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Medical calculators derived 
synthetic cohorts: a novel method 
for generating synthetic patient 
data
Francis Jeanson 1*, Michael E. Farkouh 2, Lucas C. Godoy 2, Sa’ar Minha 3,4, Oran Tzuman 3,4 & 
Gil Marcus 3,4

This study shows that we can use synthetic cohorts created from medical risk calculators to gain 
insights into how risk estimations, clinical reasoning, data-driven subgrouping, and the confidence 
in risk calculator scores are connected. When prediction variables aren’t evenly distributed in these 
synthetic cohorts, they can be used to group similar cases together, revealing new insights about how 
cohorts behave. We also found that the confidence in predictions made by these calculators can vary 
depending on patient characteristics. This suggests that it might be beneficial to include a "normalized 
confidence" score in future versions of these calculators for healthcare professionals. We plan to 
explore this idea further in our upcoming research.

The use of synthetic patient data in medical research is rapidly gaining popularity for their ability to model large, 
complex multivariate datasets that replicate features of real data while maintaining patient privacy1,2. Several 
methods such as rule based methods, bayesian networks, auto-encoders, and generative adversarial networks 
(GANs) have gained attention for their ability to mimic real data by maintaining their statistical characteristics3,4. 
Here instead, we present an approach that unpacks the characteristics of models derived from real world patient 
data to not only reveal new findings from the data but also from models themselves. In particular, we apply this 
to medical risk calculators which are derived from real world clinical populations. Medical calculators are vital 
tools in clinical practice, offering a means to create measurable evidence and introduce new medical guidelines 
and standards. They can serve as clinical decision support systems, improving clinical efficiency and the dissemi-
nation of new medical evidence. With proper awareness and training, medical calculators can even enhance the 
clinical efficiency5. As of 2018, for instance, approximately 65% of physicians make use of the MDCalc medical 
calculators to inform medical decisions on a weekly basis which highlights their importance in clinical practice6. 
However, medical calculators have come under recent scrutiny as variability in their design and at-times lack of 
contextual insights can lead to unreliable measures7–9.

As part of a clinical research project focused on risks of patients that undergo a first heart attack and a recur-
rent one, our group developed a cohort of synthetic survivors of first heart attacks10. However, unlike typical 
synthetic data generators that focus on generating pseudo-realistic patient characteristics based on statistical 
assumptions and natural distributions, our clinically focused project, instead used existing medical risk calcula-
tors who themselves were based on real-world data, as the basis for generating a cohort that mapped would-be 
patient profiles to real-world outcomes in a near exhaustive manner. Our underlying idea is that generating 
synthetic patient profiles from risk calculators allows the exploration of patient cohorts in a data-driven man-
ner without making assumptions about clinical cohort characteristics or about what data to include for model 
building. This is especially important considering the often limited patient characteristics that can be found 
from individual patient datasets at any given institution. Not only will demographics typically be unbalanced to 
local population features, but the medical cases observed will be influenced by other factors such as institutional 
specialisation, observational biases among others11.

Ultimately, our approach may reduce or eliminate the need for secondary analysis on clinical results or the 
initiation of an entirely new clinical research study. To the best of our knowledge, the creation of such a medical 
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calculator derived synthetic cohort, and its potential and limitations for medical research, has not been previ-
ously described.

We begin by describing the methods used to create a synthetic cohort of patients having undergone an initial 
heart attack, population clustering identifying subgroups, and describe a novel method to complement risk 
scores with a confidence score of that risk we call the “normalized confidence”. We then present our results and 
discuss our interpretation and the opportunities we suspect this approach to leveraging risk calculators presents 
for future clinical research.

Methods
The use of medical calculators to create a synthetic cohort
The treatment given to heart attack survivors aimed at preventing future negative outcomes is called “secondary 
prevention” (SP)12. The efficacy of this SP is expected to differ between patients according to their specific health 
profile13 however there is no known way to estimate this efficacy for a given patient. The clinical study, which will 
be described in detail elsewhere, proposes a way to do so through the ratio between a patient’s baseline risk of 
undergoing a first heart attack, to their risk of undergoing a second heart attack while they are treated with SP.

Medical calculators were previously developed to estimate these two risks for a given patient, specifically the 
Atherosclerotic Cardiovascular Disease (ASCVD) risk calculator14 that provides the baseline risk for a given 
patient, and the Second Manifestations of Arterial Disease (SMART) calculator15 that provides the secondary 
risk. Here we use both calculators to create synthetic cohorts. It is worth mentioning that the SMART calculator 
is unique for predicting secondary risk, but for primary risk multiple calculators exist. The ASCVD was chosen 
due to its resemblance to the SMART calculator, both in input fields as well as in the type of prediction (10-year 
mortality risk), simplifying the calculation of the ratio between them.

Creation of the synthetic cohort
Both ASCVD and SMART publications have references to their risk model equations and coefficients14,15. We 
began by implementing these equations in Python, and conducted validation checks to ensure their accuracy 
with the existing calculators. Code was also created to perform analyses, generate profiles, and store profiles in 
data files. We then considered each input factor in the two calculators and determined if they were categorical 
or numerical, we then defined bounds and intervals for numerical values. While various distributions of input 
factors could have been explored, we opted for a non-stochastic approach to allow for a complete exploration 
of the original calculators which were themselves the result of modeling population samples. This served two 
purposes, first this helped ensure all potential profiles are considered for clinical relevance, and second this made 
it explicit as to how the calculators behave on scenarios that were potentially unseen in the original patient data 
that were used to derive both the ASCVD and the SMART calculators. Because of the breadth of the selected 
uniform input space, even few variables could lead to a combinatorial explosion, making the simulation intrac-
table practically. In our case, we found over 600 quadrillion profile combinations. If adopted, this would result 
in over 10 billion hours of computation on a modern processor, or over 1 million years. To achieve a tractable 
number of profiles without sacrificing clinical relevance, we reduced the number of factors to the core set of 
common risk factors between ASCVD and SMART, while also decreasing the resolution of numerical factors to 
clinically relevant intervals. In particular we avoided unrealistic combinations of values for these factors. We also 
chose to simulate only realistic profiles for patients that would have recently experienced their first heart attack.

In total, sixteen profile factors were defined based on the requirements for ASCVD and SMART. Two were 
used only for ASCVD, seven used only for SMART, and seven used by both. We then applied restrictions on some 
input factors that were dictated by the clinical scenario the clinical research question imposed (e.g., the time in 
years since the first heart attack variable for the SMART calculator was set to zero because the clinical research 
question focused on survivors of a heart attack immediately after the event). Five inputs were held at fixed value, 
seven were ordered variables, and the remaining were binary categorical variables. Taken together this led to a 
total of 26,880,000 profile combinations by applying the cartesian product on the sixteen profile factors. Table 1 
shows the selected values for each factor used in the calculation of the ASCVD and SMART risk scores. Code 
and data are made available at the following location https://​doi.​org/​10.​5281/​zenodo.​82418​72. The generation 
of the cohort was achieved with Python’s Itertools product combinatoric generator. All profiles were generated 
in approximately 1.7 h on a computer powered by an Intel Quad Core i7 with 8 GB RAM.

Exploring the natural grouping of the cohort
As part of a separate clinically focussed research study, which seeks to adjust the risk of a cardiovascular event 
recurrence relative to the baseline risk of a first event, a novel measure was developed that we denote the unmet 
risk index (UMRI)10. More specifically, the UMRI is computed by dividing the secondary risk produced by the 
SMART score with the baseline risk produced by the ASCVD score. In this separate clinical work, we grouped 
patient profiles based on arbitrary thresholds determined through clinical reasoning. However, we also identi-
fied the opportunity to leverage unsupervised machine learning methods to explore these groups from the data.

Over the last two decades, computational methods to explore unsupervised methods for natural grouping 
of datasets via clustering have gained popularity in medical research16–18. Specifically, clustering methods were 
recently used in clinical studies of medical entities in which grouping by clinical reasoning was not feasible due 
to heterogeneity of the data19,20. We therefore wished to explore whether such natural grouping may occur in our 
synthetic cohort. Upfront, the unnatural uniform distribution of the variables in our cohort, due to the iterative 
nature of the computation of profiles (leading to 50% females, 50% diabetic, etc. See Table 2), should exclude the 
possibility to find natural grouping in it. However, the prediction variables of both calculators and the derived 
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UMRI variable have a non-uniform distribution. We thus used these components of variability to explore the 
option of natural grouping of the cohort.

An unsupervised clustering method was utilised to detect potential underlying groups. Because K-means 
clustering applies only to numerically ordered values, we adopted the K-prototypes clustering method which 
operates on a mix of numerical and categorical values21. Due to the computational load of clustering on over 
26 M profiles, we applied the clustering algorithm on a uniformly random subset of 26,260 profiles. Because the 
optimum number of clusters is unknown, we computed the silhouette score22 on a series of clustering outcomes 
for a number of clusters between 2 to 8. Silhouette scores range between − 1 and 1, the higher scores suggest that 
items belong more clearly to their own group with a greater separation from other groups. Scores with values 0 
or below suggest that there is very poor grouping or even overlap of vectors between groups.

Table 1.   The profile generator: the variables with used limits, intervals and rules.

Parameter

Intersected lenient with rules and mandatory choices version

Range of values Number of options Rules and implications

Age (years) 40–79, by increments of 1 40 ASCVD and SMART​

Sex Male/female 2 ASCVD and SMART​

Race African American/other (same as white) 2 ASCVD only

Systolic blood pressure (mmHg) 90–200, by increments of 10 12 ASCVD and SMART​

Total cholesterol (mmol/L) 4.0–8.0, by increments of 1 5 ASCVD and SMART​

HDL cholesterol (mmol/L) 0.6, 1, 1.5, 2, 2.5 5 ASCVD and SMART​

History of diabetes Yes/no 2 ASCVD and SMART​

Smoker Current/no 2 ASCVD and SMART​

Coronary artery disease Yes 1
SMART only
As our cohort simulates patients after MI, with no previous 
history of CV disease, we chose ’yes’ for history of coronary 
artery disease and ‘No’ for other histories

Cerebrovascular disease No 1

Abdominal aortic aneurism No 1

Peripheral artery disease No 1

Time since first diagnosis of CV disease (years) 0 1
SMART only
As our cohort simulates patients shortly after their first MI, the 
answer ’0’ is mandatory for this parameter

Estimated GFR (mL/min) 60–120, by increments of 10 7 SMART only

High-sensitive CRP (mg/dL) 0.1, 0.2, 0.6, 1, 3, 6, 8, 11, 13, 15 10 SMART only

On hypertension treatment Yes/no 2 ASCVD only

Table 2.   Distributions of variables in the dataset.

Parameter N (%) Mean (SD) Skewness Kurtosis

Age (years) n/a 59.5 0.0 − 1.20150

Sex—female 13,440,000 (50%) n/a

Race—non-Caucasian 13,440,000 (50%) n/a

Systolic blood pressure (mmHg) n/a 145.0 0.0 − 1.21678

Total cholesterol (mmol/L) n/a 6.0 0.0 − 1.3

HDL cholesterol (mmol/L) n/a 1.52 0.08449 − 1.34334

History of diabetes—yes 13,440,000 (50%) n/a

Smoker—yes 13,440,000 (50%) n/a

Coronary artery disease—yes 13,440,000 (50%) n/a

Cerebrovascular disease—yes 13,440,000 (50%) n/a

Abdominal aortic aneurism—yes 13,440,000 (50%) n/a

Peripheral artery disease—yes 13,440,000 (50%) n/a

Estimated GFR (mL/min) n/a 90.0 0.0 − 1.25

High-sensitive CRP (mg/dL) n/a 5.79 0.43372 − 1.33780

On hypertension treatment—yes 13,440,000 (50%) n/a

ASCVD 10-year risk (%) n/a 0.23685 1.07877 0.64918

SMART 10-year risk (%) n/a 0.18980 1.41452 2.16970

UMRI n/a 59.5 0.0 − 1.20150
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Exploring the level of confidence in risk predictions
An initial exploration of the distribution of the prediction values showed that very different profiles can lead to 
the same risk prediction (Fig. 1). This suggested that variability may exist in the strength of confidence of the 
predictions, depending on the specific profile that led to the prediction.

To explore this phenomenon, we made use of the synthetic profiles to first show the amount of variability in 
calculator scores. Score values for each calculator were ordered in ascending order and the standard deviation 
was computed on grouped scores by increments of 0.001. We then further explored variability by isolating factors 
and calculating the amount of variability in risk scores for each independent variable value (e.g., ‘male’ versus 
‘female’ for the gender variable). By leveraging the synthetic profiles, we could compute the standard deviation 
of all risk scores when a single variable value is held fixed.

Using the independent standard deviation that was revealed for each risk factor, we then computed a 
composite measure which combines the variation found when each risk factor value is held fixed. We achieved 
this by dividing the standard deviation of the risk score for each isolated factor value (e.g., age = 42) by the 
maximum value for that factor across profiles. The product of all normalized values across factors for the risk 
calculator was then computed. We finally subtracted this product from 1 to obtain a score that increases as an 
indicator of increased confidence. This results in an overall confidence of the risk score that a calculator produces 
for a specific profile. We call this metric the “normalized confidence”. By normalizing variability when a single 
factor is held fixed and computing the inverse of the product of these variabilities, this normalized confidence 
score indicates highest confidence when the risk score is 1 and lowest confidence when the score is 0. The 

Figure 1.   Distribution of ASCVD and SMART prediction values. (a) The full plot of SMART by ASCVD with 
all 26,880,000 profiles. Each dot represents a single synthetic patient, with its corresponding ASCVD score and 
SMART score. As there is overlap of dots in some areas, boxplots (b) and heat maps (c, d) were used to describe 
the distribution of the patients in the plot. (b) SMART by ASCVD binned into 20 equal (by width) bins. (c) 
SMART by ASCVD binned for density measurements. (d) Zoom-in on SMART < 25% and ASCVD < 25% from 
figure c.
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development of this score, as well as its potential application for other medical calculators to enrich clinical 
decision making will be presented in a separate publication.

Results
Basic features of our synthetic cohort are presented in Table 2 and Fig. 2. The distributions of categorical and 
numerical variables were uniform. In contrast, the SMART and ASCVD variables, and the resulting UMRI vari-
able, had a non-uniform distribution.

The distribution of profiles across the ASCVD and SMART predictions is presented in Fig. 1. The highest 
density cluster of profiles was seen between ASCVD 0% and 2.5% risk and SMART 3% and 7% risk.

Natural grouping of the cohort
The silhouette scores for two to eight clusters are presented in Table 3. While the overall silhouette scores remain 
low, the highest silhouette score was observed for two clusters, and the second highest when five clusters were 
defined. Clusters of size 2 will often have higher silhouette scores due to easier binary separation between groups 
especially if sizes become unbalanced. More interestingly, we found that while a lower silhouette score was 
obtained for clustering into three and four groups, a clustering into five groups led to a slightly higher silhouette 
(0.2957) only to drop again at higher cluster numbers. This might suggest that five prototypical centroids may 
best describe the natural groups in the synthetics profiles when risk scores are included. While the contribution 
of scores may be the largest factor for item cluster assignment, clustering enables us to identify other common 
properties that associate with each grouping.

Figure 3 shows the cluster membership among the five clusters, across the ratio between the calculators. In 
general, the groups clustered along the transition from high UMRI to low UMRI (the y-axis), as well as from 
low ASCVD to high ASCVD (the x-axis), in a similar way to the grouping done by the clinical arbitrary cut-offs 
between groups. However, in contrast with the clinical grouping and despite this general similarity, some outliers 
can still be identified which reach the tail-end of the cluster when viewed as a relationship between ASCVD and 
UMRI (i.e., red-dotted profiles that are more densely found on the right-side of the graph can nevertheless be 

Figure 2.   Sample diagrams to demonstrate the uniform distribution of characteristics in the computed cohort.

Table 3.   Silhouette scores for a random subsample of size 26,260 for a number of clusters C between 2 and 
8 on numerical values only. Significant values are in bold. Some grouping was found by the K-prototypes 
clustering algorithm. The low silhouette scores below 0.5 suggest that some separation, with limited 
distinction, was found between the features of the profiles which included the UMRI score. A high score 
for C = 2 is typically found when low dimensionality suggests easier separation between groups. However, a 
noticeable second-peak silhouette score was found when 5 clusters are defined, whereas lower values are found 
for C = 3 and C = 4 as well as for C = 6 and above. This suggests that higher dimensional and more balanced 
grouping was found for clusters of size 5.

Silhouette score with C = 2 0.41810

Silhouette score with C = 3 0.28986

Silhouette score with C = 4 0.28873

Silhouette score with C = 5 0.29571

Silhouette score with C = 6 0.28879

Silhouette score with C = 7 0.27571

Silhouette score with C = 8 0.25487
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found in lower numbers on the left-sided side). This indicates that very similar profiles (with the same colour) 
may have very different baseline and/or secondary risks.

A secondary study is planned to understand if there is a clinical meaning for these groupings, as well as a 
specific search for the differentiating factors with two similar profiles with unsimilar risk predictions.

Level of confidence in output variables
Figure 4 shows that as the ASCVD and SMART scores increase, the standard deviations of each of these scores 
computed tend to increase in variability in a geometric way as risk scores increase. The variability of key categori-
cal and numeric variables is presented in Fig. 5. Significant differences in variance were observed for race (SD 
3.65 for ‘African’ vs. SD 2.1 for ‘other’), and sex (SD 4.03 for ‘female’ vs. SD 1.04 for ‘male’). A log-like decrease 
was observed in variability of the risk calculators as ages increased from 40 years old (SD 10.27143) to 79 years 
old (SD 0.57655). Similarly, large changes in UMRI scores were found for decreased systolic blood pressures, 
increase in HDL levels, as well as increase in hsCRP levels.

We found that diverse profiles can lead to similar risk scores. Table 4 presents three examples of pairs of 
profiles with similar ASCVD scores rounded at the tenth of a percentile, with their corresponding normalized 

Figure 3.   K-prototype clustering for a target of 5 clusters. K-prototype clustering for a target of 5 clusters on 
all profile generating input categorical and numeric variables, as well as the post-hoc UMRI score. UMRI was 
cropped at 15 to illustrate details of the membership categories represented by either of the five colors.

Figure 4.   Standard deviations of ASCVD and SMART as the risk scores increase. Standard deviations of 
grouped risk scores for ASCVD and SMART as risk scores increase by increments of 0.001.
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confidence. As seen with these examples, profiles with 7 or more differences with respect to risk factors, with less 
than 0.5% differences in ASCVD scores, can still exhibit a normalized confidence with a differential above 40%.

Discussion
We described the creation of a synthetic cohort from an iteration of clinical calculators—a cohort that was 
subsequently used in a clinical study that will be presented elsewhere. We also showed that such a synthetic 
cohort, despite its simulated nature, can be used to generate new medical insights. We demonstrated this in 
several different ways.

Figure 5.   Mean Unmet Risk Index with standard deviations for select variables. Mean Unmet risk index 
(UMRI) for all “African” and “Other” race profiles; “Female” and “Male” gender profiles; for age profiles; 
for systolic blood pressures; for high-density lipoprotein (HDL), and for high-sensitivity C-reactive protein 
(hsCRP). Red square show means, vertical line show ± 1 standard deviations.
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First, we showed that when the correlation between two risk estimations, i.e., the outputs of two medical 
calculators, is the focus of interest of a clinical study (as was the case in our clinical study)—the iteration of the 
two calculators is useful to reveal the full picture of the correlation, that by itself led to further insight by clinical 
reasoning, grouping, and analysis of the dataset.

Second, we showed that despite the expected unnatural uniform distribution of variables in such an iteration-
derived synthetic cohort, the existence of the non-uniformly distributed prediction variables added a degree of 
variability that was sufficient to allow for unsupervised clustering to find natural groupings. While no strong 
separation was found between cluster sizes, the presence of separation elicits further investigation. Exploring 
cohorts according to their naturally occurring grouping may lead to a different understanding of their behaviour 
and thus to a different clinical insight than those found in clinical studies. Indeed, computing challenges still 
remain with cluster analysis on very large cohorts.

Third, by creating an extensive list of patient profiles that span into the tail-ends of the natural distribution 
used when the risk calculators were first created, we tested the limits of their accuracy. By exploring the effect 
of individual parameters on the risk we demonstrated that variability exists in the degree of confidence the 
calculators have in their prediction. We further showed that while this confidence variability generally increases 
with the overall risk, it is the specific combination of patient attributes that determine the confidence in the 
risk—which we can compute with this method. This information may prove valuable to clinicians who use and 
trust calculators for decision making. In particular, we believe that versions of calculators that will include the 
“normalized confidence” score could potentially benefit clinical users by providing not only a calculated risk 
but also a level of confidence of this calculated risk. We plan to explore this concept and its implications in 
subsequent work.

Conducting clinical studies is often cumbersome and costly on human and economic resources23. With 
increased computing capabilities and our ability to process large datasets, there is much interest in the option of 
generating new clinical insight from data that were previously collected. Usually, this is done by using different 
tools to explore real data that were collected in previous studies. Here instead we propose a different model. 
Although calculators are generated from real data collected by the recruitment of a large number of participants, 
they can make predictions on a much broader population of profiles than they were originally created from. In 
effect, generalizations are routinely made in the clinic with risk calculators in a trustworthy manner. On one 
hand, trusting insights generated from a synthetic cohort mapped to risk calculator results is thus justifiable as a 
result. On the other hand, further exploration of the performance of the calculator on previously unseen profiles 
in the original study is justified as well.

It is important to emphasize that the cohort created here contains an unnatural distribution, in which each 
profile appears exactly once, and that rare (in real-life) profiles are as frequent as common (in real-life) profiles. 
This precludes any attempt to draw conclusions about the prevalence of profiles in the population or the effect 
of naturally distributed cohorts which other models may seek to achieve. Instead, our approach helped illustrate 
that many possible profiles lead to similar predictions in ways that natural stochastic distributions might not. In 
real life these many profiles may well be very rare. Others may choose to apply the methods we showed to create a 
cohort from one or a combination of more than one calculator using more naturalistic stochastic distributions to 
achieve different research objectives. One might add the skewed distribution of the predictions of the calculators, 
or their product, to the set of characteristics to achieve this. In addition, profiles that have a statistically very 
low probability of existence could be removed. In cases where a more normally distributed and complete set 
of profiles are created, as would be the case in a clinical study, the correlation between the predictions of the 
calculators for a single profile may be the focus of interest, regardless of this profile’s prevalence in real life. That 
said, after demonstrating the UMRI concept with the synthetic cohort, we plan to conduct a clinical study that 
explores its utility with a real cohort of heart attack survivors.

In conclusion, health risk calculator derived synthetic cohorts are a potential substrate for research, when the 
inquiry in question is suitable to its attributes and limitations. We believe the methods presented here may be of 
use to others to conduct such studies in other fields. Future projects will clarify the potential of these methods.

Data availability
The 26,880,000 synthetic profile combinations containing computed ASCVD, SMART, and UMRI scores along 
with their required input values were compiled into a comma separated values (CSV) file named “umri_pro-
files_full.csv”. The zipped version of this file is made available under CC 4.0 attribution at https://​doi.​org/​10.​

Table 4.   Example profile pairs with 7 or more differences in risk factors, with ASCVD difference below 0.5% 
and normalized confidence differences greater than 40%.

Race Gender Age Systolic Cholesterol HDL Diabetes Smoker On hypertension treatment ASCVD risk score Normalized confidence

Other Male 54 100 8 0.6 No No No 0.11176 0.88088

Other Female 42 190 8 2.5 Yes Current Yes 0.11443 0.44133

Other Female 40 200 8 2.5 Yes Current Yes 0.11859 0.41265

African Male 60 140 5 0.6 No No No 0.1186 0.81831

Other Male 76 110 5 2.5 No No Yes 0.19499 0.82875

African Female 40 190 7 2.5 Yes Current Yes 0.19523 0.41984

https://doi.org/10.5281/zenodo.8241872
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5281/​zenodo.​82418​72. This data file was used to compute all statistics, clustering, and normalized confidence 
calculations in the analyses presented herein.

Code availability
The code used to generate profiles as well as to compute statistics, plots, clustering, and normalized confidence 
scores is also available on GitHub by a link made available on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​82418​
72. ASCVD model coefficients are available in the following manuscript: https://​doi.​org/​10.​1161/​01.​cir.​00004​
37741.​48606.​98. SMART model coefficients are available in the following manuscript: https://​doi.​org/​10.​1136/​
heart​jnl-​2013-​303640.
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