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Patient classification 
and attribute assessment based 
on machine learning techniques 
in the qualification process 
for surgical treatment of adrenal 
tumours
Marta Wielogórska‑Partyka 1, Marcin Adamski 2*, Katarzyna Siewko 1, Anna Popławska‑Kita 1, 
Angelika Buczyńska 3, Piotr Myśliwiec 4, Adam Jacek Krętowski 1,3 & Agnieszka Adamska 1

Adrenal gland incidentaloma is frequently identified through computed tomography and poses a 
common clinical challenge. Only selected cases require surgical intervention. The primary aim of 
this study was to compare the effectiveness of selected machine learning (ML) techniques in proper 
qualifying patients for adrenalectomy and to identify the most accurate algorithm, providing a 
valuable tool for doctors to simplify their therapeutic decisions. The secondary aim was to assess 
the significance of attributes for classification accuracy. In total, clinical data were collected from 
33 patients who underwent adrenalectomy. Histopathological assessments confirmed the proper 
selection of 21 patients for surgical intervention according to the guidelines, with accuracy reaching 
64%. Statistical analysis showed that Supported Vector Machines (linear) were significantly better 
than the baseline (p < 0.05), with accuracy reaching 91%, and imaging features of the tumour were 
found to be the most crucial attributes. In summarise, ML methods may be helpful in qualifying 
patients for adrenalectomy.
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Aim
An adrenal incidentaloma (AI) is an asymptomatic adrenal mass that is recognized incidentally during imaging 
examinations and is not associated with suspected adrenal pathology1,2. Incidental discovery of adrenal masses 
has increased recently due to wider application and technical improvement of abdominal imaging procedures, 
with a prevalence of approximately 0.2–6.9% in radiological studies1,3–5. A comprehensive hormonal evaluation 
of newly diagnosed adrenal masses at their initial presentation was recommended by the European Society of 
Endocrinology in 20166.

Patients should be referred for adrenalectomy with clinically significant hormone excess, radiological find-
ings suspicious for malignancy, signs of local invasion, and when the tumour is greater than 5 cm6. Underlying 
comorbidities, advanced age, and Hispanic ethnicity were associated with more frequent postoperative com-
plications. Therefore, the coexistence of heart failure or respiratory failure should always be considered before 
qualifying for surgical treatment of adrenal tumours7.

The primary objective of this study was to compare several machine learning (ML) techniques in a qualifica-
tion for adrenalectomy and choose the most accurate algorithm as a valuable adjunct tool for doctors to simplify 
making therapeutic decisions by using the most innovative and modern methods. To the best of our knowledge, 
this study is the first attempt to apply ML techniques to qualify for the surgical treatment of AI using both the 
results of diagnostic tests and computed tomography (CT) image features. Preliminary results of this study were 
presented in a poster session at the European Congress of Endocrinology8.

Related works
In the literature, most studies apply computer vision techniques to recognize the type of tumour based on CT 
images9–16. In one study, the authors evaluated ML-based texture analysis of unenhanced CT images in differ-
entiating pheochromocytoma from lipid-poor adenoma in adrenal incidentaloma10. The textural features were 
computed using the MaZda software package, and two classification methods were used: multivariable logistic 
regression (accuracy of 94%) and number of positive features by comparison to cut-off values (accuracy of 
85%). The results were encouraging; however, decision classes were unbalanced and the accuracy values were 
computed on the test set. Therefore, they were biased estimators. In another study, the authors applied a mul-
tivariable logistic regression model with 11 selected textural features computed using MaZda software11. The 
cut-off point obtained using the eceiver operating characteristic (ROC) curve applied to the expression obtained 
from logistic regression resulted in a sensitivity of 93% and 100% specificity. Again, these results were obtained 
using the same set used to train the model. In another study performed by Li et al., ML models were used to dif-
ferentiate pheochromocytoma from lipid-poor adenoma based on the radiologist’s description of unenhanced 
and enhanced CT images9. The authors used three classifiers: multivariate logistic regression, SVM and random 
forest. As a result, two separate models based on multivariable logistic regression were proposed, each using 
three CT features: M1 with preenhanced CT value, shape, and necrosis/cystic changes (accuracy of 86%) and M2 
using only preenhanced CT features: CT value, shape, and homogeneity (accuracy of 83%). Elmohr et al. used 
the ML algorithm to differentiate large adrenal adenomas from carcinomas on contrast-enhanced computed 
tomography, and its diagnostic accuracy for carcinomas was higher than that of radiologists13. Other studies 
have evaluated the accuracy of ML-based texture analysis of unenhanced CT images in differentiating lipid-poor 
adenoma from pheochromocytoma, with performance accuracy ranging from 85 to 89%10,14.

The literature also includes papers applying ML techniques to magnetic resonance imaging (MRI) data. An 
example of such work is a study where the authors utilized logistic regression with the least absolute shrinkage 
and selection operator (LASSO) to select MRI image features and distinguish between non-functional AI and 
adrenal Cushing’s syndrome17.

In studies involving a large number of features (e.g.: software packages such as MaZdA can calculate several 
hundred texture parameters for images), dimensionality reduction is required. Techniques commonly used (or 
combinations of them) are: LASSO with regression18–21, elimination of correlated features9,21 or those with low 
intraclass correlation (ICC)18, training of classifiers for subsets of features and selection of subsets with the highest 
classifier accuracy9, elimination of features with p-values above the accepted error rate for coefficients in regres-
sion models, use of feature discrimination power calculated using the ROC curve for each feature separately10.

Artificial neural networks (ANN) are flexible and powerful ML techniques that have evolved from the idea 
of simulating the human brain, however their successful application usually requires datasets much larger that 
other classification methods17–19.

To improve the quality of patient care, recent studies have been conducted in several different sectors 
using modern techniques. There are two types of ML-based models: current-condition identification and for-
ward prediction20. In Table 1, we have summarized studies concerning the utilization of ML techniques in AI 
management.

Materials and methods
Study population
From a database of 264 Caucasian patients with AI, the clinical data of 33 patients older than 18, who met the 
criteria for surgical treatment according to the guidelines of the Polish Society of Endocrinology, were used in this 
retrospective, single-center study23. Patients had been hospitalized and qualified for an operation in the Depart-
ment of Endocrinology, Diabetology, and Internal Medicine at the University Clinical Hospital in Białystok 
between 2017 and 2019. All qualified patients underwent laparoscopic lateral transperitoneal adrenalectomy.

We searched our institutional electronic database and confirmed proper qualifications in 21 of the 33 
patients selected for operation according to the obtained results of postoperative histopathological examina-
tions. Definitive diagnoses were established through histopathology, revealing a study group comprising five 
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cases of pheochromocytomas, two cases of ACCs, five cases of Cushing’s syndrome, and nine cases of primary 
hyperaldosteronisms. The remaining 12 cases consisted of patients with benign, hormonally inactive lesions, 
for whom surgical intervention was unnecessary. This study complied with the Declaration of Helsinki and was 
approved by the Ethical Committee of Białystok (no. APK.002.14.2022). Informed consent for study participa-
tion was obtained from all enrolled patients.

Biochemical and radiographic analyses
All patients completed a comprehensive endocrine work-up aimed at studying the hormonal status of AI: aldos-
terone/renin ratio, 24 h urine collection for metanephrines and normetanephrines, and 1 mg overnight DXM 
suppression test. Serum cortisol levels after 1 mg DXM > 5 µg/dL confirmed hypercortisolism, whereas serum 

Table 1.   Summary of studies looking at the application of ML techniques in AI management.

Study ML task Sample size ML classifier Main findings Main limitations

Yi et al.10

To differentiate between sub-
clinical pheochromocytoma 
(and lipid-poor adenoma in 
cases of AI using texture fea-
tures of unenhanced CT scans

80 patients with lipid-poor 
adenoma and 29 patients with 
subclinical s pheochromo-
cytoma

Logistic regression (accuracy 
of 94%) and number of posi-
tive features by comparison 
to cut-off value (accuracy of 
85%)

ML-based quantitative texture 
analysis on unenhanced 
CT scans appears to offer 
a dependable quantitative 
approach for distinguishing 
between pheochromocytoma 
and lipid-poor adenoma in 
cases of AI

Discrepancy in sample sizes 
between the two groups. Lack 
of division of data into train-
ing and test datasets. Results 
for one ML classification 
method only

Yi et al.14

To differentiate between 
subclinical pheochromocy-
toma and lipid-poor adrenal 
adenoma in AI using texture 
and other parameters of CT 
images

181 patients with lipid-poor 
adenoma and 84 patients with 
subclinical pheochromocy-
toma

Logistic regression using 
contrast-enhanced CT (AUC 
of 0.967), and using pre-
enhanced CT (AUC of 0.958)

ML approach for pre-
enhanced and enhanced CT 
images distinguished sub-
clinical pheochromocytoma 
from lipid-poor adenoma. In 
particular, a good result for 
CT without contrast allows 
to avoid the additional radia-
tion and risk associated with 
enhanced CT

Discrepancy in sample sizes 
between the two groups. 
Results for one ML classifica-
tion method only

Elmohr et al.13

To distinguish large adrenal 
adenomas and carcinomas 
using texture features of 
precontrast and venous CT 
images and tumour attenua-
tion values

25 patients with adrenocorti-
cal adenoma and 29 patients 
with adrenocortical carcinoma

Logistic regression (accuracy 
of 82%, texture features and 
attenuation) and Boruta ran-
dom forest (accuracy of 76%, 
texture features only)

CT texture analysis of 
large adrenal tumours and car-
cinomas is likely to improve 
CT evaluation of AI

Highly selective nature of the 
included adrenal tumours
Delayed-phase CT images 
were not included. Results for 
one ML classification method 
only

Liu et al.9

To differentiate subclinical 
pheochromocytoma from 
lipid-poor adenoma in patients 
with AI using parameters of 
pre-enhanced and enhanced 
CT images analysed by 
radiologists

183 patients with lipid-poor 
adenoma and 86 patients with 
subclinical pheochromocy-
toma

Logistic regression model 
(best accuracy of 86%), SVM 
and Random Forest (lower 
accuracy than LR, no exact 
figures were given)

The promising application 
of CT-based ML models and 
scoring systems for predict-
ing the histology of AI was 
demonstrated

Lack of arterial phase and 
multi-phase scans of CT. 
Results for one ML classifica-
tion method only

Maggio et al.11

To differentiate between corti-
sol secreting and non-secreting 
AI using texture features of CT 
scans in non-contrast phase

40 patients with functioning 
and 32 with non-functioning 
adrenal masses

Logistic regression (sensitivity 
of 93.75% and a specificity of 
100%)

CT texture analysis shows 
potential as a valuable tool in 
defining the diagnosis of AIs

Large number of features 
incorporated into the predic-
tive model. Results for one ML 
classification method only

Yang et al.15

To distinguish between aldos-
terone-producing adenoma 
from non-functioning adrenal 
adenoma using contrast-
enhanced CT image features 
combined with clinical features

68 patients with aldosterone-
producing adenoma 60 
patients with non-functioning 
adrenal adenoma

Logistic regression using CT 
image features (accuracy of 
73%) and logistic regression 
combining CT and clinical 
features (accuracy of 96%)

Contrast-enhanced CT -based 
radiomics and clinical radiom-
ics ML model exhibited good 
diagnostic efficacy in differen-
tiating aldosterone-producing 
adenoma from non-function-
ing adrenal adenoma

Only patients with contrast-
enhanced CT imaging data 
were included. Highly selec-
tive nature of the included 
tumours. Results for one ML 
classification method only

Piskin et al.21

To differentiate between non-
functioning and autonomous 
cortisol-secreting AI using 
texture features of unenhanced 
MRI images

100 patients with adrenal 
lesions

Logistic regression, best results 
using MRI image features 
(AUC of 0.758)

Non-functioning AI and 
autonomous cortisol-secreting 
AI can be distinguished with 
high accuracy on unenhanced 
MRI
Radiomics analysis and the 
model built using ML algo-
rithms appear to be superior 
to radiological assessment 
method

Results for one ML classifica-
tion method only

Piskin et al.22

To differentiate between non-
functional adrenal inciden-
taloma and adrenal Cushing’s 
syndrome in cases of AI using 
texture features of MRI

50 patients with AI Logistic regression (best 
model AUC 0.994)

The developed MRI-based 
radiomic scores can yield high 
area under curves for predic-
tion of adrenal Cushing’s 
syndrome

The assessment of interob-
server reproducibility in 
feature extraction was not 
feasible as only one radiologist 
assessed the images
Results for one ML classifica-
tion method only

Feliciani et al.16

To differentiate between path-
ologically proven adenomas 
and other adrenal histotypes 
using texture features of unen-
hanced CT images

48 patients with 50 adrenal 
lesions

Four classifiers were used: 
logistic regression (AUC of 
0.96), linear discriminant 
(AUC of 0.95), linear SVM 
(AUC of 0.94), decision tree 
(AUC of 0.91)

The research constructed a 
radiomic signature based on 
unenhanced CT scans to cat-
egorize lipid-poor adenomas

Lack of control over CT scan-
ner types due to the retrospec-
tive nature of the study
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concentrations of cortisol between 1.9 and 5.0 µg/dL were considered evidence of possible autonomous cortisol 
secretion. To confirm the diagnosis of CS, the serum concentration of ACTH was measured. The diagnosis of 
primary aldosteronism was confirmed with a saline infusion test. Hormonal variables were measured in the 
same laboratory using commercially available kits as previously described24. Additionally, serum concentra-
tions of sodium and potassium were measured. Every adrenal lesion was assessed with CT as per the following 
criteria: size, lateralization, tissue density measured in Hounsfield units (HU), and contrast washout values. 
CT can be performed with or without contrast enhancement. In our study, lesions with a density of ≤ 10 HU 
were considered benign. A tumour size > 5 cm is indicative of malignancy and is considered an indication for 
adrenalectomy25. In the adrenal mass, absolute washout is calculated in lesions with a density of > 10 HU, and it 
has been confirmed that a value > 60% is indicative of a benign lesion12. In our study, regular shape, size less than 
5.0 cm, density ≤ 10 HU, absolute washout value > 60%, and relative washout > 40% were considered CT evidence 
of a benign adrenal mass. Abdominal CT was performed in all patients at the Radiology Department of our 
hospital. Moreover, every patient was screened for obesity, type 2 diabetes mellitus, impaired glucose tolerance 
(IGT), hyperlipidemia, nodular goiter, Hashimoto disease, Graves’ disease, heart failure, atrial fibrillation (AF), 
ischemic heart disease, renal failure, and hypertension, especially severe and resistant arterial hypertension, which 
was taken into consideration, defined according to World Health Organization (WHO) criteria. The data were 
extracted according to the criteria recommended by the Polish Society of Endocrinology for AI management23. 
All extracted data were complete and credible according to medical standards.

Machine learning approach
In our study, we applied selected supervised ML methods with the main stages depicted in Fig. 1. In the preproc-
essing stage, nominal attributes were converted to numerical values using one-hot encoding, and all attributes 
were normalized to have the same range. During the experiments, we constructed a feature vector using all the 
available attributes and performed experiments with reduced feature sets selected using the backwards search 
method. The feature vectors were passed to the classification algorithm that assigned the subject to one of two 
classes: qualified or not qualified for adrenalectomy.

Feature vector attributes
Each patient in the study had 24 attributes. Eight attributes represented measurements on a ratio scale, and the 
remaining 15 represented measurements on a nominal scale. All nominal attributes had two values: female/male 
for gender and the presence or absence of features for other attributes. Table 2 shows all attributes with their scales 
and the summary of their values. Examples of CT images depicting adrenal tumours, illustrating the attributes 
used in this study, were presented in Fig. 2. For the attributes on the quotient scale, the median and interquartile 
range were given. For the nominal attributes, the table contains the case counts for each of the two possible values.

Classifiers
In our study, we used several classifiers, which are briefly described in this section26,27.

•	 Zero R—baseline approach that assigns examples to the majority class in the training set (ignores attribute 
values).

•	 One rule is a classifier that uses only a single attribute for classification and assigns the subject to the majority 
class with the same attribute value in the training set. If attribute selection is performed based on the accu-
racy measure, the selected attribute has the highest accuracy in the training set. The algorithm was applied 
to nominal attributes. The numerical attributes were converted to nominal values using the discretization 
procedure described in28 (with a minimum bucket size of 6).

•	 Naïve Bayes is a classifier based on Bayes’ theorem, with the assumption of feature independence. The prob-
ability that a given feature vector x belongs to class ck is given in Eq. (1).

	   The predicted class ĉ  can be selected using the maximum probability (MAP) rule (2).

	   K is the number of classes.
•	 K-nearest neighbors—classifies the subject based on the plurality vote of its k-nearest neighbors, where the 

neighborship is assessed based on a distance measure applied to examples in the training set. In this study, 
we used the Euclidian distance.

(1)p(C = ck|X = x) =
p(x|C = ck) ∗ p(C = ck)

p(X = x)

(2)ĉ = argmax
k∈1...K

p(C = ck|X = x)

Figure 1.   System stages.
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•	 Logistic regression with ridge regularization models the probability that a given feature vector belongs to a 
particular class. It is based on the assumption that the logarithm of odds (log-odds) can be described using a 
linear combination of predictor variables, and thus, in case of two possible decision classes ( C = c1 or C = c2 ), 
the probability of x having class C = c1 may be computed using formula (3).

	   The vector of the coefficients β is selected to minimize the cost function L (4).

where N is the number of examples in the training set, yi denotes whether sample i belongs to class c1 ( yi = 1 ) 
or not ( yi = 0 ), xi is the feature vector of the i-th sample.

•	 The SVM classifier separates classes with a hyperplane that has the largest margin (distance to the nearest 
data point). In our case, we used a soft-margin SVM that allows data points to cross the hyperplane, thereby 
reducing the separation requirement. The soft-margin separating the hyperplane is determined by minimizing 
(5) under the constraints given by (6) and (7). The hyperplane is represented by vector w normal to the plane 
and scalar b. The value ξi captures the margin violation for sample i. Scalar � is a regularization coefficient 
that controls the extent to which the margin violation is acceptable. There are N samples, where xi denotes 
the i-th sample feature vector and yi denotes the class of the sample (1 or − 1).

(3)p(C = c1|X = x) =
1

1+ e−βTx

(4)
L = −

N∑

i=1

Li + rβTβ ,

Li = yiln
(
p
(
C = c1|xi

))
+

(
1− yi

)
ln
(
1− p

(
C = c1|xi

))
.

(5)min
w,b,ξi

1

2
wTw + �

∑N

i=1
ξi

(6)yi

(
wTxi + b

)
≥ 1− ξi , i = 1 . . .N

(7)ξi ≥ 0, i = 1 . . .N

Table 2.   Attributes used to construct the feature vector. The summary column for attributes in the ratio scale 
contains the median and interquartile range (given in parentheses). For nominal attributes, the summary 
column contains the number of subjects within each of the two groups having specific attribute values: male 
(female) for gender and absent (present) for other nominal attributes.

Attribute Scale Summary

Gender nominal 16 (17)

Age ratio 57 (13)

Obesity nominal 24 (9)

Hypertension nominal 5 (28)

IGT nominal 24 (9)

Hyperlipidemia nominal 27 (6)

Type 2 diabetes mellitus nominal 20 (13)

Thyroid nodules nominal 11 (22)

Hashimoto disease nominal 32 (1)

Graves disease nominal 31 (2)

Heart failure nominal 32 (1)

AF nominal 28 (5)

Ischemic heart disease nominal 30 (26)

Renal failure nominal 24 (9)

Minimal diameter of the tumour ratio 40 (26)

Maximum diameter of the tumour ratio 34 (24)

Homogeneity nominal 13 (20)

Lateralization nominal 24 (9)

Serum sodium ratio 138 (2)

Serum potassium ratio 4 (1)

Suppression test with 1 mg of DXM ratio 1.3 (1)

24 h urine collection for metanephrins ratio 119 (133)

24 h urine collection for normetanephrins ratio 548 (468)
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	   To allow for nonlinear separation, the feature vectors xi can be transformed into another space, usually 
with more dimensions, where the hyperplane separation will result in nonlinear separation in the original 
space. The same effect is achieved by a kernel trick that computes the inner product in the transformed space 
without the explicit transformation of vectors from the original space. Popular types of kernels include linear, 
polynomial, and Gaussian radial basis function (RBF) kernels.

•	 C4.5 Decision Tree—classifier that generates a decision tree based on C4.5. The C4.5 algorithm uses entropy 
to measure information gain when selecting attributes to split during the tree creation process. The nodes of 
the tree represent the decision rules, and the leaves represent decisions. We used the J48 implementation of 
C4.5 in Weka.

•	 Random Forest—The algorithm creates a set of decision trees29, each learned using samples from the training 
set selected randomly with replacement and random subsets of features. The classification decision for a new 
sample is performed by voting—the decisions (votes) made by trees in the set are counted, and the class with 
the most votes wins. In this study, the set consisted of 100 trees.

•	 Artificial Neural Network—In this study, we used a feed-forward multilayer network with a sigmoid activa-
tion function in the hidden layers. The network was trained using stochastic gradient descent with momen-
tum. The neural network consisted of three layers (input, hidden, and output), with the number of neurons 
in the hidden layer equal to the number of attributes and two neurons in the output layer (one for each class).

	   All the variables in the equations in the manuscript are summarized in Table 3.

Results
In this section, we present the results of the experiments conducted in this study. In all experiments, we used 
algorithms implemented in the Weka software package30.

Figure 2.   Examples CT image with adrenal tumour showing attributes used in this study: (a) maximal diameter 
for tumour with homogeneity feature absent and laterization feature present, (b) minimal diameter for tumour 
with homogeneity feature absent and laterization feature present, (c) tumour with laterization feature absent, (d) 
tumour with homogeneity feature present.
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Experiment 1
During the first experiment, we evaluated 11 classifiers applied to the full attribute set, as shown in Table 4. The 
results were obtained using a tenfold stratified cross-validation scheme repeated 100 times with random reorder-
ing of the samples. Consequently, each classifier was trained and evaluated 1000 times on various datasets split 
into training (90%) and test (10%) subsets. Table 4 presents the average accuracy with standard deviations (SD) 
computed for the evaluations per classifier.

The number of patients qualified correctly and incorrectly were different. Therefore, the dataset was unbal-
anced with respect to the class attribute. Hence, the accuracy of the Zero-R classifier was determined to establish 
a baseline for further comparisons (Zero-R assigns the example to the most common class in the training set). 
Statistical analysis of the results performed with the paired t test, modified to account for using the same dataset 
multiple times with random reordering, proved that all methods except four (one rule, logistic regression, SVM 
with RBF kernel, C4.5 Decision Tree) were significantly better than the baseline (p < 0.05). As seen in Table 4, 
the best result of 91% was obtained for the SVM and linear kernel with soft margins. The K-nearest neighbors 
(with k = 1) gave the second-best result of 85%, followed by random forest with 84%. These results indicate that 
the application of ML methods may improve the decision-making process.

Experiment 2
To evaluate the importance of attributes for classification accuracy, we applied the wrapper method with the 
backwards best-first search method, with search termination after five nonimproving nodes31. Attribute selection 
was performed on the training subset obtained from the cross-validation split. After the attribute selection, the 
classifier was trained and evaluated on the test subset of the cross-validation split. The procedure was performed 
using a tenfold cross-validation scheme and repeated five times with random reordering of the samples. Table 5 
shows the percentage of times each attribute was selected; attributes that were selected more frequently were 

Table 3.   Summary of the variables used in the equations presented in the manuscript.

Symbol Meaning

C Random variable representing the class of a sample

K Number of classes

ck The value of C for the sample of k-th class

X Random variable representing the feature vector of a sample

M Number of features

x Feature vector representing a sample, x = [1, x(1) , x,(2) , . . . , x(M)]
T

y Scalar value representing the class of a sample

K Number of classes

p(A) Probability of event A

p(A|B) Conditional probability of event A given event B has occured

β Vector of coefficients in logistic regression, β = [1,β(1) ,β(2) , . . . ,β(M)]
T

r Ridge regularization scalar coefficient in logistic regression

w Normal vector defining SVM hyperplane, = [w(1) ,w(2) , . . . ,w(M)]
T

ξi Scalar value controlling margin violation constraint in SVM for the i-th sample

� Regularization scalar coefficient in SVM

Table 4.   Percent of properly classified subjects using all attributes.

Classifier Accuracy (SD)

Zero R (baseline) 64,17 (7,50)

One rule 77.89 (24.55)

Naïve bayes 83.38 (19.02)

K-nearest neighbours (k = 1) 85.16 (18.56)

K-nearest neighbours (k = 3) 82.81 (19.87)

Logistic regression 77.96 (23.20)

Support vector machine (Linear) 90.98 (16.25)

Support vector machine (RBF) 64.17 (7.50)

C4.5 Decision tree 75.35 (22.38)

Random forest 84.24 (18.68)

Neural network 81.84 (20.65)
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better (more stable) indicators for issuing correct decisions. The most frequently selected attributes were tumour 
homogeneity (100%), maximum tumour diameter (98%), and obesity (100%). For the classifier, we used an SVM 
with a linear kernel that gave the best results in Experiment 1.

Experiment 3
In this experiment, we applied the attribute selection method from Experiment 2 combined with selected classi-
fiers and evaluated the performance of the classifiers used on the reduced attribute set. The results were obtained 
with a tenfold cross-validation scheme repeated 100 times with random reordering of samples. The same classifier 
was used for attribute selection and classification processes. As seen in Table 6, prior attribute selections using 
the wrapper method did not lead to better accuracy of most trained classifiers; only in the case of K-nearest 
neighbors (k = 3) and C4.5 was a slight improvement observed.

Discussion
The decision to qualify a patient for surgery is not always correct, as verified by histopathological examination. 
In this study, correct qualification was confirmed in only 21 of the 33 selected patients. This highlights how 
significant problems with personalized medical approaches to the management of AI occur and delineates the 
need for improvement of diagnostic tools. We demonstrated the usefulness of ML predictive algorithms based 
on existing data for reliable automated and preoperative classification of AI. ML was found to enable a reasonable 
level of accuracy in qualifying patients for adrenalectomy. The results of this study seem to show that artificial 

Table 5.   The percentage of times each attribute was selected using the wrapper method with a backwards 
search for SVM with a linear kernel in a tenfold cross-validation scheme.

Attribute The precent of times each attribute was selected (%)

Gender 12

Age 42

Obesity 100

Hypertension 30

IGT 42

Hyperlipidemia 16

Type 2 diabetes 48

Thyroid nodules 34

Hashimoto disease 40

Graves disease 40

Heart failure 34

AF 28

Ischemic heart disease 56

Renal failure 68

Minimal diameter of the tumour 66

Maximum diameter of the tumour 98

Homogeneity 100

Lateralization 68

Serum sodium 76

Serum potassium 34

Suppression test with 1 mg of DXM 72

24 h urine collection for metanephrins 90

24 h urine collection for normetanephrins 94

Table 6.   Percent of properly classified subjects with prior attribute selection.

Classifier with prior attribute selection Accuracy (SD)

Naïve bayes 82.80(18.40)

Support vector machines (Linear) 84.76(19.57)

K-nearest neighbours (k = 1) 77.42(23.08)

K-nearest neighbours (k = 3) 83.93(19.55)

C4.5 Decision tree 78.69(21.08)

Random forest 80.34(20.02)



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11209  | https://doi.org/10.1038/s41598-024-61786-w

www.nature.com/scientificreports/

intelligence can detect patterns that may help in making the correct decision. In developing our manuscript, we 
followed the requirements of providing the high quality and usefulness of our medical ML study32.

From the results of Experiment 1 in a group of people who met the criteria for surgery, ML methods produce 
promising results: 91% of correct decisions for SVM classifiers versus 64% correctness achieved by medical 
specialists. It should be mentioned that this is a preliminary study with a relatively small dataset. Enlarging 
the set allows the use of more complex classifiers, such as larger neural networks, that may lead to even better 
results. In this study, 23 attributes were used. Nevertheless, subsequent studies provide new diagnostic tools in 
patients with AI, e.g. the EURINE-ACT study presented a triple test with urine steroid metabolomics, imaging 
characteristics, and tumour diameter to improve the detection of ACC​33. Hence, there are future perspectives 
to improve the application of ML techniques in the qualification for the surgical treatment of adrenal tumours 
through the involvement of more characteristics.

In Experiment 2, the attribute selection method was used to investigate the attributes that were most relevant 
to the correctness of the classification. The results obtained were consistent with expert knowledge: imaging fea-
tures of the tumour, such as homogeneity and size, were found to be the most important. Additionally, 24-h urine 
collection for normetanephrins, 24-h urine collection for metanephrins, suppression test with 1 mg of DXM, and 
aldosterone/renin ratio were also indicated as very important factors. Interestingly, obesity is also important. In 
further investigation, in the case of decision trees, the obtained rule suggested that with a homogeneous tumour 
image, the patient’s obesity significantly increased the chance of a pathological lesion. However, an attempt to 
reduce the set of attributes in Experiment 3 using the selection method from Experiment 2 did not improve 
the classification accuracy. This may indicate that it is difficult to establish a simple rule using only a few factors 
that result in high decision accuracy and that most of the selected data may be relevant for decision-making.

In our work we performed tuning of classifier hyperparameters using linear and grid search methods with 
internal cross-validation split on the training set. However, probably due to limited size of our dataset, the search 
did not lead to significant improvement over default parameter values proposed by the authors of Weka software 
package. As the alternative, our future plans include application of swarm methods for hyperparameter tunning, 
and also for feature selection34–36.

This study has several limitations. One of them is the small sample size. Thus, validation of these results in 
a large and well-balanced study population is necessary before clinical application. A larger number of patients 
with histopathologically confirmed tumours would have improved the accuracy of our results. Another con-
straint is the retrospective nature of the study and its inherent limitations. Similar limitations have been repeat-
edly mentioned in studies presented in Table 1. The comparison of accuracy of our study with other studies 
is difficult because they have different designs and do not consider the same factors. In the case of our work, 
the best accuracy was obtained for the SVM classifier (90.98%) as an average of 1000 iterations of the learning 
process. It should be noted that the accuracy was determined on the test set, which was not used in the selec-
tion of features as well as not used in the learning process, therefore the presented accuracy values are unbiased 
estimators. In other studies, such as Yi’s research, there was no separation between the training and test sets10. 
Another important point to mention is that, in our study, selected ML techniques (including the best perform-
ing Linear SVM) achieved a statistically significant advantage in accuracy over patient qualification performed 
by medical personnel.

Nonetheless, a significant strength of our study lies in its pioneering nature. It is the first study to incorporate 
both imaging and hormonal test results in ML techniques, encompassing the full spectrum of lesions qualify-
ing for surgical treatment. Despite its limitations, especially its limited accuracy, our study provides valuable 
insights that lay the groundwork for further research in this field. Future studies with larger and more diverse 
cohorts, along with prospective designs, are essential to validate and extend our findings for clinical application.

Conclusions
ML-based methods could be used as an accurate diagnostic device to help avoid unnecessary surgeries in patients 
with benign and non-functional adrenal masses. However, our results have not been adopted in daily practice 
thus far, and further studies are needed to investigate the application of other attributes in the decision-making 
process and the extension of the training database.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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