under the receiver operat-
ing characteristic curves (AUROC) with the aid of GridSearchCV in the training and validation cohort. We 
trained three models using three repeats of five-fold stratified cross-validation. Models performance, including 
precision, recall, and F-score, was also calculated in the process of cross-validation. The search space for hyper-
parameters and the chosen values for all models are shown in Supplementary Table S1. Other parameters were 
set as default values.

We explored the importance ranking of features based on the XGBoost model interpreted by SHAP (SHapley 
Additive exPlanations). The 4-Elements model was built using the top 4 features (CCM volume, prior ICH, CCM 
at brain stem, age at diagnosis).

Model performance in testing cohort
To validate the performance of the XGBoost models, we calculated the AUROC and the area under the precision 
recall curve (PR-AUC). The evaluation metrics, including sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), positive likelihood ratio, and negative likelihood ratio, were also computed.

Statistical analysis
The normally distributed continuous variable was analyzed via a two-sided t-test, whereas the Mann–Whitney 
test was conducted for nonnormally distributed continuous variables. Categorical data were performed via χ2 test 
including continuity correction in case of low frequencies. Statistical significance was set at p < 0.05 (two-sided). 
Statistical analyses were conducted with the use of SAS software, version 9.4 (SAS Institute Inc).
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Ethical considerations
The dataset of sporadic CCM patients is sourced from the open data platform Dryad. Standard protocol and 
registrations of patients were approved by the institutional review board of Duisburg-Essen University (review 
board identification 14-5751-BO and 19-8662-BO)15. The written consent was also acquired from all  patients15. 
All procedures of this study involving human participants were in accordance with the ethical guidelines of the 
declaration of Helsinki.

Results
Baseline characteristics
A total of 517 sporadic CCM patients were included in this study cohort (330 female patients [63.8%], mean [SD] 
age at diagnosis, 42.1 [15.5] years), among whom 76 patients (14.7%) experienced (re)hemorrhage during 5-year 
follow-up. The dataset was randomly assigned to the training set and the testing set. The baseline features of the 
two groups are shown in Table 1. The flow diagram of the modeling has been illustrated in Fig. 1.

Comparison of model’s performance in cross-validation
3 prediction models were developed using 11 features of sporadic CCM patients. For the evaluation of metrics 
of models, sporadic CCM patients who occurred (re)hemorrhage during follow-up were treated as true positives 
whilst those without risk of bleeding were considered to be true negatives. ROC curves and the performance of 
three prediction models resulting from three repeats of five-fold stratified cross-validation are shown (Fig. 2). 
Among these algorithms, the XGBoost model achieved the highest mean (SD) AUROC of 0.87 [0.06] with a 
recall of 0.78 and a precision of 0.79. Therefore, we selected XGBoost algorithm to build prediction models.

Table 1.  Baseline characteristics of the patients cohort. IQR interquartile range, CCM cerebral cavernous 
malformations, DVA developmental venous anomaly, ICH intracerebral hemorrhage. a P < 0.05.

Training and validation cohort (n = 413) Testing cohort (n = 104) P value

Age at diagnosis, years; mean (SD) 41.5 (15.8) 44.6 (14.2) 0.065

Female (%) 263 (63.7) 67 (64.4) 0.888

Supratentorial CCM (%) 257 (62.2) 64 (61.5) 0.897

CCM at Infratentorial nonbrain stem (%) 40 (9.7) 9 (8.7) 0.748

CCM at brain stem (%) 126 (30.5) 32 (30.8) 0.959

CCM volume,  cm3; median (IQR) 0.54 (0.18–2.00) 0.72 (0.17–1.90) 0.918

Associated DVA (%) 168 (40.7) 39 (37.5) 0.554

Prior ICH (%) 175 (42.4) 45 (43.3) 0.869

Hypertension (%) 89 (21.5) 30 (28.8) 0.114

Hypercholesterolemia (%) 27 (6.5) 13 (12.5) 0.042a

Diabetes (%) 15 (3.6) 4 (3.8) 1.000

Outcome: (re)hemorrhage (%)

 Yes 62 (15) 14 (13.5)
0.690

 No 351 (85) 90 (86.5)

83 Validation cohort 104 Testing cohort

5-Fold stratified cross-validation

330 Training cohort

731 Patients with sporadic cerebral cavernous malformations(CCM) were followed 
up 5 years between January 1, 2003, and December 31, 2018

214 

7 Missing information about  surgery in follow-up
207 Patients without (re)hemorrhage in follow-up underwent surgery  
Excluded

83 Validation cohort 104 Testing cohort

5-Fold stratified cross-validation

330 Training cohort

731 Patients with sporadic cerebral cavernous malformations(CCM) were followed 
up 5 years between January 1, 2003, and December 31, 2018

214 

7 Missing information about  surgery in follow-up
207 Patients without (re)hemorrhage in follow-up underwent surgery  
Excluded

Figure 1.  Flow diagram of study.
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Feature Importance analysis and development of 4-Elements model
To shed light on the feature importance, Shapley values based on the XGBoost model were calculated. The feature 
importance ranking, determined by the sum of the Shapley value magnitudes, is illustrated in Fig. 3, each point 
with color on behalf of the feature value of one patient.

For easy usage of prediction models for clinicians, the 4-Elements model based on the top 4 features (CCM 
volume, prior ICH, CCM at brain stem, age at diagnosis) using XGBoost was built. It should be noted that, for 

Figure 2.  The Performance of Models in Identifying the Potential (Re)hemorrhage in Cross-Validation. (A) 
The receiver operating characteristic (ROC) curves of machine-learning based models using 3 repeats of fivefold 
stratified cross-validation. (B) Representative performance of 3 machine learning models. AUC  area under the 
curves, CCM cerebral cavernous malformations, SVM support vector machine, Stacking stacked generalization, 
XGBoost extreme gradient boosting.

Figure 3.  Summary plot of SHAP (SHapley Additive exPlanations) based on XGBoost model. The plot shows 
the ranking of all 11 features affecting the output of the XGBoost model. Each point in every feature is on 
behalf of a concrete sporadic CCM patient, with a Shapley value for the respective feature. Feature importance 
is ranked by the sum of Shapley values in a descending manner. CCM cerebral cavernous malformations, ICH 
intracerebral hemorrhage, DVA developmental venous anomaly.
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those sporadic CCM patients with prior ICH, CCM volume was measured as the sum of CCM lesion and hem-
orrhage lesion. The ROC curves of 4-Elements model in cross-validation are demonstrated in Supplementary 
Fig. S1.

Performance of all-Elements model and 4-Elements model on testing cohort
Figure 4 shows ROC curves and PR curves of all-Elements model and 4-Elements model for testing cohort. 
The all-Elements model generated AUROCs of 0.84, whereas this value for 4-Elements model was 0.83. The all-
Elements model and 4-Elements model demonstrated a PR-AUC of 0.49 and 0.40, respectively.

Table 2 demonstrates the representative performance of developed models. The sensitivity and specificity of 
all-Elements model based on XGBoost were 0.86 and 0.76. 4-Elements model achieved a sensitivity of 0.79 and 
a specificity of 0.72.

Discussion
To the best of our knowledge, the all-Elements model and 4-Elements model are the first developed machine-
learning based models for detecting the potential (re)hemorrhage among sporadic CCM patients, especially the 
readily used 4-Elements model. The present developed all-Elements model using XGBoost algorithm achieved 
an AUROC of 0.84, with a sensitivity of 0.86 and a specificity of 0.76, demonstrating a comparatively accurate 
performance in identifying the potential (re)hemorrhage among CCM patients within 5 years. Importantly, 
the 4-Elements model yielded accurate performance as well in detecting the potential (re)hemorrhage, with an 
AUROC of 0.83, a sensitivity of 0.79, and a specificity of 0.72.

Compared to SVM model and stacking model, the developed XGBoost model yields higher AUROC in 
predicting the potential (re)hemorrhage using 11 clinical records of CCM patients. Shapley values have been 
adopted to interpret feature  importance20,22,29,38 and feature importance based on the XGBoost model was ranked 
with the aid of Shapley values. For easy and ready usage in clinical practice, previous studies have built machine 
learning models using only several top  features30,39,40. For our XGBoost model, the top 4 features are CCM vol-
ume, presence of ICH, CCM at brain stem, and age at diagnosis, with which we try to build 4-Elements model. 
Researchers identified prior hemorrhage as a major risk factor for subsequent  hemorrhage7,9,41–43. Localized in 

Figure 4.  The ROC curves and precision recall curves for all-Elements model and 4-Elements model on the 
testing set. ROC curves (A) and precision recall curves (B) for evaluating all-Elements model and 4-Elements 
model on the testing set. ROC curves are receiver operating characteristic curves. AUC  area under the curves.

Table 2.  The performance of all-Elements model and 4-Elements model on testing cohort. PPV positive 
predictive value, NPV negative predictive value, LR + positive likelihood ratio, LR– negative likelihood ratio.

Sensitivity Specificity PPV NPV LR + LR−

XGBoost

 All-Elements model 0.86 0.76 0.35 0.97 3.51 0.19

 4-Elements model 0.79 0.72 0.31 0.96 2.83 0.30



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11022  | https://doi.org/10.1038/s41598-024-61851-4

www.nature.com/scientificreports/

deep regions of the brain, brainstem CCM and thalamic CCM took up approximately one-third44 and it was 
found that CCM lesions at the brainstem increased hemorrhage  rate12,45–48.

Abundant evidence links age with the risk of (re)hemorrhage among CCM patients. Based on 242 patients 
with brainstem CCM, Li et al. found that the interval of rehemorrhage-free was significantly shorter in patients 
aged 50 years or  older49 and subsequent studies also showed that patients aged 55 years or older were associated 
with  hemorrhage50. However, the finding related to the role of age in (re)hemorrhage of CCM patients is not 
consistent. Young age (< 40 years or < 45 years) was suggested to be associated with CM  hemorrhage13,51. In con-
trast with the above conclusion, several studies also demonstrated that age was not associated with subsequent 
symptomatic hemorrhage among CCM  patients47,52. From the sight based on machine learning, we identified 
age at diagnosis of CCM as a risk factor for (re)hemorrhage.

Although decades of surgical excision for CCM patients, surgical treatment remains  controversial4. Neuro-
surgical excision of CCM is executed to prevent symptomatic ICH and the risk of CCM resection includes death 
or nonfatal  stroke4,53. To prevent potential hemorrhage, surgical excision could be considered in asymptomatic 
CCM patients in noneloquent  areas54. CMs located in proximity to the ventricular system or easily accessible 
solitary CMs in non-eloquent areas may be in need of neurosurgical  treatment55. Surgery for CCMs at critical 
supratentorial areas caused significant mainly transient morbidity, and these could be recovered over  time56. 
Performing surgery in a subacute phase 2–4 weeks after bleeding is suggested for CCM  patients55.

It is worth noting that several findings concluded CCM size was not a risk factor for the hemorrhage 
 rate47,51,52,57,58. However, one study based on anatomical location also found that CCM with volume (≥ 1  cm3) 
at infratentorial cavernous lesions was associated with a high risk of CM rupture whereas that at supratentorial 
cavernous lesions did not show any relating  sign13. It is clearly shown that all the top 4 features interpreted by 
Shapley values have been suggested to be associated with CCM hemorrhage, which may ensure the accurate 
performance of our 4-Elements model. Interestingly, CCM volume in our prediction model has been demon-
strated as the top 1 feature for distinguishing potential (re)hemorrhage of CCM patients from those without (re)
hemorrhage risk. We suppose the underlying mechanism may be that machine learning algorithms do not view 
solitary features and complex relationships between features significantly influencing the resulting classification 
may be  constructed22 in the process of building a model. CCM volume in this study was measured by the sum 
of CCM lesion and hemorrhage lesion in the case of CCM patients with prior  ICH15.

Although we impute missing values in features of hypercholesterolemia, hypertension and diabetes, these 
features weakly affect the output of XGBoost model by viewing Shapley values. Further, features used to build 
the 4-Elements model do not contain missing values.

Surgical resection is a definitive cure for selected CCM patients though remains conflicting due to substantial 
operative  risks3,4. Antithrombotic therapy use in a long-term lowered the risk of ICH in CCM  patients19. CCM 
patients labeled by the two machine learning models as potential (re)hemorrhage should, therefore, be considered 
by clinicians as requiring prompt treatment. Further, CCM patients who are predicted by two models without 
risk of potential (re)hemorrhage could avoid unnecessary treatment. Our all-Elements model and 4-Elements 
model fill the gap that the potential (re)hemorrhage CCM patients within 5 years among CCM patients could 
be recognized in advance.

This study has inherent limitations. 517 sporadic CCM patients were included in this study, and large data-
sets may need to further validate the all-Elements model and 4-Elements model. Moreover, collecting sufficient 
clinical records of sporadic CCM patients may facilitate select important features greatly influencing the output 
of the model.

In conclusion, we developed all-Elements XGBoost model and 4-Elements XGBoost model for identifying 
potential (re)hemorrhage within 5 years among sporadic CCM patients, both achieving comparatively accurate 
performance. Importantly, the 4-Elements model is convenient for clinical usage. The two models will aid clinical 
decision-making, such as initiating prompt treatment for the potential (re)hemorrhage or avoiding unnecessary 
treatment for those without (re)hemorrhage risk. We are limited by the size of institutions to collect follow-up 
data of CCM patients for external validation, and we also could not find a dataset of CCM patients in the open 
platform. Further validating the all-Elements model and 4-Elements model with large datasets of sporadic CCM 
patients is necessary.

Data availability
The data and code supporting this study is available from the corresponding author upon reasonable request.
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