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Identification 
of necroptosis‑related gene 
signatures for predicting 
the prognosis of ovarian cancer
Yuling Qin 1,3, Yawen Sheng 2,3, Mengxue Ren 1, Zitong Hou 1, Lu Xiao 1 & Ruixue Chen 1*

Ovarian cancer (OC) is one of the most prevalent and fatal malignant tumors of the female 
reproductive system. Our research aimed to develop a prognostic model to assist inclinical treatment 
decision‑making.Utilizing data from The Cancer Genome Atlas (TCGA) and copy number variation 
(CNV) data from the University of California Santa Cruz (UCSC) database, we conducted analyses 
of differentially expressed genes (DEGs), gene function, and tumor microenvironment (TME) 
scores in various clusters of OC samples.Next, we classified participants into low‑risk and high‑risk 
groups based on the median risk score, thereby dividing both the training group and the entire 
group accordingly. Overall survival (OS) was significantly reduced in the high‑risk group, and two 
independent prognostic factors were identified: age and risk score. Additionally, three genes—C‑
X‑C Motif Chemokine Ligand 10 (CXCL10), RELB, and Caspase‑3 (CASP3)—emerged as potential 
candidates for an independent prognostic signature with acceptable prognostic value. In Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, pathways 
related to immune responses and inflammatory cell chemotaxis were identified. Cellular experiments 
further validated the reliability and precision of our findings. In conclusion, necroptosis‑related genes 
play critical roles in tumor immunity, and our model introduces a novel strategy for predicting the 
prognosis of OC patients.
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Ovarian cancer (OC) is frequently diagnosed at an advanced stage, which contributes to its high mortality rates. 
In 2020, there were approximately 314,000 new cases and over 207,000 deaths  worldwide1,2. Currently, the most 
common treatments for OC are surgery and chemotherapy; however, the low survival and high recurrence rate 
continue to confound the medical community. Consequently, new treatment modalities, such as targeted therapy 
or immunotherapy, are  imperative3. The purpose of this study was to develop a prognostic model for OC to 
facilitate more effective targeted therapies.

Necroptosis is a novel programmed cell death pathway characterized by significant inflammatory outcomes 
and immune responses. It differs from apoptosis, and its common symptoms include cellular swelling, organelle 
dysfunction, extensive mitochondrial damage, and plasma membrane  rupture4,5. Necroptosis is dependent on 
receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain like pseudokinase 
(MLKL) from a morphological  standpoint6,7. According to studies, necroptosis may play crucial roles in tumori-
genesis and also has tumor-suppressing  effects8,9. However, the relationship between necroptosis and OC remains 
unclear. In order to predict the prognosis of OC, we performed a novel necroptosis-related gene signatures 
analysis. Using high-throughput sequencing technology and bioinformatics analysis, researchers can screen out 
a large number of Necroptosis-related Genes (NR Genes) from ovarian cancer tissues in recent research. These 
NR Genes are likely to be closely related to the occurrence and development of ovarian cancer. We can gain a 
deep understanding of their biological functions and prognosis in ovarian cancer through further functional 
annotation and enrichment analyses of these NR Genes. The advancement of interaction prediction research in 
various fields of computational biology would provide valuable insights into genetic markers related with OC 
in recent  years10,11.

Materials and methods
Data collection
We acquired gene expression and clinical information of 379 cancer samples from TCGA (https:// tcga- data. nci. 
nih. gov/ tcga/). Raw TCGA data is subjected to an ID transformation. Then, genes associated with necroptosis 
were retrieved from previous research and the published literature. In addition, TCGA provides mutation data 
as supplementary information. CNV data were downloaded from the UCSC database (http:// genome. ucsc. edu/). 
In addition, GSE140082 was downloaded from the Gene Expression Omnibus (GEO) database as an external 
cohort for validation.

Visualization of necroptosis‑related genes and CNVs
It’s been demonstrated that CNVs can predict different tumor  subtypes12. The collected CNVs genes exhibited 
copy loss and copy gain variants, and we then evaluated the CNVs at the level of the 23  chromosomes13,14. Muta-
tion annotation format (MAF) data were processed and analyzed using the MutSigCV algorithm and the"mafools" 
software package. A waterfall plot was used to visualize the mutational information of NR Genes from OC 
patients in the TCGA database. The CNV frequency figures were visualized using the "barplot" command in the 
R language. The ordinate represented the frequency of the CNV that corresponded to NR Genes, and the abscissa 
represented the name of NR Genes. Circles of CNV frequencies were drawn using the "RCircos" package (Red: 
high frequency of increased NR Genes copy number; Blue: high frequency of deleted NR Genes copy number).

Consensus clustering analysis
Consensus clustering analysis of OC samples was performed using both "limma" and "consensusClusterPlus" 
packages based on euclidean distance and Wards linkage. Initially, 379 cancer samples were divided into k-clus-
ters. The quantitative stability evidence was obtained based on cumulative distribution function (CDF) in order 
to further confirm the optimal number of clusters. Next, the identified k clusters and actual patient prognosis 
were evaluated using the Kaplan–Meier and progression-free survival curves. Based on the sample expression 
level of OC patients in the TCGA database, the matrix scores and immunity scores were calculated using the 
“ESTIMATE” package among genotypes. In order to quantify and analyze the immune cell infiltration levels of 
each genotyping sample, the “CIBERSORT” computational R package was used to plot heat maps and pairwise 
difference plots. Gene function and differentially expressed genes studies were performed for every cluster. The 
ClueGo plugin in Cytoscape (3.9.0) was used to do a functional analysis of DEGs, using a threshold of p < 0.05.

Establishment and validation of the risk signature
Half of the 379 cancer samples were chosen at random as the train group using Strawberry Perl and the caret 
R package. Initially, a Univariate Cox analysis was performed on the necroptosis-related gene signature in the 
train group to identify prognosis-related genes (p < 0.05)15,16. Then, the optimal Log(λ) value was determined 
using LASSO regression analysis with tenfold cross-validation17–22, and a gene signature was constructed 
 accordingly23,24. To validate our signature, the entire group was utilized in order to confirm the prognostic 
signature. Risk score 

∑n
i=1

expi × ci=
∑n

i=1
expi × ci (where n, expi, and ci represent the number of prognostic 

genes, the expression value, and the coefficient of gene I respectively. The patients were then split into high-risk 
and low-risk groups based on the median value of the risk score, the OS of the two risk subgroups was ana-
lyzed and compared using the "survival" package. In addition, Kaplan–Meier curves and multivariable analyses 
identified independent prognostic  factors25,26. A risk heat map, a risk curve, ROC curve  analysis27,28, and sur-
vival analysis were performed for our  signature29,30. For extra validation, we also used an independent external 
dataset (GSE140082). GO/KEGG enrichment  analysis31–33 of DEGs was performed using the clusterProfiler R 
 package34,35, and we used gene set enrichment analysis (GSEA) to investigate significantly enriched pathways 
in the high-risk and low-risk groups. Additionally, we contrasted m6A-related genes, immune activity, survival 
rates, and other factors.

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://genome.ucsc.edu/
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Cell culture
Sk-ov-3 human ovarian cancer cell line, purchased from Shanghai Fu Heng Biological Co. The cells were cultured 
in DMEM + 10% FBS medium (both purchased from gibco) at 37℃, 5% CO2, pH 7.2–7.4, at a sterile constant 
temperature. The cells were passaged when the cell fusion reached 90%.

CCK8
Necrostatin-1 (Nec-1) is a potent inhibitor of necroptosis, purchased from MedChemExpress. The sk-ov-3 cells 
were inoculated 24 h in advance in 96-well plates at a density of 5000 cells/well, and after one day and night of 
complete cell wall attachment, the cells were replaced with serum-free medium with or without 100 nM Nec-1 
and incubated for 24 h with the cck8 Cell Activity Kit ( The absorbance at 450 nm was measured using the cck8 
cell activity kit (purchased from Shanghai Toyobo Biotechnology Co., Ltd.).

Results
The research fow of this paper is shown in Fig. 1.

Necroptosis‑related genes and CNVs in OC patients
Finally, 379 cancer samples from TCGA and UCSC were used to extract 76 necroptosis-related genes, including 
NLRP3, TLR4, and IRF6 (Fig. 2A). Then, we calculated the frequency of CNV status (gain/loss) and discovered 
that CNV loss was more prevalent overall (Fig. 2C) (red: gain; green: loss). CNV is a structural variation in 
chromosome that can lead to amplification or deletion of a section of chromosome; therefore, to pinpoint the 
location of variations on 23 chromosomes, a heatmap was created (Fig. 2B). In the graph, CNVs are displayed 
at a maximum of the region of human chromosomes 1 and 6.

Figure 1.  Flow diagram of full-text data.
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Cancer classification
Using the CDF of the consensus index, we calculated the consensus matrix for each value of k by increasing 
the clustering variable (k) from 2 to 9. This allowed us to use all 379 OC patients from the TCGA to define 
the associations between the expression of 76 genes related to necroptosis and OC classifications. The greatest 
value, k = 3, showed that 379 OC patients could be grouped into three groups (Fig. 3A–C). Figure 3D illustrates 
the minimal variations in immune cell expression levels among the three clusters, while Fig. 3E displays the 

Figure 2.  Genes and CNVs associated with necroptosis in OC. (A) Identified 76 genes related to necroptosis in 
OC samples. (B) The position of variations on 23 chromosomes. (C) The frequency of CNV (gain/loss) status.
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percentage of unique immune cells inside each cluster. Tumor purity and TME scores (immune, stromal, and 
estimation scores) for three clusters are shown in Fig. 3F–I. Figure 4A displays the functional analysis results of 
a differentially expressed genes conducted to better understand the differences among three clusters. Accord-
ing to the Kaplan–Meier analysis (Fig. 4B, p < 0.001), cluster 3 had a significantly better survival probability 
than the other clusters. In cluster 3, CXCL10 expression was particularly high, while no other gene showed any 
specificity (Fig. 4C).

Construction and verification of the model
On the basis of clinical OC cases from the TCGA, prognosis-related genes were analyzed using univariate Cox 
proportional hazard regression analysis (p < 0.05). Due to the possibility of overfitting problems in the prognostic 
model, the Lasso regression with tenfold cross-validation was employed (Fig. 5A,B). The following formula was 
used to calculate the risk score for OC patients: risk score = CXCL10 × (− 0.186741112236078) + RELB × (0.669
433208748248) + CASP3 × (− 0.285126720445466).

A comparison of risk scores, principal component analysis (PCA), tSNE analysis, survival time, and 
Kaplan–Meier survival curves of OS (survival probability) of OC patients were made between high- and low-risk 

Figure 3.  Comparisons of the 76 necroptosis-related genes into three clusters. (A–C) Using the CDF to 
determine K-cluster. (D) Immune cell expression in three clusters. (E) The proportion of various immune cells 
present in these clusters. (F–I) TME scores of three clusters.
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groups in the train and the entire group (Fig. 5C–L). The median risk score was utilized to create high- and 
low-risk subgroups. The group with the lowest risk had a better prognosis than the groups with the highest risk, 
according to these figures.. Relevant gene expression differences between the two groups were also observed 
(Fig. 5M,N). Furthermore, We added an additional validation set (GSE140082) with a survival curve illustrating 
that the high-risk group is detrimental to patient prognosis (Supplementary Fig. 1) and a ROC curve illustrating 
its good predictive value (Supplementary Fig. 2).

Construction of nomogram
It was discovered that age and risk score were independent prognostic factors. The hazard ratio (HR) and 95 
percent confidence interval (CI) for age and risk score are as follows:: risk score 1.460 (1.227–1.738) (p < 0.001) 
in univariate Cox (uniCox) regression and 1.419 (1.192–1.691) (p < 0.001) in multivariate Cox (multi-Cox) 
regression, respectively; age in uniCox regression (1.022 and 1.010–1.035; p < 0.001) and age in multivariate 
Cox regression (1.020 and 1.008–1.033; p = 0.002) (Fig. 6A,B). Tumor grade was excluded as a prognostic factor 
since its p value was not less than 0.05.

Two independent factors (risk score and age) were used to develop a nomogram for predicting the 1-, 3-, 
and 5-year OS incidences of OC patients (Fig. 6C). We also constructed 1-, 3-, and 5-year calibration plots to 
confirm that the nomogram accurately predicted 1-, 3-, and 5-year OS (Fig. 6D).

Figure 4.  (A) Functional Analysis of the differentially expressed genes (DEGs) of three clusters. (B) Probability 
of survival in the three clusters. (C) The levels of gene expression in three clusters.
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Figure 5.  Demonstrates the construction and prognostic value of the three necroptosis-related gene models in 
the train and entire groups. (A) Cross-validation performed 10 times for variable selection in the LASSO model. 
(B) LASSO coefficient profile of three genes associated with necroptosis. (C,D) Risk scores for the train and the 
entire group. (E,F) The train and entire groups’ principal component analysis (PCA). (G,H) The tSNE analysis, 
between the train’s high- and low-risk groups and the entire group. (I,J) Survival rate of OC patients in the train 
and the entire group. (K,L) OS (survival probability) Kaplan–Meier survival curves between high- and low-risk 
groups in the train and the entire group. (M,N) Expression of three relevant genes in the train and the entire 
group.
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Independent prognostic value of the risk model
The univariate Cox regression analysis and multivariate Cox regression analysis were performed to evaluate 
whether the prognostic risk score model could be used as an independent prognostic predictor. Both univariate 
Cox regression analysis and multivariate Cox regression analysis showed that the age, grades, and risk scores 
can be used as independent prognostic factors when assessing patients with OC. ROC curves were generated 
to validate the accuracy of the prognostic model, and the area under the ROC curve (AUC) could be used to 
illustrate the results of ROC  curves36. The 1-, 2-, and 5-year AUC for the train group were 0.707, 0.720, and 
0.709, respectively, while those for the entire group were 0.598, 0.596, and 0.628, respectively (Fig. 7A,B). Clinical 
ROC curve analysis proved that the clinical factor: age (0.711) has greater predictive ability than other clinical 
factors (Fig. 7C).

Functional analyses of DEGs and gene set enrichment analysis (GSEA)
A differential gene KEGG and GO pathway enrichment analysis was conducted to gain a more comprehensive 
comprehension of the differences in gene functions and pathways between the high-risk and low-risk groups 
of the entire group. The DEGs were primarily associated with "immunoglobulin complex," "antigen binding," 
"immune response," "viral protein interaction with cytokine and cytokine receptor," "chemokine signaling path-
ways," and "cytokine-cytokine receptor interaction," according to our findings (Fig. 8A,B).

Additionally, we used GSEA to compare the two groups within the KEGG pathway for the entire group. 
In consequence, "adherensjunction", "adipocytokine", "ecm receptor interaction" "hedgehog signaling path-
way", "inositol phosphate metabolism", and "tight junction" were significantly activated in high-risk patients 
(Fig. 8C–H).

Immune activity in risk groups and m6a‑related genes
In the high-risk and low-risk groups, respectively, the two genes with the highest number of mutations were 
TP53 and TTN (Fig. 9A,B).

Immune cell infiltration plays a crucial role in tumor  progression37–39. Using the single-sample gene set 
enrichment analysis(ssGSEA), we compared the level of immune-related pathways and functions between the 

Figure 6.  The risk model nomogram. (A,B) Univariate and multivariate Cox regression analyses of clinical 
factors (age, grade) and risk score. (C) Nomogram incorporating independent variables (risk score and age) for 
predicting the 1-, 3-, and 5-year incidences of OS in OC patients. (D) 1-year, 3-year, and 5-year OS calibration 
plots.
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high- and low-risk TCGA groups. Except for the induced dendritic cells (iDCs), the results showed that the 
high-risk group had nearly lower levels of immune cell infiltration than the low-risk group (Fig. 9C). In addi-
tion, there were notable differences between the two groups in terms of APC coinhibition, APC costimulation, 
cytokine-cytokine receptor (CCR), checkpoint, cytolytic activity, human leukocyte antigen (HLA), inflammation-
promoting, MHC class I, parainflammation, T-cell coinhibition, T-cell costimulation, typeIFN response and 
typeIIFN response (Fig. 9D).

In addition, TME (including immune, stromal, and estimate scores) and m6A-related genes play a crucial role 
in the progression of  tumors40,41. The TME scores in the high-risk group were lower, as shown in Fig. 8E. And 
we found that expression levels of immune scores had a negative correlation with risk score (p < 0.05), whereas 
stromal scores had little bearing on risk score according to our risk model (Fig. 9F,G).

Regarding m6A-related genes, the high-risk group had higher levels of METTL3, YTHDF1, RBM15, and 
ZC3H13 than the low-risk group (Fig. 9H).

Except for CD200, the expression of all immune checkpoints was nearly greater in the high-risk group than 
in the low-risk group (Fig. 9I). In addition, the TIDE score could simulate tumor immune evasion, which was 
more prevalent in the high-risk group compared to the low-risk group (Fig. 9J).

CCk‑8 results
In addition, we used cck8 Cell Activity Kit to evaluate the activity of ovarian cancer cells by the appended Nec-1. 
CCk-8 results showed an increase in absorbance at 450 nm and enhanced activity of ovarian cancer cells after the 
addition of Nec-1, an inhibitor of necrotic apoptosis (Fig. 10).It seems reasonable to speculate that necroptosis 
may play crucial roles in the progress of OC.

Discussion
OC is a malignant gynecologic tumor with a poor prognosis and a high mortality rate, and surgery is generally 
the first-line  treatment42. Patients with extensive metastatic deposits and malignant ascites in the enterocoelia, 
which cannot be treated surgically, are frequently not diagnosed until the disease has progressed to an advanced 
 stage43,44. The 5-year survival rate for patients with advanced-stage ovarian cancer is less than 50%45.

Necroptosis is a type of programmed cell death that is caspase-independent and distinct from apoptosis. It 
is mediated by death receptors such as receptor-interacting protein kinase (RIP) 1, TNF receptor 1, and RIP3, 
which cause necroptosis by activating the kinase domain-like protein (MLKL) to form  necrosomes46–48.

Bioinformatics technology has been steadily advancing and developing over the past few years. Prognostic 
prediction of cancer by building the prognostic model contributes to the clinical treatment of patients. Studies 
have demonstrated that necroptosis can inhibit the development and occurrence of tumors, particularly colorectal 
cancer and breast  cancer49. Additionally, it can promote inflammatory death and create a microenvironment 
conducive to the growth of tumor cells, thereby promoting tumor growth. According to research, RIPK1 inhibi-
tors can inhibit tumor growth and limit  metastasis50,51. Overall, necroptosis has been shown to be a double-edged 
sword for tumor progression and a potential tumor therapy, specifically for drug-resistant  tumors52. Our goal is 
to create a new prognostic model to evaluate the prognostic significance of genes related to necroptosis in OC.

Before their differences were identified by Kaplan–Meier analysis and differential gene expression analysis, 
379 cancer samples in this study were divided into three clusters. Afterward, we constructed a prognostic model 
based on 76 necroptosis-related genes isolated from OC patients. Half of the patients were randomly assigned to 
the train group, and the entire group was used to validate. The comparisons revealed that the low-risk group had 
a more favorable prognosis than the high-risk group. After calculating each patient’s risk score, two independent 
prognostic factors (risk score and age) were identified, and univariate Cox (uni-Cox), multivariate Cox (multi-
Cox), nomogram, and calibration curves were used to validate and evaluate the model.

Three necroptosis-related genes, CXCL10, RELB, and CASP3, were identified in the prognostic model through 
multiple regression analyses. CXCL10 is one of the inflammatory chemokines, and the research has shown that 

Figure 7.  Evaluation of the risk model. (A,B) The area under the ROC curve (AUC) at 1 year, 2 years, and 5 
years of the train and entire groups. (C) The risk score, age, and grade ROC curves.
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CXCL10 expression is crucial for ovarian cancer prognosis and TME immune  characteristics53. Furthermore, 
CXCL10 was found to have an impact on angiogenesis in addition to stimulating T lymphocytes’ ability to fight 
malignancies in the  body54. According to some studies, CXCL10 regulates immunotherapy-sensitive tumors 
and is regarded as a biomarker of favorable  prognosis55. In some studies, the level of RElB expression was asso-
ciated with glioma, non-small cell lung cancer (NSCLC), and prostate  cancer56–58. It has been demonstrated 
that CASPs, a group of proteases with similar structures, are involved in cell growth, cell differentiation, and 
apoptosis. Results indicated that CASP3 expression may improve the OS of patients with gastric cancer (GC)59. 
CASP3 is rarely expressed in various types of cancer, and CASP3 deficiency can cause cells to become resistant 
to microenvironmental stress and  therapy60. However, additional research is necessary to determine how these 
genes interact during necroptosis.

The three necroptosis-related genes were used to construct a prognostic model with a decent prognostic value 
(0.707%, 0.720%, and 0.709% at 1, 2, and 5 years, respectively), and they can be considered prognostic biomark-
ers for OC. The GO and KEGG enrichment analyses revealed that the pathways were primarily associated with 
immune responses and inflammatory cell chemotaxis; therefore, it is reasonable to assume that necroptosis can 
regulate the infiltration of immune cells and the composition of the tumor immune  microenvironment61.

Figure 8.  Functional analyses of DEGs and enrichment analysis of gene sets (GSEA). (A,B) Analysis of KEGG 
and GO enrichment pathways for DEGs in high- and low-risk groups. (C–H) The GSEA comparisons between 
high-risk and low-risk groups in the KEGG pathway for the entire group.
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Limitations and future directions
Our study had limitations that must be taken into account. Firstly, the number of patients used in the study is 
small and there is a lack of health samples. The accuracy of our model needs to be validated in other external 

Figure 9.  Immune activity in risk groups. (A,B) Variations in mutations between high- and low-risk groups. 
(C,D) Immune cell infiltration varies between high- and low-risk groups. (E) TME scores in the high- and 
low-risk groups. (F,G) Immune score and stromal score expression levels in high- and low-risk groups. (H–J) 
M6A-related genes, immune checkpoint expression, and TIDE scores in the high- and low-risk groups.
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datasets and large clinical cohorts.
Computational biology has been evolving rapidly in recent  years62,63, the advancement of interaction predic-

tion research in various fields of computational biology would provide valuable insights into genetic markers 
and related  diseases64,65, such as miRNA-lncRNA interaction  prediction66,67. MicroRNAs (miRNAs) or long non-
coding RNAs (lncRNAs) play important roles in biological activities, recent research has found that predicting the 
interaction between miRNA and lncRNA is the primary task for elucidating functional  mechanisms68,69. In addi-
tion, ODE-based theoretical modeling studies on gene/protein signaling networks have been equally important 
for the study of understanding regulatory mechanisms and finding potential therapeutic targets in  diseases70–72.

Conclusion
In conclusion, the purpose of our study was to develop a prognostic model that would facilitate the formula-
tion of clinical treatment decisions. We constructed a novel prognostic signature using three genes related to 
necroptosis in order to predict the prognosis of OC patients using multi-angle verifications, but the model did 
not have a very good predictive value. In the future, there is much work and further studies to be done in order 
to predict the prognosis and develop an accurate therapeutic strategy for the disease.

Data availability
Our data comes from public databases The Cancer Genome Atlas(TCGA) (https:// portal. gdc. cancer. gov/). All 
the data in this paper support the results of this study.

Code availability
Supplementary Material.
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