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Evaluation of data representation 
techniques for vibration based road 
surface condition classification
E. Raslan 1,2*, Mohammed F․ Alrahmawy 2,3,4, Y. A. Mohammed 5 & A. S․ Tolba 2,5

The accurate classification of road surface conditions plays a vital role in ensuring road safety and 
effective maintenance. Vibration-based techniques have shown promise in this domain, leveraging 
the unique vibration signatures generated by vehicles to identify different road conditions. In this 
study, we focus on utilizing vehicle-mounted vibration sensors to collect road surface vibrations and 
comparing various data representation techniques for classifying road surface conditions into four 
classes: normal road surface, potholes, bad road surface, and speedbumps. Our experimental results 
reveal that the combination of multiple data representation techniques results in higher performance, 
with an average accuracy of 93.4%. This suggests that the integration of deep neural networks and 
signal processing techniques can produce a high-level representation better suited for challenging 
multivariate time series classification issues.
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Road surface deterioration due to climate change, frequent use, heavy loads, and aging infrastructure can 
cause harm to pedestrians, drivers, and vehicles1,2. Moreover, monitoring these deteriorations using traditional 
approaches often requires considerable time, effort, and resources, delaying necessary repairs and potentially 
leading to accidents2,3. Therefore, efficient detection of road surface conditions is essential for ensuring the safety 
of drivers and pedestrians alike. Moreover, accurate detection of road surface conditions can also enable the 
development of smart transportation systems that can provide real-time updates to drivers, helping them make 
informed decisions while on the road, and to the authorities so they can take timely actions to prevent accidents 
and address potential risks.

Road surface quality detection can be achieved through three main techniques: (a) laser scanning, (b) com-
puter vision, and (c) sensor-based4. Each of these techniques has its own strengths and weaknesses, making them 
appropriate for different situations and environments. Laser scanning: This technique offers high-precision 3D 
data of the road surface, which allows for the detection of small defects and unevenness. However, its effective-
ness can be affected by weather conditions and requires specialized equipment, making it a less cost-effective 
option for widespread deployment. By using cameras installed on vehicles, computer vision utilizes road surface 
images to detect cracks, potholes, and other anomalies. This approach is relatively inexpensive and can be adopted 
during regular traffic flow. However, its accuracy can be affected by shadows, lighting conditions, and obscuring 
objects. Sensor-based: This approach utilizes sensors mounted on vehicles to capture vibration data caused by 
road surface irregularities. Sensor-based approaches are less susceptible to weather or lighting conditions and can 
be embedded into existing vehicle infrastructure. Additionally, sensor-based approaches can provide real-time 
data for immediate analysis and response, making them a powerful tool for proactive maintenance. However, 
they might have difficulty identifying different types of road defects and require feature extraction techniques 
for optimal performance.

Recently, with technological improvements in sensor technology and data processing capabilities, monitoring 
road conditions using sensor-based methods has become increasingly widespread due to their non-invasiveness 
and cost-effectiveness2,5. While time-domain analysis forms the foundation of many sensor-based approaches, it 
might not always accurately represent the full spectrum of information hidden within the complex vibration sig-
natures generated by different road conditions. In order to address these shortcomings, this paper explores vari-
ous data representation techniques that aim to extract richer features from the vibration data. These techniques go 
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beyond the time domain and capture the information in the frequency domain, or the time–frequency domain, 
potentially leading to a more robust classification system.

The rest of the paper is organized as follows: in Sect. "Related work", an overview of the related work in 
vibration-based techniques for monitoring the condition of roads is provided. Section "Methodology" outlines 
the methodology employed in this study, including the acquisition and preprocessing as well as the architecture 
of machine learning models. Section "Results and discussion" presents, and discusses the experimental findings 
and performance assessments of diverse data representation techniques and machine learning models. Finally, 
in Sect. "Conclusion", we concludes this paper.

Related work
Road surface quality significantly impacts vehicle safety, driving comfort, and maintenance costs. Vibration 
sensors mounted on vehicles offer a promising approach for non-destructive road condition assessment3,6,7. 
Several studies have explored the use of vibration sensors for road surface condition monitoring. Common 
sensor choices include accelerometers, gyroscopes, and magnetometers. The data collected from these sensors 
reflects the vehicle’s response to road surface irregularities, such as potholes, cracks, and bumps1–3,5,8. The choice 
of sensors and their placement significantly impacts the data collected. Studies have explored using single-axis 
accelerometers for basic classification tasks and multi-axis configurations (accelerometer and gyroscope) for 
capturing richer information about road features5,9,10. The placement of vibration sensors on the vehicle can 
influence the sensitivity to specific road anomalies. Studies have investigated the effectiveness of sensors mounted 
on dashboards, floorboard, axles, wheels, and the vehicle chassis10–12. Vibration data often requires preprocess-
ing steps like noise filtering and smoothing techniques to improve its quality and consistency before feeding it 
into machine learning models. These techniques help to remove irrelevant information and ensure features are 
on a similar scale for effective learning1,11,13. Due to the varying lengths of road sections with different surface 
conditions, raw vibration data is often segmented into windows for analysis. Techniques like GPS timestamps 
or signal characteristics are used for segmentation4,11.

Regarding classification approaches, machine learning algorithms play a vital role in classifying road surface 
types based on the extracted features. There are three main approaches to classifying road surface conditions 
based on vibration data: Rule-based methods, traditional machine learning-based methods, and deep learning-
based methods1. Initially, early Rule-based approaches relied on various thresholds to detect road anomalies by 
setting predefined thresholds for signal characteristics like amplitude1. These thresholds are typically determined 
based on prior knowledge or empirical data3. Eriksson et al.14 used a threshold-based filter to identify potholes 
using acceleration and GPS data. They employed five thresholds (speed, high-pass, z-peak, x–z-ratio, and speed 
vs. z-ratio) to filter out the non-pothole data. Mednis et al.9 found that 3-axis acceleration data converges to zero 
when a vehicle passes over a pothole. They proposed a G-ZERO algorithm and compared it with three other 
heuristic threshold methods (Z-THRESH, Z-DIFF, and STDEW) for detecting potholes, achieving an accuracy 
rate of 90%. Astarita et al.15 focus on accelerometer data to identify the patterns associated with speed bumps and 
potholes. By examining the extreme peaks of the z-axis, they were able to detect speed bumps with 90% accuracy 
and potholes with 65% accuracy. In conclusion, while the threshold-based approach is easy to implement, it 
requires determining reliable thresholds through numerous experiments. Additionally, due to variations and the 
need for frequent adjustments, it becomes challenging to apply this approach to large-scale road surface detection.

Traditional machine learning algorithms have been utilized to enhance the accuracy and reliability of road 
surface condition detection11. These algorithms are capable of learning and adapting to different scenarios 
through training on various road types and conditions1,3. To detect speed bumps, Celaya et al.5 suggested extract-
ing statistical features like the mean, variance, and standard deviation from X-axis and Y-axis gyroscope and 
Y-axis accelerometer data. They employed logistic regression and showed an accuracy of 97.14%. In another 
study, Ferjani et al.16 tested support vector machines, decision trees, and multilayer perceptrons to investigate 
the characteristics of the time and frequency domains for road monitoring using three-axis accelerometer data. 
They trained a decision tree model to detect potholes, metal bumps, asphalt bumps, and worn-out roads with an 
accuracy of 94.00% using both time-domain features (mean, variance, standard deviation, median, entropy, and 
more) and frequency-domain features (spectrum energy, median frequency, minimum magnitude, and more). 
Wu et al.17 proposed extracting features from the three axes of the accelerometer data in time domain, frequency 
domain, and time–frequency domain representations. They employed a random forest classifier to identify road 
potholes, achieving an accuracy of 95.7%, a precision of 88.5%, and a recall of 75.0%. Additionally, the study 
conducted by Zhou et al.18 focused on classifying the quality of manholes based on time and frequency domain 
features extracted from accelerometer and gyroscope data. They used a support vector machine to categorize 
manholes into three classes: good, average, and poor, which correspond to different levels of subsidence. The 
study reported an average classification accuracy of 84.40%.

Deep learning techniques, especially recurrent neural networks (RNNs) and convolutional neural networks 
(CNNs), have demonstrated effectiveness in dealing with multivariate time series classification problems19. RNNs 
are designed to capture temporal dependencies in sequential data, while CNNs are effective at capturing spatial 
features from sensor data. These networks have the capability to be trained end-to-end, which allows them to 
learn feature representations directly from the raw sensor signals without applying any signal transformation1,3,19. 
Varona et al.20 compare reservoir computing models, CNNs, and LSTMs by processing the smartphone’s accel-
erometer data to automatically identify potholes and destabilizations caused by speed bumps or driver actions. 
With 85% accuracy, the CNN model easily surpassed the other deep learning techniques. Further, Tiwari et al.21 
proposed a CNN-based method for the classification of road surface quality (good road, medium road, and bad 
road) using accelerometer data as input. The proposed method exceeded neural feedforward networks and sup-
port vector machines (SVM), achieving a precision of 98.5%. To classify roads into the categories of good, fair, 
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and poor, Sabapathy et al.22 evaluated the ordinal logistic model, the SVM model, the ANN model, and the CNN 
model using accelerometer and speed data collected from OBD-II. The CNN model’s overall accuracy on the 
validation dataset was 65.6%, but it outperformed others. In conclusion, the effectiveness of deep neural networks 
in addressing complex multivariate time-series classification challenges is evident. However, there is potential 
for further improvement by exploring novel methods that combine deep neural networks with advanced signal 
processing techniques to produce higher-level representations for these challenging tasks problems.

Methodology
We collect a multivariate time series dataset of vibration data from sensors mounted on vehicles. Multivariate 
Time Series Classification (MTSC) is a significant challenge in machine learning and has many practical applica-
tions across various domains. In order to train machine learning models to classify road surface conditions, there 
are a number of representations that can be used to represent the time series signals6. We focus on the following 
data representation domains: the time domain, the frequency domain, and the time–frequency domain. Finally, 
deep learning algorithms are employed to evaluate the effectiveness of various data representations and the 
models’ ability to accurately classify complex patterns.

This section is organized as follows: In Sect. "Dataset collection", we discuss the process of collecting the 
dataset for our study. Section "Data representation transformation" focuses on the transformation of the collected 
data into a suitable representation format for deep learning models. Moving on to Sect. "Deep learning models", 
we present the various deep learning models employed in our study and their architectures. In Sect. "Experi-
ment setup", we outline the experimental setup, including details about how we handled the imbalanced dataset.

Dataset collection
A Raspberry Pi 4 served as the central processing unit for the data acquisition system. This computer was con-
nected to an MPU 9250 9-DoF IMU (Inertial Measurement Unit) sensor and a Neo 6m GPS unit, as shown in 
Fig. 1a. The entire system was fixed to the dashboard of the vehicle for data collection. The vehicle-mounted 
accelerometer used in this study collected data at a sampling frequency of 1kHz. The data collection process 
involved driving the instrumented vehicle on various road segments categorized into four main classes: normal 
road surface, potholes, bad road surface, and speed bumps. Data was collected at different speeds form a diverse 
set of Egyptian asphalt roads at different speeds and in real-world scenarios to account for the influence of vehicle 
velocity on vibration patterns, as shown in Fig. 1b.

Figure 2 showcases various road conditions. The normal road exhibits a smoother, less fluctuating pattern 
compared to the pothole, which shows a sharp drop in acceleration followed by a rapid increase. Similarly, the 
speed bump displays a characteristic hump-shaped pattern reflecting the vehicle’s ascent and descent. Compared 
to a smooth road with a consistent pattern, the accelerometer readings from a bad road will exhibit more frequent 
and irregular variations. These fluctuations reflect the vehicle’s response to the constant changes in elevation.

Sensors’ raw data is frequently represented as a time series, where the values of the data are represented as 
points that are recorded at regular intervals. Six time series are recorded for roads with four different conditions 
(normal, bad, speed bump, and pothole): three for X, Y, and Z-axis acceleration values,and three for pitch, roll, 
and yaw. The accelerometer data reflects the vibration patterns experienced by the vehicle due to the road surface 

Figure 1.   (a) Data acquisition system mounted on the vehicle dashboard, (b) Illustrative map depicting a 
sample trip used for data collection.
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irregularities. while the gyroscope readings can potentially capture subtle changes in vehicle orientation related 
to the road conditions.

By analyzing the time series data, it is possible to identify patterns that can provide insights into road con-
ditions. Figure 3 highlights the distinct vibration patterns associated with Pothole and Speed Bump. First Red 
Segment exhibits a distinct signature characterized by a sharp drop in X-acceleration followed by a rapid increase. 
This pattern corresponds to the vehicle encountering the sudden depression of the pothole and its subsequent 
recovery. while the second red segment shows a characteristic hump-shaped pattern. The initial rise represents 
the vehicle ascending the speed bump, followed by a dip as it traverses the peak, and finally a rise as it descends 
the other side.

On the other hand, Normal Road segments display a relatively smooth and consistent pattern with minimal 
fluctuations. while, The bad road data showcases a more erratic pattern compared to the other categories. It might 

Figure 2.   Representative data samples for different road conditions. (a) Normal road, (b) Pothole, (c) 
Speedbump, (d) Bad road.
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Figure 3.   X-axis acceleration signatures for potholes and speed bumps.

Figure 4.   Time series data sample for a bad road segment.
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involve frequent fluctuations, higher peak accelerations, and potential sharp spikes or dips due to the uneven 
surfaces characteristic of bad roads as shown in Fig. 4.

To prepare the data for classification, Time Series signals are combined into a single multivariate dataset, 
where each row represents a time step and each column corresponds to a signal value. Furthermore, we need to 
divide the road into segments so that each segment can be classified individually. So, location-based windows of 
sensor data streams were formed. Since GPS data is only collected once every second, while IMU data is typically 
collected once every 14 ms, the GPS data collection points act as boundaries around the IMU data. The maxi-
mum number of data points in each window, represented by the GPS coordinates, was 74. So, After eliminating 
all time series with fewer than 50 samples, each sequence was resampled to fit the 74 timesteps by interpolating 
the data from the closest data points, As shown in Fig. 5. The result is that the roads are segmented, and each 
segment of a road can be classified separately.

The dataset was created through manual labeling of captured videos from various experiments. Prior to 
manual labeling , we conducted extensive exploratory data analysis to gain insights into the characteristics of 
the vibration data. This analysis involved employing various data visualization techniques. These exploratory 
analyses provided valuable insights and laid the groundwork for our subsequent classification efforts. Addition-
ally, we experimented with clustering algorithms such as k-means and DBSCAN to automatically group similar 
data points. Nevertheless, additional research revealed that these clustering techniques were unable to accurately 
differentiate between the wide variety of road surface conditions included in our dataset. To supplement our 
analysis and aid in precise annotation, we integrated multiple data sources, including video recordings of road 
segments. These video recordings offered contextual information and were utilized as an additional reference 
during the annotation process. Our classification process followed an iterative approach, wherein we continu-
ously refined our annotation methodology based on insights gained from the data, which ensured the accuracy 
and consistency of our annotations across different road surface conditions.

Data representation transformation
Extracting valuable features from the sensor data is essential for training machine learning algorithms to accu-
rately classify road surface conditions. Three main data representations are used to depict these multivariate time 
series signals: time domain, frequency domain, and time–frequency domain6.

Road surface conditions are represented by the raw vibration sensor data that has been gathered over time. 
However, this representation requires significant feature extraction to capture hidden information, as the raw 
signal might contain noise and irrelevant fluctuations8. Frequency domain analysis, using techniques like the 
Fast Fourier Transform (FFT), helps figure out the distribution of energy across different frequencies within the 
vibration signal23,24. By decomposing the signal into its component frequencies, FFT allows us to identify the 
most prevalent frequencies present and potentially associate them with specific road surface characteristics. For 
example, vibrations caused by potholes may occur at specific frequencies that are different from those produced 
by smoother segments of the road23. Time–frequency domain analysis techniques like discrete wavelet transform 
(DWT) and continuous wavelet transform (CWT) offer a more comprehensive representation compared to pure 
time or frequency domain analysis. These techniques decompose the signal into wavelets, allowing analysis of 
both the frequency component and its variation over time. This capability can be beneficial for capturing transient 
features related to road anomalies, such as sudden bumps or potholes, which might not be explicitly detected in 
the time or frequency domain alone23.

Figure 5.   Resampled time-domain data samples for different road conditions.
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In our experiment, we applied FFT to the sequences extracted from the time-series data. By taking the 
absolute value of the Fourier transform for each sequence, the magnitude of the frequency components present 
in the signal was determined. This allows us to identify the dominant frequencies and their magnitudes in the 
signal, as shown in Fig. 6. The shape of the result dataset (2105, 38, 6) showed that it consists of 2105 sequences, 
each with 38 time steps and 6 features.

The discrete wavelet transform (DWT) is a mathematical transformation used to break down a signal into a 
set of wavelets, which are small waves that can be utilized to represent the original signal25. The DWT works by 
passing the signal through a number of high-pass and low-pass filters, which produce a multi-resolution repre-
sentation of the signal. We applied a single level DWT using the Daubechies 4 wavelet for each subsequence to 
transform our dataset from time domain to time–frequency domain. It separates the approximation coefficients 
(CA) and detail coefficients (CD). The shape of the CA or CD (2105, 40, 6) indicates that it consists of 2105 
subsequences, each with 40 timesteps and 6 Features. In Fig. 7, the transformed coefficients, obtained through 
the DWT, are visualized. As indicated, CA represents a coarse representation of the original signal. On the other 
hand, CDs reveal fine details and sharp changes in the signal.

The continuous wavelet transform (CWT) allows for the decomposition of a signal into its constituent fre-
quency components, revealing both the frequency content and the evolution of the frequency content over time24. 
We applied CWT to each time series sequence separately, which involves mapping the frequency spectrum of 
each time series onto a 2D image. We employed Morlet wavelet With a scale of 74. Figure 8 demonstrates the 
image representation of the diverse road surface conditions.

Figure 6.   Comparison of various road surface conditions in the frequency and time domains.
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Deep learning models
To compare the effectiveness of the various data representations, we used deep learning algorithms, particu-
larly long short-term memory (LSTM) and convolutional neural networks (CNN). These algorithms are widely 
applied in several fields, such as natural language processing, computer vision, and speech recognition. LSTM is 
especially effective in capturing long-term dependencies in sequential data, while CNN is particularly good at 
extracting spatial features from images. The subsections present the different models utilized in our study and 
their architectures.

LSTM (long short‑term memory)
The LSTM is a recurrent neural network (RNN) architecture developed to capture long-term dependencies in 
sequential data26,27. A major benefit of LSTM models is their ability to avoid the vanishing gradient problem 
frequently encountered with traditional RNNs, which can prevent the learning process for long sequences26,27. 
By using a combination of input, forget, and output gates, LSTM units are able to manage the flow of information 
across the network, which allows for more effective learning of temporal patterns. As road surface conditions 
demonstrate dynamic and time-varying characteristics, LSTM networks are appropriate for modeling the tem-
poral correlations present in the vibration data.

The model architecture is composed of two main layers. The first layer is an LSTM layer with 128 units. The 
input shape of this layer is a sequence of vectors with a fixed length. Each vector represents a sample in the input 

Figure 7.   Normal road surface subsequence in the time and time–frequency domain using DWT.

Figure 8.   Road surface subsequences in the time–frequency domain using CWT.
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sequence. The second layer is a dense layer, which acts as the final stage of the model. The activation function 
used in this layer is softmax, which is typically used for multi-class classification problems.

1D CNN
The CNN model, originally designed for image processing, can also be adapted for multivariate time series clas-
sification by treating each time step as a channel27. The CNN model begins with a Conv1D layer with 128 filters 
and a kernel size of 10, which applies convolutional filters to the input sequence. The rectified linear unit (ReLU) 
activation function is used to introduce non-linearity. A second Conv1D layer with 64 filters and a kernel size of 
3 follows the initial layer, further capturing local dependencies within the sequence. To reduce the dimension-
ality and extract the most relevant features, a MaxPooling1D layer with a pool size of 3 is employed. This layer 
downsamples the input representation by selecting the maximum value within a sliding window. Subsequently, a 
Flatten layer is applied. Additionally, Dropout regularization with a dropout rate of 0.2 is incorporated to prevent 
overfitting, and a final Dense layer with a softmax activation function is utilized for multi-class classification, 
see Fig. 9.

2D CNN
There are several representations that can be used to represent a multivariate time series signal for feeding into a 
machine learning algorithm, including raw time series representation, feature-based representation, and image-
based representation28. Multivariate time series data can be represented using an image-based representation by 
transforming the data into 2D images. Once the time series data has been mapped to an image, the data can be 
classified using common image processing methods like 2D CNN28.

Figure 9.   1D CNN model architecture.
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As shown in Fig. 10, the 2D CNN image-based model architecture is as follows: The first Convolutional Layer 
comprises 32 filters with an 8-kernel size and employs a ReLU activation function. The layer applies 3-pixel 
strides and adopts the ’same’ padding type. The kernel weights are initialized using the he-normal initialization 
method. To improve the stability and convergence of the network, a batch normalization layer is added after the 
first convolutional layer. After that, a Max Pooling Layer performs downsampling using a 3 × 3 pooling window 
to reduce spatial dimensions while preserving essential features. Followed by the second Convolutional layer, 
which consists of 64 filters with a kernel size of 3 × 3 and applies the ReLU activation function. No padding is 
used, and the weights are initialized using the he-normal initialization. Another batch normalization layer Similar 
to the previous one, it is added after the second convolutional layer to enhance network performance. Then Max 
Pooling performs another downsampling operation using a 2 × 2 pooling window. The output of the last pooling 
layer is flattened to create a vector representation of the extracted features. Finally, two fully connected layers are 
added to the network. The first fully connected layer consists of 32 neurons, which allows for a more complex 
mapping of the features. On the other hand, the second fully connected layer is made up of four neurons that 
represent the classes of road surface conditions.

Proposed model
The proposed model consists of two branches: an LSTM branch and a CNN branch. The LSTM branch follows 
the architecture described in Sect. “LSTM (long short-term memory)”, while the CNN branch follows the struc-
ture described in Sect. “1D CNN”. The outputs from both branches are concatenated and passed through Two 
fully connected Dense layers. The first Dense layer has 64 units and uses the ReLU activation function, while 

Figure 10.   2D CNN Image-based model architecture.
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The second Dense layer has 4 units (representing the number of classes) and uses a softmax activation function 
for classification (see Fig. 11).

Experiment setup
Table 1 shows that the majority of the training dataset samples (86% of the training dataset samples) belong to 
the normal road surface class, while only a small proportion (0.7%, 2.7%, and 10.5%, respectively) belong to the 
potholes, speed bumps, and bad road surface classes. While this dataset is representative of real-world scenarios, 
it was biased toward normal road surface class.

The below figure (Fig. 12) shows the classification report and the confusion matrix of the performance 
of the 128-unit LSTM, followed by a dense layer to classify the various types of road surfaces. However, the 
LSTM model achieves 85% classification accuracy, The results indicate that the model struggles to differentiate 
between normal road surfaces and other classes; all potholes, speedbumps, and bad road surface segments were 
classified as normal road surface classes.

To address this issue, oversampling and undersampling techniques have been used to balance the dataset 
and improve the model’s performance. The oversampling technique involves increasing the number of instances 
in the minority classes (i.e. potholes, speedbumps, and bad road surface), while the undersampling technique 
involves reducing the number of instances in the normal road surface class.

To keep track of the sample class, we divided all continuous samples that belonged to the same class into dis-
tinct groups. Then, using the TimeSeriesResampler, we doubled the size of each group in the dataset and ensured 
that the output would be a factor of sequence length (i.e. 74). Additionally, we performed the rolling window tech-
nique to increase the number of instances of the minority class, which involves sliding a window over the time 
series data and extracting subsequences of a fixed length from each position of the window, then labeling each 

Figure 11.   Proposed model architecture.

Table 1.   Imbalanced training and test dataset subsequences.

Class Train dataset Test dataset

Normal road surface 1048 378

Potholes 2 3

Speedbump 69 12

Bad Road surface 56 46

Total 1175 439
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subsequence with the same label as the original time series. We used different overlap fractions for each minor 
class to balance the dataset. Table 2 represents the training and testing subsequences for the modified dataset.

Ethical and informed consent for data used
Not applicable [Given the nature of the data utilized, there were no human participants or volunteers involved 
in the data collection process. Therefore, no informed consent was required from individuals for the use of their 
data in this study].

Results and discussion
This section investigates the effectiveness of data representation on road surface classification performance using 
LSTM and CNN models. We examine the models in three domains: time, frequency, and time–frequency. To 
examine the performance of our models, we used stratified k-cross validation sampling during the train-test 
split to guarantee a representative distribution of classes in both sets with k = 5. We trained our models using a 
sparse categorical cross-entropy loss function for 20 epochs with a batch size of 32 and compiled them with the 
Adam optimizer. Additionally, we employed performance metrics that are robust to imbalanced datasets, such as 
accuracy, precision, recall, and F1-score. Accuracy refers to classification accuracy, which measures the percent-
age of correctly classified instances out of the total number of instances. Precision measures the ratio of correctly 
predicted positive observations to the total predicted positives; recall measures the ratio of correctly predicted 
positive observations to all observations in the actual class; and F1-score is the harmonic mean of precision and 
recall. The experiments were performed on a dataset consisting of 2105 samples, where each sample represented 
a multivariate time series consisting of 6 series with 74 timesteps in the time domain.

Time domain results
The LSTM model, which consists of an LSTM layer with 128 units and a dropout rate of 0.2 to reduce overfit-
ting, achieved an average accuracy of 83.43% across the 5 folds with a standard deviation of 0.0305, an average 
precision of 83.9%, an average recall of 84.97%, and an F1-score of 84%. As presented in Table 3, normal road 
surface class and pothole class showed average F1-scores of 89.02% and 90.68%, respectively, indicating that the 
model was particularly effective at identifying these types of road conditions. However, the model struggled with 
speed bumps and bad roads, achieving F1-scores of only 79.4% and 76.9%, respectively.

We also experimented with a CNN model that consisted of two 1-D convolutional layers, Max-Pooling layer 
and a dense layer. This model was trained using the same dataset and optimization technique as the LSTM model. 
The CNN model showed better results, with an average accuracy of 85.9% and a standard error of 0.0157. The 
CNN model achieved Average precision, recall, and F1-score values above 89% for the normal road surface 
class, although the potholes and speed bumps class experienced higher performance than the LSTM model (see 
Table 3).

Frequency domain results
From the experimental results presented in Table 4, the CNN model is superior to the LSTM model in both the 
time and frequency domains and is able to extract more meaningful features from the data in both domains. 

Figure 12.   Confusion matrix and classification report of the imbalanced dataset.

Table 2.   Edited dataset subsequences.

Class Number of subsequences

Normal road surface 831

Potholes 149

Speedbump 492

Bad Road surface 633

Total 2105
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When the dataset’s frequency representation was evaluated, the CNN model had an average accuracy of 90.7%, 
which was better than the LSTM model’s average accuracy in the frequency domain by 6% and the LSTM model’s 
average accuracy in the time domain by 7.3%. Additionally, it performed better than the same model when using 
the time representation by 4.8%.

Time–frequency domain results
The results presented in Table 5 illustrate the comparison of average performance metrics for LSTM and 1D CNN 
models using the discrete wavelet transform (DWT) with the Approximation Coefficients and Detail Coefficients 
separated. LSTM and 1D CNN models using DWT Approximation Coefficients are effective in classifying dif-
ferent road surface conditions. While both models show comparable performance, the LSTM model tends to 
achieve slightly higher precision, recall, and F1-scores across the classes, resulting in a slightly higher average 
accuracy compared to the 1D CNN model. The average Accuracy for all classes is 86.18% for the LSTM model 

Table 3.   Comparing five-folds cross-validation average results for LSTM and CNN models using time domain 
representation.

Class

LSTM 1D CNN

Avg. precision Avg. recall Avg. F1-score Avg. precision Avg. recall Avg. F1-score

Normal road 86.67 91.7 89.02 89.2 90.62 89.87

Potholes 86.96 95.32 90.68 90.23 93.34 91.27

Speedbumps 77.77 81.93 79.4 85.03 84.36 84.58

Bad road 84.2 70.94 76.9 81.36 79.15 80.21

macro avg 83.9 84.97 84 86.46 86.87 86.48

Avg. accuracy 83.43% 85.9%

Std 0.0305 0.0157

Table 4.   Comparing five-folds cross-validation average results for LSTM and CNN models using frequency 
domain representation.

Class

LSTM 1D CNN

Avg. precision Avg. recall Avg. F1-score Avg. precision Avg. recall Avg. F1-score

Normal road 92.73 90.98 91.8 91.67 94.71 93.13

Potholes 81.45 82.56 81.11 93.68 94.65 94.11

Speedbumps 76.09 89.03 81.91 87.11 92.7 89.74

Bad road 83.44 73.32 77.93 92.28 83.1 87.38

Macro avg 83.43 83.97 83.19 91.19 91.29 91.09

Avg. accuracy 84.6% 90.7%

Std 0.0144 0.0060

Table 5.   Comparing five-folds cross-validation average results for LSTM and CNN models using DWT.

Class

Approximation coefficients Detail coefficients

LSTM 1D CNN LSTM 1D CNN

Avg. 
precision Avg. recall

Avg. 
F1-score

Avg. 
precision Avg. recall

Avg. 
F1-score

Avg. 
precision Avg. recall

Avg. 
F1-score

Avg. 
Precision Avg. recall

Avg. 
F1-score

Normal 
road 90.13 91.58 90.8 88.75 91.1 89.73 84.51 90.7 87.3 81.33 86.77 83.93

Potholes 91.82 95.66 93.41 93.48 92.63 92.99 82.96 79.19 80.22 86.04 74.58 79.67

Speed-
bumps 83.28 85.78 84.35 81.03 85.37 82.92 76.58 84.55 80.01 67.61 77.84 72.32

Bad Road 84.29 79.06 81.49 82.65 76 79.14 86.14 68.92 75.21 76.17 62.39 68.42

Macro avg 87.38 88.02 87.51 86.48 86.27 86.2 82.55 80.84 80.68 77.79 75.4 76.08

Avg. Accu-
racy 86.18% 85.32% 72.2% 76.5%

Std 0.0190 0.0143 0.0209 0.0289
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and 85.32% for the 1D CNN model. Additionally, both the LSTM and 1D CNN models perform well in detecting 
potholes, with the highest F1-score, precision, and recall achieved for the Potholes class.

Comparing these results with the results obtained using high-frequency data (DC), we find that there are 
significant differences in the performance. The low-frequency data provides a much more detailed picture of 
the underlying trends and patterns, allowing for more accurate classification. For the LSTM model, The average 
accuracy of the LSTM model was 72.2%, with a standard deviation of 0.0209. The average accuracy of the 1D 
CNN model was 76.5%, with a standard deviation of 0.0289.

The results presented in Table 6 compare the average performance of LSTM and 1D CNN models using both 
DWT coefficients with different approaches. The first approach is to use CA and CD concatenated; the LSTM 
model achieved an average accuracy of 81.43% for all the classes, while the 1D CNN model achieved a higher 
accuracy of 86.4%. Similarly, the 1D CNN consistently outperformed the LSTM model in terms of macro-
average precision, recall, and F1-score. When examining the results for the CA and CD stacked, the LSTM 
model demonstrated a higher performance compared to the concatenation approach and achieved a higher 
average accuracy compared to the 1D CNN model. The average accuracy of the LSTM model with the CA and 
CD stacked configurations is reported as 88.41%, while the 1D CNN model achieved an average accuracy of 
85.32%. These results highlight the comparable performance of the LSTM model in accurately identifying road 
surface conditions when utilizing stacked CA and CD coefficients.

The results presented in Table 7 illustrate the performance of 2D CNN models using CWT with a fivefold 
cross-validation. The results indicate that the models have good accuracy, with an average of 87.7%, and good 
performance in identifying road conditions, particularly potholes and normal road surfaces. Moreover, the 
standard deviation is relatively low, indicating consistent performance.

Proposed method
The below table (Table 8) presents the five-fold cross-validation average accuracy for the proposed model, which 
utilizes frequency domain and time-frequency domain data representations. The average accuracy of the model 
across all classes is reported as 93.4% with a standard deviation of 0.0177, which indicates that the performance 
of the model was consistent across different folds of the data. Overall, the model demonstrated good performance 
across all classes, with high precision, recall, and F1-scores for Normal roads and potholes and reasonably good 
performance for speedbumps and Bad roads.

Figure 13 represents the proposed model performance for the optimal fold. The accuracy graph illustrates a 
steady increase in accuracy as the number of training iterations increases, suggesting that further training could 
lead to even better results. Also, the loss graph shows a consistent decrease, indicating that the model is effectively 

Table 6.   Comparing five-folds cross-validation average results for LSTM and CNN models using DWT.

Class

CA and CD concatenated CA and CD stacked

LSTM 1D CNN LSTM 1D CNN

Avg. 
precision Avg. recall

Avg. 
F1-score

Avg. 
precision Avg. recall

Avg. 
F1-score

Avg. 
precision Avg. recall

Avg. 
F1-score

Avg. 
precision Avg. recall

Avg. 
F1-score

Normal 
road 82.8 94.23 88.11 88.14 92.54 90.22 90.36 92.79 91.53 89.53 90.38 89.88

Potholes 85.94 92.67 89.02 94.3 96 94.98 93.85 97.29 95.42 96.55 90.63 93.3

Speed-
bumps 73.45 78.26 75.57 86.59 81.7 83.93 83.82 90.04 86.74 81.24 85.58 83.16

Bad road 87.76 64.47 73.96 82.13 79.62 80.76 88.91 79.3 83.72 81.07 77.25 78.87

macro avg 82.49 82.41 81.66 87.79 87.47 87.48 89.24 89.86 89.35 87.1 85.96 86.3

Avg. accu-
racy 81.43% 86.4% 88.41% 85.32%

Std 0.0235 0.0145 0.0101 0.0202

Table 7.   Five-folds cross-validation average results for 2D CNN models using CWT frequency domain 
representation.

Class Avg.precision Avg.recall Avg. F1-score

Normal road 91.13 91.7 91.33

Potholes 92.65 92.65 92.38

Speedbumps 82.76 89.64 86.01

Bad road 86.7 79.77 82.98

macro avg 88.31 88.44 88.17

Avg. accuracy 87.7%
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learning and minimizing errors. Overall, these performance metrics indicate that the proposed model is capable 
of achieving high accuracy and robustness in its predictions.

In summary, Based on the results obtained from the comparative analysis of data representation techniques 
for classifying road surface conditions, the CNN model outperforms the LSTM model in the time and frequency 
domains. The CNN model is able to extract more meaningful features from the data and has a higher accuracy, 
F1-score, recall, and precision. Specifically, when using frequency domain representation and 1-D CNN, the 
model performs the best. On the other hand, LSTM outperforms the CNN model in the time–frequency domain 
using DWT (AC and DC stacked). The proposed model combined the strengths of CNN using frequency rep-
resentation and LSTM using time–frequency representation to achieve better results in classifying road surface 
conditions as shown in Fig. 14.

Table 9 provides a comparison of various models in terms of computational efficiency, represented by the 
number of floating-point operations (#Flops) and the number of parameters (#Parameter). We used keras_flops 
library to get the number of Flops and the keras library to calculate the number of parameters. The input shapes 
for each model are also provided, indicating the dimensions of the input data in different domains and defined as 

Table 8.   Five-folds cross-validation average results for the proposed model.

Class Avg.precision Avg.recall Avg. F1-score

Normal road 95.39 96.03 95.69

Potholes 93.04 96.67 94.76

Speedbumps 92.33 92.69 92.5

Bad road 91.63 89.57 90.53

macro avg 93.1 93.74 93.37

Avg. accuracy 93.4%

Std 0.0177

Figure 13.   Proposed model performance.
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(n_samples, n_timesteps, n_signals). In terms of number of parameters, CNN models are more computationally 
efficient than LSTM models, making them a better choice for real-time applications. Otherwise LSTM models 
perform a smaller number of multiplications and additions than CNN.

Figure 14.   Comparing the average accuracy of the different data representations.

Table 9.   Comparison of different models in terms of computational efficiency and input shape.

Domain Model #Flops #Parameter Input shape

Time
LSTM 1492 69,636

(2105,74,6)
1D CNN 4,511,768 38,340

Frequency
LSTM 1276 69,636

(2105, 38, 6)
1D CNN 1,784,344 34,756

Time–frequency

DWT (AC or DC)
LSTM 1288 69,636

(2105, 40, 6)
1D CNN 1,913,752 34,756

DWT (CA and CD Concatenated)
LSTM 1528 69,636

(2105, 80, 6)
1D CNN 4,511,768 38,340

DWT(CA and CD Stacked)
LSTM 1528 72,708

(2105, 40, 12)
1D CNN 2,389,912 42,436

CWT​ 2D CNN 17,880,536 64,132 (2105,74,74,6)

Frequency + time–frequency Proposed model 1,870,904 150,020
(2105, 38, 6)

(2105, 40, 12)
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Our experiments revealed a clear influence of data representation on classification accuracy. Each domain 
offers distinct advantages and limitations:

Time domain: CNNs performed well, capturing raw signal variations across all road types. However, this 
domain might be susceptible to noise that can degrade performance.
Frequency domain: 1D CNNs utilizing frequency domain data achieved competitive results, suggesting that 
dominant frequencies hold valuable information for differentiating road surfaces.
Time–frequency domain: DWT and CWT techniques provided a combined view of both time and frequency 
characteristics. Notably, LSTMs with stacked DWT approximation and detail coefficients achieved superior 
performance. This highlights the benefit of capturing both temporal dynamics and spectral information.

Across all domains, CNN models generally outperformed LSTMs in terms of accuracy, F1-score, recall, and 
precision. This can be attributed to CNNs’ ability to effectively learn spatial features from domain representations, 
making them better suited for identifying patterns in road surface vibrations.

Building on these findings, we propose a novel model that leverages both LSTM and CNN architectures. The 
model utilizes frequency domain data for the CNN and stacked DWT coefficients for the LSTM. This combi-
nation aims to capture the strengths of both time–frequency analysis and dominant frequency extraction. The 
proposed model achieved a remarkable average accuracy of 93.4% with a low standard deviation, demonstrating 
its effectiveness.

While CNNs demonstrate superior performance, their computational cost must be considered. As expected, 
CNN models generally require more resources compared to LSTMs. The selection of the optimal model might 
depend on the specific application’s requirements, balancing accuracy with computational efficiency constraints.

To ensure our findings are reliable and generalizable, we further evaluated the proposed model on another 
dataset with varying characteristics. In Ref.29, the authors collected nine datasets named Passive Vehicular Sen-
sors Dataset (PVS 1–9) using Raspberry Pi and MPU-9250 modules, external GPS, and a camera. They recorded 
various measurements, including acceleration, gyroscope, magnetometer, temperature, location, and speed data, 
using two MPU-9250 modules, which were distributed in the vehicle. After preprocessing, the data were used 
to train and test 34 different computational models for road surface type classification, encompassing both clas-
sical machine learning and deep learning techniques. Through extensive experiments, they determined that the 
best-performing model was CNN-based, achieving a validation accuracy of 93.17%. This model successfully 
classified road surfaces into categories like dirt, cobblestone, or asphalt roads.

We use only The Experiment 3 dataset collected from the module which was attached to the vehicle dash-
board and used only the 3-axis acceleration and 3-axis gyroscope. The shape of the input is (4652, 300, 6) for 
the train dataset and (2546, 300, 6) for the test dataset. To fit the requirements of our proposed model, we apply 
frequency and time–frequency transformations for the input data, which result in (4652, 153, 12) and (4652, 
151, 6), respectively, for training both LSTM and CNN, as shown in Fig. 15.

We compared the performance of our proposed model against their best-performing model to evaluate its 
effectiveness. The results showed that our model achieved a validation accuracy of 94.8%, outperforming their 
best-performing model, which indicates the effectiveness of our approach to accurately classifying multivariate 
time series data.

We compared the performance of our proposed model against29 best-performing model to evaluate its effec-
tiveness. The results showed that our model achieved a slightly higher overall accuracy (94.78%), outperforming 
their best-performing model (91.44%), which indicates the effectiveness of our approach to accurately classifying 
multivariate time series data as shown in Fig. 16.

Overall, the findings of this study emphasize the significance of selecting appropriate data representation tech-
niques for road surface condition classification. The combination of different representation domains provides a 
comprehensive understanding of road surface vibrations and enhances classification accuracy.

Conclusion
In conclusion, this study presents a comparative analysis of data representation techniques for vibration-based 
road surface condition classification. The findings highlight the strengths and limitations of different represen-
tation domains and machine learning models. Furthermore, our research highlights the importance of feature 
engineering in improving classification accuracy. By extracting relevant features, we were able to enhance the 
discriminative power of our models and contribute to advancing the field of road surface condition assessment 
and classification, enabling improved road safety and maintenance strategies.
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Figure 15.   (a) Proposed model and (b) Ref.29 best performance model structure.
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