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Using an epidemiological 
model to explore the interplay 
between sharing and advertising 
in viral videos
Yifei Li 1 & Li Shao 2*

How to exploit social networks to make internet content spread rapidly and consistently is an 
interesting question in marketing management. Although epidemic models have been employed to 
comprehend the spread dynamics of internet content, such as viral videos, the effects of advertising 
and individual sharing on information dissemination are difficult to distinguish. This gap forbids us 
to evaluate the efficiency of marketing strategies. In this paper, we modify a classic mean-field SIR 
(susceptible–infected–recovered) model, incorporating the influences of sharing and advertising in 
viral videos. We mathematically analyze the global stability of the system and propose an agent-based 
modeling approach to evaluate the efficiency of sharing and advertising. We further provide a case 
study of music videos on YouTube to show the validity of our model.

Viral videos, characterized by their rapid and expansive dissemination on social networks, have become a cul-
tural phenomenon with profound implications for societal dynamics such as political campaigns and online 
marketing. For example, the video “Baby Shark Dance” on YouTube has over 11 billion views since  20161. The 
phenomenon of viral videos has caused the shift of budgets of companies from mass media to online marketing 
 activities2. Understanding how information goes viral has attracted attention in fields of  psychology3,  marketing4,5 
and public health  management6. Insights of the spread dynamics of viral videos would be useful to many parties 
such as political campaigners and product marketing managers.

Many studies employ epidemilogical models to comprehend the dynamics of information  spreading7–11. Dis-
cussions of the analogy between infectious disease spreading and information dissemination can be traced back 
to Goffman and  Newill12. Based on the classic SIR compartmental  model13, epidemiological models have been 
applied in many areas of information dissemination such as rumor  propagation14, viral marketing  strategies15 
and computer viruses  propagation16,17. Similar to the spread of viruses in an epidemic due to the interactions 
between susceptible and infected individuals, information dissemination on the internet is primarily driven by 
the communications of online individuals. Epidemiological models are shown to generate matching results with 
the spread dynamics of various internet content.  Bauckhage18 found that SIR (susceptible-infected-recovered) 
models give a good account of the dynamics of memes. Anand et al.19 reported that the data obtained from SI 
(susceptible and infected) models validated well on the view counts of YouTube videos. Sachak-Patwa et al.20,21 
considered SEIRS (susceptible-exposed-infected-recovered- susceptible) models with time delay to precisely 
describe the change of view counts and long-term dynamics of music videos on YouTube. Agent-based models 
or network-based models are often applied to incorporate the heterogeneous structure of social  networks15,22,23. 
Through a systematic application of natural language processing and hierarchical clustering algorithms, Ghosh 
et al.24 investigated a huge amount of survey data to provide deep insights into the understanding of quantita-
tive modeling.

Existing models mainly focus on individual interactions on the internet and neglect the role of  advertising25. 
Unlike the advertising strategy in viral marketing which encourages consumers to share product information with 
others, the advertising strategies for online videos are more abundant. For instance, in the case of social media 
influencer marketing, companies pay for content shearers who have a large number of followers to advertise their 
 product26. This motivates us to embed a novel advertising mechanism into epidemiological models, which could 
strategically transform viewers into active sharers. It is expected that advertising acts as a catalyst, influencing 
the initial exposure of a video to potential viewers and amplifying its  reach2. As advertising does not only trigger 
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the information epidemic on the internet but also keeps affecting the spreading process, the interplay between 
person-to-person transmission and advertising needs to be further formalized so that mathematical tools can be 
used to provide more insights into the dynamics of information dissemination. Once the mathematical model 
is established, a methodology for using simulation algorithms and real data to validate the model and further 
evaluate advertising efficiency is crucial to qualitatively and quantitatively understand the spreading process.

In this work, we use a mean-field SIR model that incorporates the effect of advertising into the traditional 
modeling framework to explore the relationship between sharing and advertising. Since differential equation 
models can only reflect the population-level dynamics, we further propose an agent-based model, which is a 
stochastic discrete model related to a continuum description in the limiting  case27,28, to simulate the dynamics 
of individual behaviors and connect the macroscopic and microscopic landscapes. The averaged data obtained 
from stochastic simulations would be consistent with the solutions of our continuous model and further provide 
the details of the spreading process. In particular, through labeling individuals with their paths of infection, we 
can quantitatively evaluate the efficiency of advertising.

The content of this work is organized as follows. In “The model” section, we formulate a susceptible-infected-
recovered epidemic model, which divides the target people for marketing into three classes. A key feature of 
our model is that we use an advertising function associated with the number of active sharers to reflect the effect 
of advertising. In “Dynamics of the model” section, we analyze the global stability of our model and show how 
the interplay between sharing and advertising determines the size of populations in different classes. To further 
evaluate the effectiveness of advertising, in “Evaluate advertising efficiency using agent-based algorithm” section, 
we propose an agent-based modeling approach to measure the number of individuals who get their informa-
tion through promotions from other individuals or advertisements. A case study of music videos on YouTube is 
presented in “Model validation against data” section to show the validation of our model. Finally, in “Discussion” 
section, we summarize our results and discuss the useful findings.

The model
We compartmentalize the target people into three classes:

• Susceptible Potential audience who are not aware of the video.
• Infected Individuals who have watched the video and become active in sharing the video.
• Recovered Individuals who have watched the video and stopped sharing it. Once recovered, they will no 

longer be interested in watching or sharing.

The dynamics of individuals in these classes is described by an ordinary differential equations (ODEs) system

where S(t), I(t) and R(t) represent the number of susceptible, infected and recovered individuals, respectively, 
see Fig. 1. The prime denotes the ordinary differentiation with respect to time t ∈ (0,+∞) . We consider initial 
conditions S0 = S(0) > 0 , I0 = I(0) > 0 and R0 = R(0) = 0 . In particular, the positive I0 indicates the initial size 
of individuals who share information spontaneously when the video is exposed on the platform. We note that the 
total amount of people, N(t) = S(t)+ I(t)+ R(t) , in the system is increasing since (S + I + R)′ = bN(t) . For the 
convenience of mathematical analysis, we will first consider the total amount of people as a constant N = N(0) , 
which leads to S(t)+ I(t)+ R(t) = bNt , and then discuss an extended model with time-varying N(t). Parameter 
β > 0 is the rate of contact between susceptible and infected individuals. Parameter b > 0 reflects the growth 
of new users in the system. Unlike the classic epidemic model where the contact always transforms susceptible 
into infected, the target people may directly become recovered individuals in our model. Therefore, we divide 
the outcomes of interactions into two parts: β1IS/N and (β − β1)IS/N , where β > β1 . Parameter α > 0 is the 
transition rate of infected individuals to recovered individuals. If we ignore the interactions of individuals and 
the effect of advertising, I ′ = −αI leads to I(t) = I(0)e−αt , which suggests that the length of the infected period 
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Figure 1.  Diagram of the epidemic model.
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is exponentially distributed with mean 
∫∞
0 e−ksds = 1/α29. We further introduce an assumption that b > γ leads 

to S′ = (b− γ )N > 0 when I = 0 , which reflects that advertising would not cover the whole group of new users 
without the promotion from active sharers.

A key feature of our model is that we consider N2γ /(N + I) , which we will call the advertising function in the 
rest of this manuscript, to reflect the effect of advertising. This term equals γN when I = 0 and monotonically 
decreases to 0 as the increase of I, which reflects that the investment of advertising is highest when there are no 
active shares. Moreover, there is no need for putting advertisements when the system has enough active sharers 
to keep transforming the susceptible individuals.

Dynamics of the model
As we assume that S(t)+ I(t)+ R(t) = bNt , R(t) is known once we figure out the dynamics of the other two 
variables. Thus we reduce system (1) into a two-dimensional system

We first illustrate the existence and uniqueness of the equilibrium.

Theorem 3.1 If α > b , system (2) has a unique interior equilibrium (S∗, I∗) with S∗ ∈ (S−, S−) and I∗ ∈ (0,N) , 
where

Proof Solving

leads to

Define

Since β1 < β suggests C < 0 , together with A > 0 , there must exist a unique positive zero root for f (I) = 0 , 
denoted as I∗ . Notice that

as  γ < b  .  I f  we  fur ther  assume α > b  ,  i t  g ives  F(N) > 0 and thus  suggests  that 
I∗ = (−B+

√
B2 − 4AC)/(2A) ∈ (0,N).

Regarding S as a function of I based on (2) gives

It is straightforward to tell that S1 monotonically decreases from +∞ to S− = (b− γ /2)N/β , and S2 mono-
tonically increases from −∞ to S+ = (α − γ /2)N/β1 . Since β > β1 and α > b , we have S− < S∗ < S+ . This 
completes the proof.   �

Theorem 3.2 If α > b , (S∗, I∗) is globally asymptotically stable on � = {(S, I) | S > 0, I > 0}.

Proof We first analyze the local stability of the equilibrium. The Jacobian of (2) on the equilibrium is
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Solving |�I− J| = 0 , where I is the identity matrix, gives

Remind that S∗ < S− , we have

Therefore, B̄ > 0 and C̄ > 0 suggest that �2 + B̄�+ C̄ = 0 has two negative zero roots, which implies that (S∗, I∗) 
is linearly stable. Furthermore, on the phase plane of (S, I), we have

as γ < b , along the positive I-axis, and

along the positive S-axis. This suggests that the region � = {(S, I) | S > 0, I > 0} is a positive invariant set. 
Together with the uniqueness and local stability of (S∗, I∗) , we obtain the global stability of (S∗, I∗) .   �

From the above analysis, we conclude that the system (2) with any initial conditions S0 > 0 , I0 > 0 and E0 = 0 
will always converge to the unique interior equilibrium (S∗, I∗) , which suggests that the number of potential 
audience and active sharers would converge to a fixed size as the spread of the video. From (3), it is also clear 
that β1/β , α , γ , b and N jointly determine the equilibrium.

We provide numerical simulations of system (1) with initial conditions S0 = 9999 , I0 = 1 and R0 = 0 in 
Fig. 2a. Here we consider a small I0 to reflect the moment of the first release of the video. To further illustrate 
the relationship between the advertising function and the dynamics of system (1), we vary γ from 0 to 0.02 and 
show the steady states of system (1) according to (3) and (4) in Fig. 2b. As susceptible individuals have a constant 
growth rate, their amount undergoes an increase and then monotonically decreases when the system has enough 
infected individuals. We note that in our model there would not be more rebounds for the number of susceptible 
individuals, since the equilibrium is a stable node, and thus S would converge to the eigenvector of (S∗, I∗) . From 
Fig. 2b, we see that advertising affects the final size of the susceptible individuals. A larger investment in adver-
tising would drive the susceptible individuals to maintain a relatively small size and enhance the size of active 
sharers. However, the total amount of susceptible and infected individuals changes with γ in a non-monotone 
manner, as shown in Fig. 2c. If the goal is to keep the size of recovered individuals as large as possible, the value 
of γ needs to be carefully selected.

Evaluate advertising efficiency using agent-based algorithm
Both individual interactions and advertising contribute to the increase of recovered individuals. Since it is easy 
to calculate the dynamics of (2), a direct thought for evaluating the efficiency of advertising is to calculate the 
number of individuals who decide to watch the video after receiving advertisements. That is, one can use S(t) 
and I(t) to numerically calculate the integration of S′(t):
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Figure 2.  Dynamics of system (1) with S0 = 9900 , I0 = 100 , β = 0.4 , β1 = 0.1 , α = 0.03 , b = 0.02 . We 
consider γ = 0.002 in (a) and vary γ from 0 to 0.02 in (b, c).
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where nA(T) directly denotes the number of individuals leaving the class of susceptible individuals due to adver-
tising. If we consider the initial conditions given in Fig. 2, it would lead to nS(T) ≈ 26055 and nA(T) ≈ 1671 
when T = 100 . This method does not give a full landscape of the efficiency of advertising, because (5) only con-
siders the increase of infected individuals due to advertising as the contribution of advertising. Those infected 
individuals recruited from advertising will transform more susceptible individuals until they become recovered. 
These converted individuals should also be attributed to advertising. More details of the spreading process are 
needed to provide an appropriate evaluation of advertising efficiency.

To trace the spreading process and find out the source of infection, we now introduce the concept of ‘genera-
tion’ for viewers. The first generation of viewers are those viewers who become infected without person-to-person 
interactions. They come from two parts: the initially infected individuals I0 , which we call Group A and highlight 
in green in Fig. 3; the infected individuals converted from susceptible individuals due to advertising, which we 
call Group B and highlight in cyan in Fig. 3. When the existing infected individuals produce new infected or 
recovered individuals through person-to-person interactions, these new viewers become the next generation. 
These infected and recovered individuals in further generations can be all traced back to those viewers of the 
first generation. More specifically, we conclude that an individual decides to watch the video because of sharing 
if the corresponding first generation belongs to Group A. In contrast, an individual decides to watch the video 
because of advertising if the corresponding first generation belongs to Group B. However, since the differential 
equation model is on population-level and cannot reflect the generation relationship among individuals, other 
modeling approaches are needed for recording the path of infection.

Now we propose a stochastic agent-based model to mimic the spreading process. In this model, we use a 
Monte-Carlo realization process for some agents who change their states with time to represent the dynamics of 
individuals transforming through different classes. In any single realization of the stochastic model, an agent s is 
either susceptible, infected or recovered. Suppose there are O(t) susceptible agents, P(t) infected agents and Q(t) 
recovered individuals at time t. We first advance the stochastic simulation from time t to time t + τ by randomly 
selecting P(t) infected agents, one at a time, with replacement, so that any particular agent may be selected more 
than once, and allowing those agents to transform susceptible agents into infected or recovered. Once the O(t) 
potential infection events have been assessed, we then select a number of susceptible agents at random according 
to the value of γN2/(O(t)+ N) to become infected. We then add bN susceptible agents into the system. Next, we 
randomly select O(t) times of infected agents, one at a time, with replacement, allowing those agents to become 
recovered. Finally, we average the data from many identically-prepared realizations of the model to approximate 
the solution of system (1). The pseudo-code of the stochastic simulation algorithm is given in Algorithm 1. The 
code implemented by Julia can be found on GitHub.

(5)
∫ T

0
S′(t)dt = −nS(T)− nA(T)+ bNT , where nS(T) =

∫ T

0

βIS

N
dt, nA(T) =

∫ T

0

γN2

N + I
dt,

https://github.com/Yifei216/ViralVideos1.git


6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11351  | https://doi.org/10.1038/s41598-024-61814-9

www.nature.com/scientificreports/

Algorithm 1 Pseudo-code for a single realization of the stochastic model
Numerical simulations based on the agent-based simulation algorithm are provided in Fig. 4. Fixing τ = 1 , 

we perform 20 times identically-prepared simulations and average the data of O(t), P(t) and Q(t), respectively, 
which are drawn with dashed curves in Fig. 4a. By comparing the averaged data to the solutions of system (1), 
which are drawn with solid curves in Fig. 4a, we see that the solutions of the continuum model and averaged 
data from the agent-based model match well. The individual-level simulation results validate the population-
level differential equations model. Moreover, we distinguish the viewers due to sharing, refereed as Type A, and 
the viewers due to advertising, refereed as Type B, and show their dynamics in Fig. 4b. It is surprising to observe 
that most individuals who have watched the video can be traced back to the first generation of viewers who are 
recruited by advertising.
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Model validation against data
Since music video is a typical kind of videos that people are interested in sharing online, we now fit our model to 
the viewing data of music videos from YouTube. We use the daily views data of three songs: “Caroline”, “Cheap 
Thrills” and “All About That Bass” collected by Sachak-Patwa et al.20. As the data is limited and the stochasticity 
in the viewing data is inevitable, instead of aiming to make perfect fits or predictions, we are more interested in 
seeing whether our model is capable of qualitatively describing the joint effect of sharing and advertising in the 
popularity of music videos.

We consider the number of daily views on ith day, denoted as gi , as the number of people who received the 
advertised information on that day. Summing daily views from 0th day to ith day gives the data of recovered 
individuals, denoted as �R�i =

∑i
0 gi , which associates with R(t) in system (1). We then treat β , β1 , α and γ as 

fitting parameters, and use the ordinary least squared (OLS)  method30 with a normalized cost function

where θ0 is the set of parameters and tmax is the largest number of days. This generates an ordinary least square 
optimization problem

where � is the feasible region for parameter values. In our model, the only requirement for parameters is that 
they need to be non-negative. We solve this problem by using the Nelder-Mead simplex  algorithm31, which is 
a basic simplex search method. Moreover, since we do not have the data for the number of target people and 
active sharers, we artificially set S0 = 2× 109 according to the information on YouTube’s official  blog32 and a 
small number of initial active sharers I0 = 100.

We compare the fitted results of R to viewing data 〈R〉 in Fig. 5a–c. Moreover, we calculate the daily views 
G(i) = R(i)− R(i − 1) where i = 1, 2, 3... , and compare with the daily view data gi in Fig. 5d–f. The best fit 

Er =
∑n

i=0[�R�i − R(ti , θ0)]2
(maxi�R�i)2 × tmax

,

θ̂ = arg minθ∈�Er(θ0),

Figure 3.  Schematic illustration of the generation of viewers.

Figure 4.  Dynamics of the agent-based model. Initial conditions are S0 = 9900 , I0 = 100 , β = 0.4 , β1 = 0.1 , 
α = 0.03 , b = 0.02 . Dashed curves in (a) are the averaged number of susceptible (blue), infected (red) and 
recovered (green) individuals in numerical simulations. Solid curves in (a) are the solutions of (1). The blue 
region in (b) shows the number of individuals with Type A. The green region in (b) shows the number of 
individuals with Type B.
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parameters and errors for the three songs are presented in Table 1. These results suggest that our model fits well 
with the data. The Julia code for parameter estimation to generate these results can be found on GitHub.

The three groups of parameters reflect the characteristics of the spread of these songs. “Caronline” has large 
β and large α , suggesting that, on average, each active sharer can promote more individuals to listen to this song 
while they quickly lose the interest of sharing it. “Cheap Thrill” has a small β1/β suggesting a low rate of trans-
formation from listeners to active sharers. “All About That Bass” has a high β1/β suggesting that there are many 
listeners willing to promote this song to others. A small α further suggests that it takes a long time for people to 
lose interest in this song. Moreover, a larger γ indicates that the extensive spread of this video is accompanied 
by a relatively higher investment of advertising compared to the other two songs.

For “Caroline” and “Cheap Thrill”, there is a large difference in the scales between γ and other parameters. For 
“Caronline”, we have γN ≈ 162 . Based on the simulation algorithm of the agent-based model, there are only 162 
individuals would be recruited to become active sharers in the first time step. As the increase of active sharers, the 
number of newly recruited active sharers in each time step would be smaller than 162. From (5) we can directly 
calculate that the total number of recruited active sharers is around 7× 104 , which is much smaller than the size 
of the audience. Although we are not going to replicate the agent-based models with 2 billion agents, there is no 
doubt that the infection path for most audiences could be traced back to an active sharer recruited by advertising.

Simulating system (2) for six more years gives a prediction for the size of viewers, which are approximately 
3.9× 108 , 2.0× 109 and 3.5× 109 for “Caroline”, “Cheap Thrills” and “All About That Bass”, respectively. However, 
these results are higher than the real data, which are around 3.5× 108 , 0.97× 109 and 2.6× 109 , respectively, up 
to December of  202333–35. This suggests that linear growth is perhaps not an appropriate assumption for the model 
to predict the long-term dynamics of viewing data. The time scale which our model remains valid for needs to 
be carefully identified. The spreading process of a video may no longer follow an epidemic manner after a fixed 
period of time from the date the video was originally uploaded.

Discussion
Modifications of the model
The assumption of constant N is only a proper approximation when the growth of new users is relatively low 
compared to the size of initial susceptible individuals. However, considering a varying N(t) would lead to a 

Figure 5.  Our epidemic model (1) fitted to daily viewing data for YouTube music videos.

Table 1.  Best fit parameter values and the corresponding errors of the solutions as shown in Fig. 5.

Video β β1 β1/β α γ b Error

Caroline 7.9561 0.3987 0.0501 0.3876 7.5× 10
−8 5.5× 10

−5
4.98× 10

−5

Cheap thrills 8.9792 0.0911 0.0101 0.0870 1.9× 10
−6

2.0× 10
−4

4.60× 10
−6

All about that bass 0.0302 0.0220 0.7285 0.0012 4.4× 10
−4

3.3× 10
−4 1.62× 10

−5
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more complicated system. An autonomous system corresponding to (1) can be obtained by introducing some 
new variables

Substituting these variables into (1) leads to

Calculating the equilibria of (6) leads to a third-order polynomial for i, which suggests that the dynamics of (6) 
could be quite complicated. Furthermore, reaching a steady state in system (6) suggests that the proportion of 
individuals in each class holds constant as the spread of a video, while a consistently growing number of active 
sharers seems not realistic for the long-term dynamics of information dissemination. We leave further modifica-
tions and analysis as future work.

Conclusion
In summary, by investigating the dynamics of a novel epidemic model that incorporates the influence of advertis-
ing, we show that advertising plays an important role in the spread of viral videos. Similar to the spread dynamics 
of an epidemic, we can still rely on analyzing the properties of equilibrium to tell whether an initial state would 
lead to an explosive spread of information. The strength of advertising determines the final size of individuals 
who are not aware of the video. Through tracing the path of views for each individual based on an agent-based 
model, we provide the microscopic landscape of the spread process, and further distinguish the contributions 
from sharing and advertising. It turns out advertising remarkably facilitates the dissemination of information 
mostly in an indirect manner. An appropriate advertising strategy can significantly improve the spread of infor-
mation, even if the investment in advertising is low.

Our modeling framework combines continuous differential equations model and discrete agent-based model. 
This allows us to simultaneously describe the population-level dynamics and the individual-level behaviors 
during the spread of information. Although in this work we focus on a simple epidemic model for highlighting 
the interaction of sharing and advertising, this framework could be extended to capture more complex dynam-
ics of information spreading on social media. A promising way is to extend the mean-field ODEs model to a 
heterogeneous partial differential equations (PDEs) model, so that the individual-level behavioral traits can 
be incorporated in both continuous and agent-based models, where the heterogeneous role of individuals has 
received increasing attentions in studies of both  sociology36 and  epidemiology37. Note that technical difficulties 
of designing the stochastic agent-based algorithm may arise when considering the heterogeneity of traits, since 
the transformation between individuals with different traits may associate with complicated mechanisms such 
as diffusion and advection.

There are some other possible ways to extend our epidemiological modeling framework. Since we pay par-
ticular attention to the interplay between person-to-person transmission and advertising, our model ignores a 
variety of factors that may influence the spread of information. Incorporating realistic factors, such as the com-
petition between different advertisements into our model may provide more profound insights into information 
 dissemination38. Incorporating credibility, which is a key effect in referral marketing where recommendations 
from friends and families could make individuals restore their interest in the information, would lead to a sys-
tem with abundant  dynamics39. Imaginably, some kinds of circulation dynamics potentially associated with the 
multiple rebounds of view counts would  appear20. For the purpose of providing more accurate prediction for the 
long-term dynamics of viewing data, the assumption of linear growth for the view counts of music videos could 
be modified with realistic mechanisms, such as time delay and forgetting  effect20,40. Another interesting exten-
sion would be to explore the optimal control problem for viral videos, especially when a deadline is proposed 
for effective  advertising41,42. We leave these potential directions for future considerations.

Data availibility
All daily views data are presented within the manuscript (Fig. 5d–f), which were originally collected by Sachak-
Patwa et al.20. The detailed codes used during the current study are available on https:// github. com/ Yifei 216/ 
Viral Video s1. git.
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