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Shifting to machine supervision: 
annotation‑efficient semi 
and self‑supervised learning 
for automatic medical image 
segmentation and classification
Pranav Singh 1, Raviteja Chukkapalli 2, Shravan Chaudhari 2, Luoyao Chen 1, Mei Chen 1, 
Jinqian Pan 1, Craig Smuda 3 & Jacopo Cirrone 1,4*

Advancements in clinical treatment are increasingly constrained by the limitations of supervised 
learning techniques, which depend heavily on large volumes of annotated data. The annotation 
process is not only costly but also demands substantial time from clinical specialists. Addressing this 
issue, we introduce the S4MI (Self‑Supervision and Semi‑Supervision for Medical Imaging) pipeline, a 
novel approach that leverages advancements in self‑supervised and semi‑supervised learning. These 
techniques engage in auxiliary tasks that do not require labeling, thus simplifying the scaling of 
machine supervision compared to fully‑supervised methods. Our study benchmarks these techniques 
on three distinct medical imaging datasets to evaluate their effectiveness in classification and 
segmentation tasks. Notably, we observed that self‑supervised learning significantly surpassed the 
performance of supervised methods in the classification of all evaluated datasets. Remarkably, the 
semi‑supervised approach demonstrated superior outcomes in segmentation, outperforming fully‑
supervised methods while using 50% fewer labels across all datasets. In line with our commitment to 
contributing to the scientific community, we have made the S4MI code openly accessible, allowing for 
broader application and further development of these methods. The code can be accessed at https:// 
github. com/ prana vsing hps1/ S4MI.
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Medical imaging analysis plays a pivotal role in clinical decision-making, aiding in diagnosis, treatment planning, 
and monitoring. The advent of deep learning has significantly enhanced the capability to analyze medical images 
both effectively and efficiently, promising to automate aspects of the diagnostic process and thereby augment 
clinical decision-making. However, the efficacy of these deep learning techniques is heavily contingent upon 
the availability of well-annotated medical image data. Unlike in natural image processing, obtaining annota-
tions in the medical domain is fraught with challenges due to privacy concerns, high costs, and the extensive 
time required for expert clinicians to produce accurate  annotations1. Moreover, the unique requirements for 
expert knowledge in medical imaging mean that traditional crowd-sourcing for annotations is not viable. This 
results in medical imaging datasets being significantly smaller than their natural imaging counterparts, lead-
ing to suboptimal performance when neural networks are trained from scratch on such limited data volumes. 
Consequently, transfer learning has become a key strategy, leveraging knowledge acquired from source domain 
tasks to enhance performance on target domain tasks in medical imaging. Transfer learning typically involves 
initializing the network with weights from a pre-trained model and subsequently fine-tuning it with target 
domain data. While transfer learning has shown promise, especially when source and target datasets, as well as 
their respective output classes, are  similar2, the distinct nature of medical imaging often limits its applicability.
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The core motivation of our study is to address these challenges by comparing machine supervision with 
traditional fully-supervised approaches in the realm of medical imaging. The acquisition of labels in medical 
imaging is notably costly and time-intensive, a hurdle that machine supervision approaches, with their scalable 
and label-free nature, aim to overcome. By enabling the development of priors that can outperform supervised 
methods, machine supervision tackles a critical bottleneck in advancing clinical treatments-the heavy reliance 
on supervised learning techniques that necessitate extensive annotated data. This study aims to elucidate the 
efficiencies that machine supervision can introduce, particularly in light of the challenges posed by the need 
for domain-specific annotation, the limited size of medical datasets due to stringent privacy regulations and 
high annotation costs, and the indispensable requirement for expert knowledge in annotating medical images.

In recent times, the field of computer vision has witnessed remarkable strides due to achievements in learn-
ing algorithms such as Deep Metric  Learning3, self-distillation4, masked image  modeling5, etc. These innovative 
approaches have enabled the learning of meaningful visual representations from unannotated image data, with 
fine-tuning models from these learners showing competitive performance  gains4. There is a growing interest in 
exploring and applying these learning algorithms to medical imaging modalities, where annotations are notably 
scarce. These algorithms, typically deployed in self-supervised, semi-supervised, or unsupervised settings, involve 
a two-stage process: (1) pre-training to acquire representations from unannotated data, and (2) fine-tuning using 
annotated data to refine the model for the specific target task.

In the realm of self-supervised learning, our work specifically focuses on DINO (Distillation with NO labels)4 
and CASS (Cross-Architectural Self-supervision)6 techniques, which are at the forefront of current research. 
These methods leverage joint  embedding7 based architecture, a cutting-edge approach that facilitates learning 
meaningful visual representations by aligning two different views of an image to the same embedding space. 
This strategy is particularly adept at extracting robust features from unannotated data, making it highly relevant 
to medical imaging analysis. Additionally, for semi-supervised learning, we delve into the cross-architectural, 
cross-teaching  method8, which represents a significant advancement towards utilizing machine supervision over 
traditional human annotation. The adoption of such state-of-the-art self/semi-supervised techniques marks a 
pivotal shift in medical imaging, emphasizing machine supervision’s scalable and label-free advantages. This is 
crucial in the context of medical imaging, where the procurement of labels is not only cost-prohibitive but also 
requires extensive time and expertise.

Building upon these considerations, this work introduces the S4MI (Self-Supervision and Semi-Supervision 
for Medical Imaging) pipeline. This novel semi-/self-supervised learning approach is designed to directly address 
the aforementioned challenges by minimizing the dependency on extensive labeling efforts. By integrating cut-
ting-edge self-supervised learning algorithms with the latest semi-supervised learning techniques, S4MI aims to 
significantly improve performance beyond the capabilities of traditional supervised approaches. This initiative 
represents a significant step towards the development of scalable healthcare solutions, leveraging the untapped 
potential of machine supervision to achieve and potentially exceed the efficacy of human-supervised methods 
in medical imaging analysis.

In this work, we evaluate the performance of state-of-the-art machine supervision approaches against tradi-
tional transfer learning across two pivotal tasks in medical image analysis: segmentation and classification. Our 
comparison spans three challenging datasets from distinct medical modalities, including histopathology slide 
images and skin lesion images. Additionally, we explore the effectiveness of machine supervision by varying the 
amount of annotated data used for fine-tuning. The machine supervision approaches examined in this study 
 include4,6 for classification  and8,9 for segmentation.

Data
To compare transfer learning from ImageNet with machine supervision and show its general applicability, we 
selected three datasets representative of those clinicians encounter in real life, featuring varying levels of class 
imbalance and sample sizes.

• Dermatomyositis: This dataset comprises 198 RGB samples from 7 patients, each image measuring 352 by 
469 pixels. With this dataset, we conduct multilabel classification, aiming to classify cells based on their pro-
tein staining into TFH-1, TFH-217, TFH-Like, B cells, and cells that do not conform to the aforementioned 
categories, labeled as ’others.’ We utilize the F1 score as our evaluation metric on the test set.

• Dermofit: This dataset consists of 1,300 image samples captured with an SLR camera, spanning the following 
ten classes: Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), Melanocytic Nevus/Mole (ML), Squamous 
Cell Carcinoma (SCC), Seborrhoeic Keratosis (SK), Intraepithelial Carcinoma (IEC), Pyogenic Granuloma 
(PYO), Haemangioma (VASC), Dermatofibroma (DF), and Melanoma (MEL). Each image in this dataset is 
uniquely sized, with dimensions ranging from 205 × 205 to 1020 × 1020 pixels.

• ISIC-2017: Within this dataset, 2,000 JPEG images are distributed among three classes: Melanoma, Sebor-
rheic Keratosis, and Benign Nevi. The evaluation of the test set is based on the Recall score.

Methods
Classification
For classification, we compare existing self-supervised techniques with transfer learning, the de facto norm 
in medical imaging. As mentioned, due to a lack of data in medical imaging, classifiers are often trained using 
initialization from other large visual datasets like  ImageNet10. The architectures are then fine-tuned on the target 
medical imaging dataset using these initializations. Alternatively, we can train using self-supervised approaches 
to provide better classification priors for the target medical imaging dataset. In self-supervised learning, an 
auxiliary task is performed without labels to learn fine-grained information about the image. This auxiliary task 
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can be performed in various ways, for example, by corrupting the image, followed by its reconstruction, creat-
ing copies of the same image (positive pairs), and minimizing the distance between them using two differently 
parameterized architectures or redundancy reduction. In our study, we focus on  DINO4 and  CASS6. DINO 
learns by creating augmentation-asymmetric copies of the input image, whereas CASS creates architecturally 
asymmetric copies followed by similarity maximization between the copies. We pre-trained using these two 
self-supervised techniques for 100 epochs, followed by 50 epochs of fine-tuning with labels. We perform fine-
tuning with 10% and 100% label fractions. For this, we use all of the available labels per image while using 10% 
or 100% of the total labels available.

Classification pipeline additional details
For the ImageNet supervised classification approach, we used images and their corresponding labels as our 
inputs. For training with x% labels, we only used x% of the entire training images and labels while keeping the 
number of labels per image the same. For the self-supervised approaches DINO and CASS, for pertaining, we 
start with only images. During the fine-tuning process, we initialize the networks with their pre-trained weights 
and use corresponding image-label pairs. Similar to the supervised approach, we also fine-tune these architec-
tures for two label fractions, 10% and 100%. Further details can be inferred from our open-sourced code base.

Segmentation
This section will first introduce standard implementation designs mutually applied to all models, followed by 
additional implementation details for the semi-supervised model. Lastly, we will describe the procedure of test-
ing different cross-entropy weight initialization.

Approach specific additional details
Semi-supervised approach The semi-supervised model uses a batch size of 16, and each batch consists of eight 
labeled images and eight unlabeled images. In the last column of Fig. 5, we compare the performances between 
semi- and fully-supervised models in 100% labeled-ratio scenario; for this, we re-adjusted the batch to be 15 
labeled images and one unlabeled image to approximate the fully-supervised setting while still retaining the “cross 
teaching” component so that the loss remains consistent and hence comparable with other semi-supervised label 
ratios. Additionally, when comparing the performance between fully and semi-supervised models, we adopt the 
same practice from Luo et al.8 and use Swin Transformer to compare  DEDL11 with Resnet34 backbone as they 
have a similar number of parameters

Unsupervised approach We implemented PiCIE for Dermofit, Dermatomyositis, and ISIC-2017 datasets 
similar to the supervised and self/semi-supervised methods. We made slight changes that suit the datasets and 
ensure smooth learning, such as using SGD optimizer instead of Adam optimizer, keeping the learning rate the 
same as the original implementation (1e−4), and adding the StepLR (Step Learning Rate) scheduler provided by 
PyTorch. This is because we observed that the model sometimes failed to learn and was stuck at predicting all the 
image pixels as either foreground (thing) or background (stuff) with the Adam optimizer. We used batch sizes of 
64 and 128, depending on the availability of CUDA RAM and dataset sizes. We trained the PiCIE unsupervised 
pipeline for 50 epochs with the ResNet34 backbone as a feature extractor and retained the unsupervised clustering 
technique described  in9 to achieve optimal segmentation performance. The hardware used was Nvidia RTX8000, 
similar to the previous methods. For PiCIE, labels were only used for validation and testing, not during training.

Supervised approach We adopted Singh and Cirrone’s12 approach for the supervised part of our comparison. 
For this, we utilize image and mask pairs during training, validation, and testing with a ResNet-34-based U-Net13.

Common implementations
We implemented all models in  Pytorch14 using a single NVIDIA RTX-8000 GPU with 64 GB RAM and 3 CPU 
cores. All models are trained with an Adam optimizer with an initial learning rate (lr) of 3.6e−4 and a weight 
decay of 1e−5. We also set a cosine annealing scheduler with a maximum of 50 iterations and a minimum learning 
rate of 3.4e−4 to adjust the learning rate based on each epoch. For splitting our dataset into training, validation, 
and testing sets, we use a random train-validation-test split (70–10–20%), except in the ISIC2017 dataset, where 
we adopt the train/val/test split according  to15 for match-up comparison (57–8.5–34%). The batch size is 16, and 
we use data augmentation to enrich the training set using random rotation, random flip, and a further resizing 
to 224 × 224 to fit in Swin Transformer’s patch size  requirement16. Note that for 3-channel datasets (Dermofit, 
ISIC), we add a pre-processing step that normalizes the red channel of the RGB color model as proposed  by17. 
We repeat all experiments with different seed values five times and report the mean value in the 95% confidence 
interval in all tables. Similar to classification, we fine-tune with multiple label fractions, with semi-supervised 
and DEDL. When we mention that we fine-tune with x% labels, we use all labels per image but only x% of the 
total available image-label pairs.

Data‑preprocessing
Following11, we chose the processed image sample size to be 480 × 480 to avoid empty tile issues. To ensure 
uniformity, the image input size for the model remains consistent across all three datasets, as illustrated below. 
For the Dermatomyositis dataset, since it contains images of uniform sizes 1408 × 1876 each, we tiled them to 
a size of 480 × 480 and then used blank padding at the edges to make them fit in 480 × 480 sizes. This results in 
12 tiled sub-images per sample, which are then resized to 224 × 224. In contrast, the Dermofit and the ISIC2017 
datasets contain images of different sizes. Since the two datasets are about skin lesions, they have significantly 
denser and larger mask labels than the Dermatomyositis dataset. Thus, a different image preprocessing step is 
applied to the latter two datasets: bilinear interpolation to 480 × 480 followed by a resize to 224 × 224.

https://github.com/pranavsinghps1/S4MI
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Results
We start by studying the classification pipeline in Sect. “Classification”, followed by understanding the interpret-
ability aspect of classification in Sect. “Classification”. Since interpretability is ingrained in the segmentation task, 
we only study segmentation quantitatively in Sect. “Segmentation”.

Classification
For classification, we advocate using self-supervision to learn useful discriminative representations from unla-
belled data. Self-supervised techniques rely on an auxiliary pretext task for pre-training to learn useful repre-
sentations. These representations are further improved and aligned with the downstream task through labeled 
fine-tuning. We benchmark and study the performance of transfer learning as well as two self-supervised tech-
niques: (1) Distillation with No Labels (DINO)4, a self-supervised approach designed for natural images, and (2) 
Cross cross-architectural self-supervision (CASS)6 a self-supervision approach for medical imaging. We further 
expand on our methodology in Sect. “Classification”.

We present the results of supervised and self-supervised trained classifiers in Table 1. We use the F1 
score as the comparison metric, similar to its implementation in previous  works6. The F1 score is defined as 
F1 = 2∗Precision∗Recall

Precision+Recall
= 2∗TP

2∗TP+FP+FN
 , where TP represents True Positive, FN is False Negative and FP is False 

Positive. We observe that CASS (Fig. 1) outperforms DINO and transfer learning consistently across all the 
datasets and backbones, with the, exception for the ISIC 2017 challenge dataset, where DINO outperforms CASS 
using the ResNet50 backbone. Interestingly, we also observe that ViT trained with CASS using just 10% labels, 
which saves significant annotation time, performs significantly better than the transfer learning-based supervised 
approach with 100% labels for the Dermatomyositis dataset. For the same case, DINO performs on par with the 
supervised approach while using 90% fewer labels. This shows the impact that machine supervision can have 
on improving access to classified medical images. DINO and CASS take an image to create asymmetry through 
augmentation (DINO) and architecture (CASS). These are then passed through different parameterized feature 
extractors (DINO) and architectural feature extractors (CASS) to create embeddings. Since the two embeddings 
are generated from the same image, they are expected to be similar; this is then used as the supervisory signal to 
maximize the similarity between the two embedding and update encoders. In CASS, architectural invariance is 

Figure 1.  Applying CASS: In this figure we detail the steps involved in applying CASS, the best-performing 
machine supervision approach for  classification6. We conducted experiments on three datasets listed on the 
left side: the Dermatomyositis, ISIC-2017, and Dermofit datasets. For training on a dataset, we initialize both 
the networks with their ImageNet weights and select one dataset at a time. To train CASS, we start by label-
free pretraining as illustrated in Part (b) of Fig. 1. During pre-training, a CNN and a Transformer are trained 
simultaneously. In the case of the Dermatomyositis dataset, the finetuning is multi-label, while in the case of the 
ISIC-2017 and the Dermofit dataset, it is multi-class. This pre-training in (b) is followed by labeled fine-tuning 
as shown in Part (c), where image are fine-tuned one at a time.
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used to create a positive pair instead of creating augmentation invariance, as in the case of DINO. This is because 
CNN and Transformers learn different representations from the same  image6.

Saliency maps
In segmentation, interpretability is ingrained in the task itself, as we can easily identify whether model predictions 
are aligned with the ground truth. To understand the decision-making process of trained neural classifiers, we 
study pixel attribution or saliency  maps18. To accomplish this, we first train the neural network and compute the 
gradient of a class score with respect to the input pixels. Backpropagating the gradients that lead to a particular 
classification onto the input image helps us understand the most filtered/rewarding extracted features related to 
classification. We present the results using DINO, CASS-trained ResNet-50, and ViT Base/16 on the ISIC-2017 
dataset in Fig. 2. Although most saliency maps fail to align with human-interested pathology, CASS-based sali-
ency maps align more than those from DINO. This could be attributed to the joint training of CASS, where it 

Table 1.  Results for DINO, CASS, and Supervised (ImageNet-initialized transfer learning) methods on the 
Dermatomyositis, the Dermofit, and ISIC 2017 datasets. In this table, we compare the F1 score on the test 
sets. Bold values indicate the highest F1 score achieved by any method (DINO, CASS, or ImageNet transfer 
learning) for each combination of backbone, dataset, and label percentage. In all cases, self-supervised 
pre-training (CASS or DINO) improves performance over the ImageNet Transfer learning benchmark. 
Additionally, among CASS and DINO, we observe that CASS, with its focus on architectural invariance, 
outperforms DINO for almost all label fractions across three datasets for ResNet as well as for ViT.

Backbone Technique

Autoimmune Dataset
F1 Score

Dermofit Dataset
F1 Score

ISIC 2017 Dataset
Recall Score

10% 100% 10% 100% 10% 100%

ResNet-50

DINO 0.8237
± 0.001

0.84252
± 0.008

0.3749
± 0.0011

0.6775
± 0.0005

0.322
± 0.009

0.6407
± 0.0363

CASS 0.8158
± 0.0055

0.8650
± 0.0001

0.4367
± 0.0002

0.7132
± 0.0003

0.343
± 0.002

0.599
± 0.0304

ImageNet
Transfer

0.819
± 0.0216

0.83895
± 0.007

0.33
± 0.0001

0.6341
± 0.0077

0.288
± 0.091

0.5774
± 0.0004

ViT B16

DINO 0.8445
± 0.0008

0.8639
± 0.002

0.332
± 0.0002

0.4810
± 0.0012

0.291
± 0.005

0.5571
± 0.076

CASS 0.8717
± 0.005

0.8894
± 0.005

0.3896
± 0.0013

0.4667
± 0.0002

0.321
± 0.007

0.588
± 0.0094

ImageNet
Transfer

0.8356
± 0.007

0.8420
± 0.009

0.299
± 0.002

0.456
± 0.0077

0.277
± 0.007

0.5322
± 0.022

Figure 2.  Visualization of saliency maps on a random sample from the ISIC-2017 dataset, left (a, b): data (input 
image), middle (c, d): saliency map from CASS, and right (e, f): saliency map from DINO-trained ViTB/16 at 
the top and ResNet-50 at the bottom (f). DINO’s saliency map exhibits notable stochasticity, displaying a lack 
of strong correlation with the specific pathology under consideration. Conversely, in the case of CASS, the 
saliency maps demonstrate a significantly more aligned with the pathology of interest both for CNN as well as 
the Transformer.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10820  | https://doi.org/10.1038/s41598-024-61822-9

www.nature.com/scientificreports/

trains a CNN that focuses on local information while a Transformer focuses on global or image-level features. 
Although both techniques fail to recognize and focus on the relevant area in all cases, CASS-trained architectures 
are consistently better focused on the relevant pathology than DINO-trained architectures.

Segmentation
Image Segmentation is another important task in medical image analysis. The area of interest—usually containing 
the pathology—is segmented from the rest of the slide image. We study the performance of transfer learning, 
semi-supervised, and unsupervised approaches for segmentation. In computer vision, it is widely acknowledged 
that image segmentation presents a more intricate challenge than image classification. This distinction arises 
from the fact that image segmentation necessitates the meticulous classification of individual pixels, whereas 
image classification solely requires making predictions at the image level. Moreover, due to the aforementioned 
rationale, annotating images for segmentation exhibits a significantly higher complexity level. Therefore, the 
present study aims to investigate the effectiveness of unsupervised, semi-supervised, and fully supervised tech-
niques across four distinct label fractions instead of the conventional two in classification. In our case, x% label 
fractions indicate that we only use x% labels from the dataset. We include the unsupervised  approach9 to study 
the performance for 0% labels scenario. We compare the performance of DEDL (Data-Efficient Deep Learn-
ing framework)11, a transfer learning-based approach,  against8, a semi-supervised approach using the Swin 
transformer-based U-Net model (Fig. 3).

We  choose11 due to its significant promise in histopathology imaging,  and8 for its state-of-the-art approach 
to leveraging unannotated data in MR segmentation. The semi-supervised  approach8 trains two segmentation 
architectures—a Swin transformer-based U-Net and a CNN U-Net (as shown in Fig. 3), while  DEDL11 and 
unsupervised  approach9 only train one architecture.

To ensure a fair comparison, we make sure the number of overall parameters trained is the same in each case 
over three datasets and four-label fractions.

Figure 3.  In this figure we present the semi-supervised pipeline as described in Sect. “Segmentation”. Similar 
to the classification experiments, we evaluate the segmentation pipeline on three challenging medical image 
segmentation datasets—the Dermatomyositis, ISIC-2017, and the Dermofit dataset. We use one dataset at a time 
to train the semi-supervised architecture. Unlike the classification pipeline, semi-supervised learning involves 
simultaneous learning from labeled and unlabeled data. In Part (b) of Fig. 3, we start by training the data in an 
unlabeled fashion and during the same iteration labeled data is also passed to the architecture as shown in part 
(c) of the figure. Predictions from passing inputs of the labeled images yield learned predictions as shown in Part 
(e). Unsupervised loss is then calculated by comparing the outputs of the CNN and the Transformer (as shown 
in Part (d) of this figure) using the LUnsupervised in Sect. “Segmentation”. This unsupervised loss is then added to 
the supervised loss denoted by LSupervised in Sect. “Segmentation”. The supervised loss is calculated against the 
ground truth as shown in part (e) and (f) in this figure.
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In their  study8, compared the performance of Swin-U-Net trained in semi- and fully-supervised fashion 
for segmentation. Observing that Swin-U-Net exhibits superior performance in a semi-supervised setting, we 
extend this comparison to include a semi-supervised Swin-U-Net and a similarly parameterized ResNet-34 based 
U-Net, trained under both unsupervised and fully-supervised approaches. Furthermore,  from11, we use their 
best-reported ResNet-34-based U-Net model.

The evaluations are based on three datasets, as detailed in Sect. “Data”. To ensure our results are statistically 
significant, we conduct all experiments with five different seed values and report the mean values in the 95% 
confidence interval (C.I.) over the five runs. For comparison, we use IoU (Intersection over Union) in line with 
previous works in the  field12. IoU or Jaccard index for two images U and V is defined as IoU(U ,V) =

|U∩V |

|U∪V |
 . 

We present these results in Fig. 5.

Semi‑supervised approach
Semi-supervision approaches utilize the dataset’s labeled and unlabeled parts for learning. Techniques generally 
fall under (1) Adversarial training (e.g.  DAN19) (2) Self-Training (e.g. MR image  segmentation20) (3) Co-Training 
(e.g.  DCT21) and (4) Knowledge Distillation (e.g.  UAMT22). We study the co-training-based semi-supervision 
segmentation  technique8, depicted in Fig. 4. The model consists of two segmentation architectures, a U-Net 
(trained from scratch) and a pre-trained Swin Transformer, adapted from the Swin Transformer proposed by 
Liu et al.16. Both architectures are updated simultaneously using a combined loss over the labeled and unlabeled 
images.

The U-Net model is trained as follows:
(1) The labeled data (L) is evaluated using the average of dice and cross-entropy loss

(2) For unlabeled data (U) cross-teaching strategy is used to cross-supervised between CNN and Transformer: 
to update U-Net, output from Transformer, predTransformer (vice versa) is used as “sudo ground truth”:

(3) The unsupervised loss for U-Net is conducted between prediction and pseudo-ground truth:

(4) The final loss is the summation of unsupervised and supervised loss.

Unsupervised approach
Unsupervised approaches for learning from unlabelled images are mostly limited to curated and object-cen-
tric images; however, some recently proposed methods  like9 achieve semantic segmentation with the help of 
unsupervised clustering methods. The machine aims to discover and identify the different foreground objects 
and separate them from the background. In this paper, the datasets under study only contain one foreground 
object, which eases learning; however, unsupervised segmentation continues to be a challenging task. Cho et al.9 
proposes a technique PiCIE (Pixel-level feature Clustering using Invariance and Equivariance) to incorporate 
geometric consistency to learn invariance to photometric transitions and equivariance to geometric transitions. 
The two main constraints here are (1) to cluster the pixels having similar appearance together with the same label 

LSupervised =
1

2
[DICE(predU-Net, L)+ CrossEntropy(predU-Net, L)]

Usudo = argmax(predTransformer)

LUnsupervised = DICE(predU-Net, Usudo)

Figure 4.  In this figure, we depict the Unsupervised Segmentation Approach: PiCIE  pipeline9. View1 and View2 
represent two photometrically transformed views of the input image, whereas View1

2 represents the geometric 
transformation of View2 . Cross-view training is then used to train the architecture shared between the two views 
(parameterized by θ in the figure); we have expanded further on this in Sect. “Segmentation”.
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for all the pixels belonging to a cluster and (2) to ensure the pixel label predictions follow the invariance and 
equivariance constraints mentioned earlier. With these objectives, Cho et al.9 trains a ConvNet-based semantic 
segmentation model in a purely unsupervised manner (without using any pixel labels). PiCIE uses the alternat-
ing strategy between clustering the feature representations and using the cluster labels as pseudo labels to train 
the feature representation proposed by  DeepCluster23.

Figure 4b shows a brief overview and an end-to-end pipeline of the PiCIE approach. For each input image, two 
photometric transformations, like jittering the pixel colors, etc., are randomly sampled to create View1 and View1

2 . 
One of these views ( View1 ) is directly fed to the network, while geometric transformation is applied to the other 
view before feeding it to the same network ( View1

2 ). The network then produces the two feature representations 
for every pixel corresponding to the two views. Since we expect equivariance for geometric transformations, 
they are applied to feature representations of the original image before clustering the pixels of the feature repre-
sentations. The inductive biases of invariance and equivariance to photometric and geometric transformations 
are introduced by aggregating the clustering losses within the same view and across the two views. Using this 
cross-view training strategy, the training is guided to prevent predicted pixel labels from changing with jitter-
ing of pixel colors. Still, at the same time, if the image is warped geometrically, then the warping would also be 
reflected in the labeling  similarly9.

Comparision
Table 5 shows the evaluation results of these methods for the three datasets. The evaluation metric applied is 
intersection over union (IOU). The unsupervised  approach9 sets the lower bound on the segmentation perfor-
mance and illustrates the difficulty of unsupervised segmentation and its ability to outperform even the state-
of-the-art unsupervised approaches using a small number of annotations (10%). Semi-supervision continuously 

Figure 5.  In this figure, we present the results for the Dermatomyositis dataset, ISIC-2017, and the Dermofit 
dataset in panels (a), (b), and (c), respectively. We compare the segmentation performance of Full, Semi, and 
Unsupervised architectures across these datasets, considering different percentages of label fraction (x-axis). 
Performance is evaluated using the Intersection Over Union (IoU), depicted on the y-axis, to compare 
results across all three datasets. IoU values range from 0 to 1. The blue bar represents the performance of the 
unsupervised approach,  PiCIE9, which, by definition, does not require any labels for fine-tuning. Consequently, 
we present results for PiCIE using 0% label fractions. Remarkably, we observe that the semi-supervised approach 
surpasses the fully-supervised approach by requiring 50% fewer labels per image across all three datasets.
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outperformed the transfer learning across all label fractions across all datasets except the 10% case for ISIC, where 
the performance is close. For all the datasets, semi-supervision with 50% labels outperforms transfer learning 
from Imagenet with 100% labels. These results show a significant performance gain by moving to machine 
supervision approaches instead of transfer learning from Imagenet. Figures 1 and 3 show the best-performing 
approaches for learning from limited annotation datasets for classifications and segmentation, respectively.

Discussion
We observed a significant improvement in the performance of trained classifiers with the incorporation of pre-
training self-supervised objectives, surpassing methods reliant on fully annotated data. When comparing the 
two training regimes, CASS consistently outperformed DINO in almost all cases under study. Further analysis 
into the pixel attribution of the trained methods, to understand their decision-making processes, revealed that 
CASS typically focuses on relevant pixels more accurately than DINO. Therefore, employing self-supervision-
additional training with reduced human supervision-enhanced performance.

We explored three training regimes for segmentation: supervised, semi-supervised, and unsupervised. 
Although implementing the unsupervised approach necessitates some adaptation and hyperparameter tuning, the 
Dermofit dataset consistently demonstrates that the semi-supervised approach outperforms the fully-supervised 
approach, irrespective of the labeling percentage. Notably, we achieved consistent performance improvements 
using a semi-supervised approach-wherein both labeled and unlabeled data per batch were utilized to enable 
the model to learn better representations. On the Dermatomyositis dataset, the performance using no labels 
is closely comparable to that of the supervised and semi-supervised approaches with 10% labels. Performance 
between semi-supervised and fully-supervised approaches converges when labeling ranges between 50% and 
70%. However, on the ISIC-2017 dataset with 10% labels, the fully-supervised approach initially shows superior 
performance compared to the semi-supervised approach; yet, as the percentage of labels increases beyond 10%, 
semi-supervised begins to outperform fully-supervised.

Additionally, unlike the unsupervised approach, the supervised and the semi-supervised approaches don’t 
treat this problem as pixel clustering and are less prone to overfitting to the dominant pixel distribution. Since 
classification requires image-level identification of classes instead of pixel-level identification, segmentation is a 
more difficult objective. Yet, introducing reduced human supervision with pseudo-labels in the semi-supervised 
approach improved performance beyond both the supervised and unsupervised paradigms, to the point where 
the semi-supervised approach for segmentation outperformed fully-supervised methods while requiring 50% 
fewer labels across all evaluated datasets.

Conclusion
The primary focus of our experimental investigations revolved around two fundamental medical imaging tasks: 
classification and segmentation. Significantly, our findings from employing the S4MI (Self-Supervision and 
Semi-Supervision for Medical Imaging) framework indicate a promising shift away from traditional, purely 
transfer-learning-based supervised methodologies. Specifically, in the realm of classification, our empirical evi-
dence consistently shows that self-supervised training within the S4MI framework outperforms conventional 
supervised approaches across both Convolutional Neural Network (CNN) and Transformer models.

Moreover, in the comparative analysis of the two self-supervised techniques, CASS demonstrates superiority 
by exhibiting enhanced performance in nearly all scenarios compared to DINO. Utilizing reduced supervision in 
segmentation has yielded favorable outcomes. Specifically, applying the semi-supervised approach, as outlined 
 in8, has resulted in notable enhancements in performance across all label fractions for the three datasets under 
consideration.

A notable inference emerged from our investigation, wherein the complete elimination of supervisory signals 
through the utilization of unsupervised algorithms resulted in comparable performance solely in the context of 
the dermatomyositis dataset when compared to architectures with 10% supervision, an observation that under-
scores the inherent capacity of unsupervised methodologies in distinct contextual situations.

Based on a comprehensive analysis of our experimental findings, adopting machine-level supervision through 
the S4MI framework reduces dependence on human supervision and yields substantial advantages in both time 
efficiency and accuracy of medical image analysis. The findings of our study make significant empirical contribu-
tions to the fields of medical imaging and limited-supervision techniques, thereby stimulating future research 
in this area. The distribution of our S4MI pipeline as open-sourced code will aid other researchers by saving 
labeling time and improving image analysis quality. This, in turn, will facilitate the advancement of healthcare 
solutions, leading to improved patient care outcomes. We are optimistic that our study will act as a catalyst for 
meaningful dialogue and collaborative endeavors within the medical imaging community, propelling progress 
in this critical domain.

Data availability
We utilized three datasets for our experiments: Dermatomyositis, Dermofit, and ISIC-2017. The Dermatomyositis 
dataset, while private and available from NYU Langone, is subject to restrictions and was used under license for 
this study; therefore, it is not publicly available. Data are however available upon reasonable request and with 
permission of NYU Langone to Jacopo Cirrone at cirrone@courant.nyu.edu. To facilitate open-source reproduc-
tion, we conducted our experiments on the Dermofit and ISIC-2017 datasets, both of which are publicly available 
at ISIC Data repos itory and DERMO FIT Proje ct Datas ets.
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