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Land surface temperature 
and transboundary air pollution: 
a case of Bangkok Metropolitan 
Region
Tanni Sarker 1, Peilei Fan 1,2*, Joseph P. Messina 3, Ronald Macatangay 4, 
Pariwate Varnakovida 5 & Jiquan Chen 6

In a rapidly urbanizing world, heavy air pollution and increasing surface temperature pose significant 
threats to human health and lives, especially in densely populated cities. In this study, we took an 
information theory perspective to investigate the causal relationship between diel land surface 
temperature (LST) and transboundary air pollution (TAP) from 2003 to 2020 in the Bangkok 
Metropolitan Region (BMR), which includes Bangkok Metropolis and its five adjacent provinces. We 
found an overall increasing trend of LST over the study region, with the mean daytime LST rising 
faster than nighttime LST. Evident seasonal variations showed high aerosol optical depth (AOD) 
loadings during the dry period and low loadings at the beginning of the rainy season. Our study 
revealed that TAP affected diel surface temperature in Bangkok Metropolis significantly. Causality 
tests show that air pollutants of two adjacent provinces west of Bangkok, i.e., Nakhon Pathom 
and Samut Sakhon, have a greater influence on the LST of Bangkok than other provinces. Also, 
the bidirectional relationship indicates that air pollution has a greater impact on daytime LST than 
nighttime LST. While LST has an insignificant influence on AOD during the daytime, it influences AOD 
significantly at night. Our study offers a new approach to understanding the causal impact of TAP 
and can help policymakers to identify the most relevant locations that cause pollution, leading to 
appropriate planning and management.
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Against the backdrop of global warming, rising surface temperatures are now pervasive in the megacities of the 
Global South and are closely associated with low air quality1,2. While both heat and air pollution exposure are 
detrimental to human health, they become more severe when they act synergistically3,4. The scientific community 
has started to investigate the interaction mechanisms of these two environmental problems in urban area5. For 
example, Menon et al. reported that black carbon emissions exacerbated the urban heat islands (UHI) impact in 
China and India, warming the urban atmosphere and altering the stability and vertical movement of the plan-
etary boundary layer6. Cao et al. found haze pollution to be a contributing factor to UHI that enhances night-
time surface UHI at 0.7 ± 0.3 K (mean ± 1 SE) for semi-arid cities across China7. Yang et al. found that in Beijing 
PM2.5 pollution affects UHI, leading to weakened UHI intensity in summer via aerosol-radiation interaction but 
strengthened UHI intensity during winter via aerosol-planetary boundary layer interactions8. In recent years, 
researchers have also investigated the spatial spillover linkages of air pollution in nearby areas of cities and have 
reported the spatial consequences of air pollution9,10. For instance, Jiang et al. examined the spatial and temporal 
patterns of air pollution in Beijing’s neighboring cities and used the Granger causality test to investigate how haze 
pollution in and around Beijing affected nearby cities11. Using a network framework, Zhang et al. analyzed the 
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role of urbanization on the spillover of haze pollution in Cheng-Yu urban agglomerations in China12. Li et al. 
considered both urbanization and industrialization factors and their spillover effects on air pollutant emissions 
in Huang-Huai-Hai region of China13. A recent study by Nguyen et al. assessed the impact of pollution in Ho Chi 
Minh City (HCMC) in Vietnam and found that Indonesian biomass burning and Chinese haze are responsible 
for degrading HNMC’s air quality under certain meteorological conditions14. These studies, while providing 
meaningful insights into the regional spillover effects of pollution, disregarded the impact of transboundary air 
pollution on land surface temperature. Such an assessment of the contributions from local to distant sources can 
help cities take effective measures to reduce pollution loads and improve the thermal environment.

Thailand has been experiencing elevated land surface temperature (LST) along with year-round high levels of 
pollution originated from vehicular emissions, chemical and industrial activities, and traditional crop manage-
ment, especially in Bangkok– the largest urban agglomeration15,16. Due to poor air quality, it is estimated that 
29,000 people died prematurely in Thailand in 202117. Air pollution also led to the loss of productivity of US 
$5.0–$6.4 billion in 2015 – 1.4–1.6% of the country’s total GDP15. Past studies have also reported the challenges 
to local and central governments in reducing and preventing transboundary air pollution (TAP) in Thailand18–21. 
Current studies highlight the nexus between air pollution and LST in Bangkok, albeit they are either confined 
to local urban areas or have solely concentrated on urbanization-related issues22,23. While the contribution of 
transboundary transport of air pollutants exclusively originating from biomass burning (24–38%) and non-
biomass burning to total air pollution in Bangkok is substantial, no studies have quantitatively measured the 
contributions of TAP in affecting LST18,24,25. Clearly, there is a critical need for understanding the corresponding 
mechanisms so that better planning and management can occur.

The main objective of this study is to use information theory to quantify the contribution of transboundary 
air pollution to the change of LST, using BMR as a case (Fig. 1). We hypothesize that air pollutants in Bangkok 
and its surrounding provinces contribute to the physical processes that drive LST in Bangkok and vice versa. We 
take an information theory perspective to analyze the interdependent dynamics of LST and air pollutants. We 
used transfer entropy (TE) of Information Theory in our causality analysis, as TE is a nonlinear generalization of 
the Granger causality test, model free, and accounts for both linear and nonlinear causal effects. The application 
of TE makes the attribution of a causal relationship between AOD and LST more reliable. The approach used in 
our study thus offers an innovative way to understand the causal impact of TAP and identify the most relevant 
locations that cause pollution and affect LST, leading to appropriate planning and management. This study can 
also provide valuable findings to policymakers in formulating regionally differentiated pollution control poli-
cies for Bangkok. Additionally, our study underlines that the effective management of environmental problems, 

Figure 1.   Study Area of Bangkok Metropolis Region (BMR), Thailand. Note: The map was generated by the 
authors by using ArcGIS v 10.4. Administrative division boundaries used in the map were downloaded from the 
Database of Global Administrative Areas (GADM) v 4.1 (https://​gadm.​org/​data.​html).

https://gadm.org/data.html
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such as LST and air pollution, which requires coordination between different administrative units due to the 
transboundary impacts revealed in this study.

Data and method
Study area
The Bangkok Metropolitan Region (BMR) covers Bangkok metropolis and five adjacent provinces, including 
Pathum Thani, Nonthaburi, Nakhon Pathom, Samut Sakhon, and Samut Prakan (Fig. 1). As the largest urban 
agglomeration in Thailand, BMR is inextricably intertwined in terms of transportation and economic growth26. 
Covering an area of 7756 km2, BMR is home to over 10 million people, with population density varying from 
approximately 700–19,500 people per km2. Most of the population is concentrated in the central city core along 
the banks of the Chao Phraya River. The urban area has expanded rapidly, creating a massive urban built-up 
area spreading from the city center to its surrounding provinces. In addition to pollution from traffic congestion, 
industrial production substantially contributes to total air pollution, as factories in and around Bangkok account 
for around 29% of the national total25. However, the total amount of pollutants varies due to changes in wind and 
weather patterns throughout the year. The study area has a tropical savanna climate under the Köppen climate 
classification and is under the influence of Asian monsoon. With the daytime temperature over 30 °C for most 
of the year, the area has three distinct seasons: a dry and hot season from February to May, a rainy season from 
June to October, and a cool season of November to January with relatively lower temperature. The simultaneous 
occurrences of rain and heat from June to October is typical of tropical monsoon regions. Nationally, pollut-
ant concentrations decrease during the rainy season, while high air pollution episodes occur throughout the 
remaining seasons. Moreover, Bangkok suffers intense haze pollution from conventional management of crop 
residuals, especially during the dry season, with pollution also coming from surrounding regions. Around 54% 
of crop residues of rice and sugarcane are burned in the central region in Thailand annually20. Agricultural crop 
burning practices contribute significantly to seasonal spikes in pollution levels not only in locations practice such 
burning, such as Nakhon Pathom, but also in Bangkok where such burning is rarely practiced due to limited 
agricultural land.

Data processing
We relied on remote sensing products from 2003 to 2020 to understand the process of TAP and LST interac-
tion. We obtained daytime and nighttime land surface temperature at a 1 km resolution by utilizing the seam-
less gap-filled and clear sky, high spatiotemporal Moderate Resolution Imaging Spectroradiometer (MODIS) 
dataset27. This dataset overcomes the limitations of missing values due to clouds, shadows, and other atmospheric 
conditions. We converted per pixel LST from Kelvin to Celsius before aggregating to monthly minimum, mean 
and maximum daytime and nighttime LST over the study region. We used MODIS Aerosol (MCD19A2) V6 
product at 1 km spatial resolution for quantifying Aerosol Optical Depth (AOD) as an indicator of air pollu-
tion. This dataset was derived by using the Multi-angle Implementation of Atmospheric Correction (MAIAC) 
algorithm, which is renowned for outperforming other available products28,29. Similar to LST data, we retrieved 
AOD products for the BMR region from 2003 to 2020 and converted to monthly averages for further analysis.

We analyzed angstrom exponent (AE) and single scattering albedo (SSA) over the BMR region to understand 
the aerosol composition. To measure AE, we utilized MODIS Deep Blue product for land (0.412–0.47 μm) and 
averaged at a monthly level for 2003–2020. This product has been particularly useful for bright surfaces, such 
as desert and urban areas and is not available over oceans30. Ozone Monitoring Instrument (OMI) OMAERUV 
v003 level-3 single scattering albedo data at 0.388 µm were retrieved monthly from (https://​giova​nni.​gsfc.​nasa.​
gov/​giova​nni/) for the period of 2004–202031.

Land cover data at 30 m resolution was retrieved for 2000, 2010 and 2020 from GlobeLand30 product (http://​
www.​globa​lland​cover.​com/​home_​en.​html?​type=​data). We masked out water pixels to calculate LST since the 
high heat capacity of water could impact average diurnal LST. R software (version 4.0.2) was used for all analyses. 
We relied on the “RTransferEntropy” package to quantify directional information transfer between the systems 
and test whether they are statistically significant with p < 0.0532.

Methods
Using BMR as a test site, we used transfer entropy to examine the causality between transboundary air pollu-
tion and LST (daytime and nighttime) during 2003–2020 and determined the directionality of the information 
exchange between different neighboring regions considering only statistically significant information transfers 
at p value < 0.05. Standard approaches like correlation coefficients fail to provide any insights about causality and 
are unable to infer which of the variables are driving the system. Commonly used metrics are unable to capture 
the full range of model behavior (e.g., nonlinearities, feedback loops, and emergent behaviors)33,34.

Information theory: transfer entropy
We applied information theory (IT), particularly the measurement of transfer entropy35–37, to quantify the con-
tribution of air pollution to the change in land surface temperature in Bangkok. Information theory can be 
successfully employed to understand complex systems due to its advantage in interpreting causality33–35. It uses 
a probabilistic method to quantify the amount of information and uncertainty of information encoded in a time 
series. A key metric to quantify the information in IT is called entropy, which is a measure of the uncertainty 
associated with a random variable. According to Shannon38, entropy H (x) is defined as the number of bits to 
represent the amount of uncertainty (randomness) in a data source, and it can be expressed as

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
http://www.globallandcover.com/home_en.html?type=data
http://www.globallandcover.com/home_en.html?type=data
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for a discrete random variable x , with possible outcome x1,…….,xn , where P(x) is the probability distribution 
associated with variable x . Similarly, the joint entropy of two discrete random variables x and y H (x, y) is simply 
the entropy of their pairing:

(

x, y
)

 . This implies that if x and y are independent, then their joint entropy is the 
sum of their individual entropies.

The shared amount of information between x and y is called the mutual information (MI) MI
(

x, y
)

 and can 
be quantified as

where MI indicates how much information we gain about x after knowing y, and vice versa. Given its symmetric 
nature, MI can only provide the strength of association between two random variables; it is incapable of provid-
ing any information about the directionality of the couplings. In order to discern the directionality of couplings, 
Schreiber proposed transfer entropy (TE) based on the concept of Conditional Mutual Information39. Transfer 
entropy from a variable x to a variable y Tx→y can be defined as

where ytn = (yt,yt−1,…….yt−n+1 ) and xtn = (xt,xt−1,…….xt−m+1 ) are the n and m orders of the Markov processes 
x and y. Transfer entropy from a process X to another process Y can be explained by the amount of uncertainty 
reduced in future values of Y by knowing the past values of X given the past values of Y. In this study TEAOD→LST 
is the amount of information transfer from AOD of x city to LST of y city and can be interpreted by the amount 
of uncertainty reduced in future values of LST of y city by knowing the past values of AOD in x city given past 
values of LST of y city.

We computed pairwise TE between the variables at the monthly time scale using a 1-month lag time and 
presented them as a chord diagram. To avoid statistical artifacts, we implemented a randomized shuffled sur-
rogate test and calculated the p-value. The study proceeded only when the value of information flux had a p 
value smaller than 0.0540.

SSA and AAE
Atmospheric aerosols can alter the total amount and distribution of solar radiation through absorption and 
scattering in the pollution layer and, therefore, contribute to climate change. The relationship between surface 
temperature and radiative forcing is strongly modulated by the interaction with aerosols41,42. SSA and AAE are 
two key parameters in determining the influence of aerosols on the earth’s radiative balance43.

Variation of SSA links to the strength of AOD in absorbing solar radiation and is modified with changes 
in aerosol content in the atmosphere. SSA values determine the cooling and warming outcome of the aerosol 
effect based on their structural and compositional characteristics. While high SSA values signify more scatter-
ing aerosols or a decrease in absorbing aerosols, lower values are linked to more absorbing aerosols44. Another 
parameter, AAE, a quantitative indicator of particle size, was analyzed to obtain information about the charac-
teristics of AOD.

Results
We found an increasing trend of LST over the study region, with the mean daytime LST rising faster than that of 
nighttime LST. Evident seasonal variations showed high aerosol optical depth (AOD) loadings during the dry 
period and low loadings at the beginning of the rainy season. Burning of crop residue, traffic congestion, and 
industrial activities have been identified as significant sources of air pollution in BMR, as indicated by Single 
Scattering Albedo (SSA) and Aerosol Angstrom Exponent (AAE). Our study revealed that TAP affected diel 
surface temperature in Bangkok Metropolis significantly. Causality tests show that air pollutants of two adja-
cent provinces west of Bangkok, i.e., Nakhon Pathom and Samut Sakhon, have a greater capacity in influencing 
the LST of Bangkok than other provinces. Also, the bidirectional relationship indicates that air pollution has a 
greater impact on daytime LST than nighttime LST. While LST has an insignificant influence on AOD during 
the daytime, it influences AOD significantly at night.

Spatial and temporal variations of the LST during daytime and nighttime
During the study period of 2003–2020, the mean daytime LST increased at a higher rate than the mean nighttime 
LST around BMR (Fig. 2). The spatial–temporal trend was computed by a linear fit to observe how the average, 
minimum and maximum nighttime LST and daytime LST changed over space for 18 years in and around BMR.

We found that from 2003 to 2020, ~ 63% of the area of BMR experienced a significant increase in mean day-
time LST, whereas ~ 60% had a significant increase in mean nighttime LST. Within BMR, the Bangkok metropolis 
had ~ 66% and ~ 58% of its area experienced significant increases in mean daytime LST and mean nighttime 
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LST, respectively. Similarly, significant increases in mean daytime LST and nighttime LST were found in ~ 95% 
and ~ 55% of the area of Nonthaburi, respectively, and ~ 70% and ~ 61% of the area of Pathum Thani, respec-
tively. More areas of Nakhon Pathom province experienced a significant increase in mean nighttime LST (~ 70% 
of the area) than in mean daytime LST (~ 65% of the area). Noticeably, the minimum daytime LST increased 
significantly only in a small part of Nakhon Pathom (~ 6% of the area) and the northeastern part of Bangkok 
metropolis (~ 5% of the area).

Nonthaburi Province had a significant linear warming trend with an annual increase in mean daytime LST 
of 0.17 °C/y during the study period, well above that of other provinces in Bangkok metropolis (0.10 °C /y), 
Pathum Thani (0.09 °C/y), Samut Sakhon (0.07 °C/y), Nakhon Pathom (0.06 °C/y), and Samut Prakan (0.06 °C 
/y). In contrast, the annual increase in mean nighttime LST appeared similar for all provinces, with Nakhon 
Pathom having a slightly higher annual increase (0.06 °C /y) than others (0.05 °C/y). It should be noted that the 
minimum daytime LST in Nakhon Pathom increased at an annual rate of 0.08 °C/y, surpassing the annual change 
rate of the mean (0.06 °C/y) and maximum (0.06 °C/y) daytime LST of BMR. A countertrend, though modest, 
was identified in Bang Kachao Park – an urban forest park, experienced a cooling trend with an annual change 
of mean daytime LST of − 0.001 °C/y.

Aerosol loading (AOD) distribution
Intra-annually, the AOD loading showed significant seasonal differences (Table 1). The average AOD concentra-
tion was high during the dry season (February–May) and low in the cool (November–January) and rainy seasons 
(June–October), except for Nakhon Pathom and Samut Sakhon, where the average AOD concentration was 
much higher during the cool season. The average AOD concentration was particularly high during January and 
February and low in July for all provinces (Fig. 3a–f). Over the 18 years, the average AOD values in February 
in Bangkok, Nakhon Pathom, Nonthaburi, Pathum Thani, Samut Prakan, and Samut Sakhon were 0.68 ± 0.10, 
0.70 ± 0.03, 0.73 ± 0.03, 0.77 ± 0.003, 0.72 ± 0.04 and 0.74 ± 0.01, respectively. The Maximum AOD values showed 
a similar seasonal change to the average AOD values. It is worth noting that AOD loading started to decrease 
in April for all provinces.

Causality between surface temperature and aerosol intensity
The Pearson correlation coefficient test was performed and presented as a heat map in Fig. 4 to demonstrate the 
interdependencies between the time series of AOD for each province (Bangkok, Nonthaburi, Pathum Thani, 
Samut Prakan, Samut Sakhon, and Nakhon Pathom are hereafter referred as Z-1, Z-2, Z-3, Z-4, Z-5, Z-6, respec-
tively) along with their association with the Bangkok LST time series. The correlation coefficients (r) between 
each pair of AOD time series are positive and significant. However, the association of Bangkok LST for both 
daytime and nighttime with other provinces’ AOD is mixed. Z-1 (nighttime LST) was negatively correlated with 
AOD of Z-2 (r = − 0.12, p > 0.05), Z-5 (r = − 0.35, p < 0.05), and Z-6 (r = − 0.19, p < 0.05) and positively with AOD 
of Z-1 (r = 0.05, p < 0.05), Z-3 (r = 0.07, p > 0.05), and Z-4 (r = 0.05, p > 0.05). On the other hand, Z-1 (daytime 

Figure 2.   The trending of diel land surface temperature (LST) over the years of 2003–2020 (a) minimum 
daytime LST, (b) mean daytime LST (c) maximum daytime LST and (d) minimum nighttime LST, (e) mean 
nighttime LST and (f) maximum nighttime LST. Note: Hatched regions indicate statistically significant (p < 0.05) 
trends (increase or decrease of the temperature). The analysis was conducted, and the maps were generated by 
the authors by using R v 4.0.2 and ArcGIS v 10.4. Administrative division boundaries used in the maps were 
downloaded from GADM v 4.1 (https://​gadm.​org/​data.​html).

https://gadm.org/data.html
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LST) was positively correlated with AOD of Z-1 (r = 0.23, p < 0.05), Z-2 (r = 0.14, p < 0.05), Z-3 (r = 0.3, p < 0.05), 
Z-4 (r = 0.2, p < 0.05), and Z6 (r = 0.09, p > 0.05) and negatively associated with Z-5 (r = − 0.04, p > 0.05).

Directional information flows among provinces, namely AOD of Z-1, Z-2, Z-3, Z-4, Z-5, and Z-6 to diurnal 
LST of Z-1 and vice versa revealed a much higher proportion of the information transfer going to Z-1 daytime 
LST with an emphasis on AOD from Z-6, Z-1, Z-4, Z-5, and Z-2 as contributing factors, respectively (Fig. 5a). The 
information transfer to Z-1 nighttime LST was much smaller than to Z-1 daytime LST, and AOD from Z-5 and 

Table 1.   AOD loading in different seasons during 2003–2020 in BMR. ***P < 0.001. Dry Seasons (Feb–May) 
had high AOD concentrations, while cool (Nov–Jan) and rainy seasons (Jun–Oct) had low concentrations. 
However, Nakhon Pathom and Samut Sakhon had higher concentrations during cool seasons.

Season Province Average ± SE Dry Rainy Cool

Dry

Bangkok Metropolis

0.519 ± 0.06 1.000 – –

Rainy 0.416 ± 0.048 0.000**** 1.000 –

Cool 0.461 ± 0.068 0.005 *** 0.0272 * 1.000

Dry

Nakhon Pathom

0.508 ± 0.064 1.000 – –

Rainy 0.404 ± 0.048 0.000*** 1.000 –

Cool 0.525 ± 0.068 0.425 0.000*** 1.000

Dry

Nonthaburi

0.545 ± 0.058 1.000 – –

Rainy 0.412 ± 0.052 0.000*** 1.000 –

Cool 0.510 ± 0.072 0.0875 0.000*** 1.000

Dry

Pathum Thani

0.557 ± 0.063 1.000 – –

Rainy 0.389 ± 0.042 0.000*** 1.000 –

Cool 0.459 ± 0.063 0.000*** 0.000*** 1.000

Dry

Samut Prakan

0.540 ± 0.066 1.000 – –

Rainy 0.468 ± 0.035 0.000 *** 1.000 –

Cool 0.507 ± 0.067 0.0906 0.0506 1.000

Dry

Samut Sakhon

0.526 ± 0.076 1.000 – –

Rainy 0.438 ± 0.053 0.000 *** 1.000 –

Cool 0.613 ± 0.078 0.000 *** 0.000 *** 1.000

Figure 3.   Intra-annual variation of AOD for 2003–2020 (a) Bangkok metropolis, (b) Nonthaburi (c) Pathum 
Thani (d) Samut Prakan (e) Samut Sakhon and (f) Nakhon Pathom. Note: Magenta cross ‘x’ indicates mean 
value and magenta solid line ‘–’ represents median value in the box.
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Z-6 act as contributing factors (Fig. 5b). In comparing the TE between other provinces, information transfer of 
AOD from Z-6 was comparatively higher for both day and night LST in Z-1. One interesting difference in these 
chord diagrams was the lack of information transferred to AOD in all provinces from Z-1 daytime LST, while 
AOD of all provinces received information from Z-1 nighttime LST. The plausible explanation for this asymmet-
ric influence of AOD pollution on daytime LST and nighttime LST could be due to the fact that the relationship 
between LST and radiative forcing is strongly modulated by the interaction with aerosols41,42. It indicates that air 
pollution has a greater impact on the land surface temperature during the day than at night.

Mechanism of single scattering albedo and aerosol angstrom exponent
Intra-annually, the average SSA experienced a decreasing trend of 0.0018/year (R2 = 0.78) over BMR during 
2004–2020, suggesting that aerosols have become more absorbing (Fig. 6a). The inter-annual variation of AE 

Figure 4.   The heat map of the Pearson correlation coefficient of AOD loadings of each province and with LST 
(daytime and nighttime) of BMR.

Figure 5.   Chord diagram showing statistically significant transfer entropy between LST and AOD during 
2003–2020 (a) daytime (left) and (b) nighttime (right).
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for the years 2003–2020 ranged from 1.489 to 1.752 (Fig. 6b). The highest and lowest average AE values were 
observed as 1.752 ± 0.014 and 1.4961 ± 0.142 in February and November, respectively. High AE values indicate 
the dominance of fine particles, whereas low AE values suggest that most aerosols are coarse particles resulting 
from biomass burning during the dry season.

Discussion
LST patterns and information transfers between LST and AOD
The spatial variation of LST for both daytime and nighttime across BMR during 2003–2020 was reliably depicted 
by the linear fit. We found some noteworthy changes in LST over BMR. While the minimum daytime temperature 
(0.08 °C/y) rose at a higher rate than that of the mean (0.06 °C/y) and maximum daytime temperature in Nakhon 
Pathom (0.06 °C/y), the minimum daytime LST increased significantly only in some part of Nakhon Pathom 
(~ 6% of area) and the northeastern part of Bangkok metropolis (~ 5% of area). It should also be noted that in 
areas primarily characterized by urban green and blue spaces, there was a declining trend in the mean daytime 
LST (− 0.001 oC/y), further confirming the contribution of urban green/blue space in mitigating the impact of 
urban heat island22,23. The cooling trend is identified in the natural land surface environment near Bang Kachao 
– a tropical urban forest park with an area of 20 km2 located in the Chao Phraya lower floodplain. Also, some 
places in BMR and vicinities warmed up faster during daytime than nighttime; this disproportionate warming 
could be attributed to latent heat flux caused by differences in the water table and soil moisture45,46. Our findings 
on seasonal differences in AOD loadings over BMR may be mainly ascribed to meteorological conditions and 
pollution sources. During the rainy season, the pollution concentration is lower due to the favorable atmospheric 
dispersion conditions caused by monsoon winds and low air pressure. In contrast, during the dry and cool sea-
sons, high air pollution episodes are ubiquitous, likely driven by weaker winds and air pressure inversions near 
the ground, as reported in previous studies15.

While bidirectional information transfers exist between LST and AOD during nighttime and daytime, the 
directionality of AOD towards daytime LST is significantly (p < 0.05) stronger than the perturbation caused by 
daytime LST to AOD. In contrast, at night, LST → AOD is stronger than AOD → LST. This may be due to the 
dynamic relationship between LST and AOD. From a climatic point of view, a change in tropospheric aerosol 
concentrations results in strong heating or cooling effects41. On one hand, high LST could encourage the upward 
transport of aerosol particles, leading to transboundary pollution. On the other hand, while heating from land 
surface temperature can carry pollutants to the top of the boundary layer through vertical advection, it is only 
effective up to a certain altitude. Eventually, the concentration of pollution aloft will be so high that diffusion will 
increase the concentration of pollutants near ground level. Additionally, we find that the air pollutants coincident 
of Nakhon Pathom and Samut Sakhon have a greater capacity to influence the LST of Bangkok metropolis than 
other neighboring provinces.

We confirm that aerosol absorption leads to a positive radiation balance anomaly, affecting radiative heating 
of the aerosol layer44,47. SSA, a parameter quantifying scatter/absorption of solar radiation by aerosols, had a 
decreasing trend over BMR at a rate of 0.0018/year (R2 = 0.78), indicating aerosols comprising the column are 

Figure 6.   (a) Inter-annual variation of Single Scattering Albedo (SSA) over BMR during 2004–2020 and (b) 
intra-annual variation of Aerosol Angstrom Exponent (AAE) over BMR during 2003–2020. Note: Magenta cross 
‘x’ indicates mean value whereas red line ‘–’ represents median value in the box.
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more absorbent and mainly attributed to the prevalence of black carbons from urban pollution that is emitted 
from combustion sources and agricultural burning in and around the BMR. This result is consistent with a recent 
study of Li et al. who found relatively low SSA values over Southeast Asia where biomass burning related black 
carbon and organic carbon is intense44. For the months of January, February, and March, we observed AE of > 1.7, 
indicating the dominance of fine-sized anthropogenic aerosols, which arise mostly from the combustion of fossil 
fuels and biomass burning48–50. The two parameters of SSA and AAE together provide an understanding of the 
sources and properties of aerosol loadings over BMR.

Urban and agricultural land use changes in Bangkok Metropolis and surroundings
Our findings on LST associated with urban and agricultural land use changes in recent decades in BMR and its 
surrounding areas, as LST is primarily influenced by surface type, with different land cover compositions playing 
significant roles51,52. Urban expansion in our study region, facilitated significantly by the expansion of trans-
portation infrastructure, including the construction of highways and railways, extended beyond administrative 
boundaries, encroaching into the surrounding agricultural areas. Urban built-up areas expansion is character-
ized by (1) mainly edge growth from existing main urban center of Bangkok, (2) spill-over the administrative 
boundaries of provinces, particularly towards west and east, and (3) further expansion of center cities of all five 
surrounding provinces (Fig. 7). This expansion has led to the development of functional units within different 
districts, with the inner city (Bangkok) becoming increasingly institutional and commercial, while the sur-
rounding provinces urban expansion has been characterized by predominantly residential and industrial zones53 
(Fig. 7). The rise in minimum daytime temperature in the inner city of Bangkok indicates a strong influence of 
urban morphology in shaping LST patterns. This finding aligns well with previous research indicating that the 
densely built-up areas influence the LST of Bangkok54,55. Furthermore, the province of Nakhon Pathom, located 
to the west of Bangkok, experiences severe air pollution attributed to a combination of vehicular emissions and 
emissions from numerous coal-powered factories, exacerbated by urban topography characterized by high-rise 
buildings impeding wind dispersion. Meanwhile, the modulation of land surface temperature is significantly 
influenced by the onsite activities of agricultural fields throughout the year. Agricultural land still dominates 
the surrounding provinces of Pathum Thani, Nonthaburi, Nakhon Pathom, Samut Sakhon, and Samut Prakan, 
with aquaculture characterized the agricultural land gain of 2010–2020 in the coastal area of Samut Sakhon 
and Bangkok metropolis (Fig. 7). The minimum daytime temperature is rising in rural zones in the western 
part of the Nakhon Pathom, where rice crop fields dominate and play an important role in assuring BMR’s food 
security. The agricultural lands, which were converted into bare soil after harvesting, often contain high organic 
matter with high heat capacity, thus influencing the heating and cooling process of the land surface thermal 
environment54,56,57.

Limitations and future studies
Our current study does have some limitations that should be addressed in the future. First, as our study area 
focuses on five provinces that share common borders with Bangkok metropolis, we did not consider the influence 
of the region beyond the study area. Nevertheless, other regions (e.g., central, north, and northeast) of Thailand, 
as well neighboring countries, may have significant influences on the air quality of BMR. For example, previous 

Figure 7.   Urban and agriculture gains and persistence in Bangkok metropolis and five surrounding provinces 
during 2000–2020. Note The maps were generated by the authors by using ArcGIS v 10.4 and administrative 
division boundaries used in the maps were downloaded from GADM v 4.1 (https://​gadm.​org/​data.​html).

https://gadm.org/data.html
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studies have reported that long-range transport of biomass burning emissions from neighboring countries, such 
as Myanmar, Laos, and Vietnam affect the air quality of Thailand14. Second, despite AOD serving as a reliable 
indicator of air pollution, AOD has an inherent limitation as it exclusively focuses on particulate matter and 
does not encompass gaseous pollutants such as ozone and nitrogen dioxide. Future studies should consider 
incorporating other pollutants. Third, in addition to air pollutants, meteorological factors, such as temperature, 
cloudiness, humidity, the frequency and intensity of precipitation, and wind patterns, together with geographic 
features of landscapes, can individually and synergistically drive air quality58. For example, lower LST due to 
aerosols may have influenced the aerosol-planetary boundary layer (PBL) heights over Bangkok causing air 
stagnation that makes pollutants difficult to disperse, as has been shown for Chiang Mai59. Furthermore, mega 
cities in China have been found to have enhanced air pollution due to PBL interactions60. Nevertheless, we have 
not considered these factors in our current study. In future studies, we should incorporate meteorological and 
environmental factors toward understanding the causal relationship between land surface temperature and air 
pollutants. In addition, regional climate models (e.g., Weather Research and Forecasting model coupled with 
Chemistry (WRF-Chem)) could be utilized to better understand the spatial temporal distribution of pollutants 
and impacts on regional meteorology during biomass burning or forest fire events61. Fourth, our study spanned 
the period from 2003 to 2020, with a monthly time interval, resulting in a total of 204 samples. In future studies, 
we could improve the sample size to further elucidate the causal relationship between air pollution and land 
surface temperature.

Conclusion
This study uses an information theory perspective to investigate the causal relationship between diel land sur-
face temperature (LST) and transboundary air pollution (TAP) from 2003 to 2020 in the Bangkok Metropolitan 
Region (BMR), which includes Bangkok Metropolis and its five adjacent provinces. We found that the study 
region had an overall increasing trend of LST, with the mean daytime LST rising faster than nighttime LST. While 
the dry season had high aerosol optical depth (AOD) loadings, low loadings began as the rainy season started. 
TAP affected diel surface temperature in Bangkok Metropolis significantly with causality tests indicating that air 
pollutants of two adjacent provinces west of Bangkok, i.e., Nakhon Pathom and Samut Sakhon, have a greater 
influence on the LST of Bangkok than other provinces. Air pollution has a greater impact on daytime LST than 
nighttime LST. Furthermore, while LST has an insignificant influence on AOD during the daytime, it influences 
AOD significantly at night. Our study offers a new approach to understanding the causal impact of TAP and can 
help policymakers to identify the most relevant locations that cause pollution, leading to appropriate planning 
and management.

Data availability
Data used in this study are collected from the following sources: Land cover data are from GlobeLand30 (http://​
www.​globa​lland​cover.​com/​home_​en.​html?​type=​data); Angstrom exponent and single scattering albedo dataset 
are from (https://​giova​nni.​gsfc.​nasa.​gov/​giova​nni/); Aerosol Optical Depth data are from the MODIS Aerosol 
product data Archive in Google Earth Engine (https://​earth​engine.​google.​com).
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