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Diagnostic utility 
of clinicodemographic, biochemical 
and metabolite variables 
to identify viable pregnancies 
in a symptomatic cohort 
during early gestation
Christopher J. Hill 1, Marie M. Phelan 2,3, Philip J. Dutton 1,4, Paula Busuulwa 1,4, 
Alison Maclean 1, Andrew S. Davison 1,5, Josephine A. Drury 1, Nicola Tempest 1,4, 
Andrew W. Horne 6, Eva Caamaño Gutiérrez 2,7 & Dharani K. Hapangama 1,4*

A significant number of pregnancies are lost in the first trimester and 1–2% are ectopic pregnancies 
(EPs). Early pregnancy loss in general can cause significant morbidity with bleeding or infection, while 
EPs are the leading cause of maternal mortality in the first trimester. Symptoms of pregnancy loss 
and EP are very similar (including pain and bleeding); however, these symptoms are also common in 
live normally sited pregnancies (LNSP). To date, no biomarkers have been identified to differentiate 
LNSP from pregnancies that will not progress beyond early gestation (non-viable or EPs), defined 
together as combined adverse outcomes (CAO). In this study, we present a novel machine learning 
pipeline to create prediction models that identify a composite biomarker to differentiate LNSP from 
CAO in symptomatic women. This prospective cohort study included 370 participants. A single blood 
sample was prospectively collected from participants on first emergency presentation prior to final 
clinical diagnosis of pregnancy outcome: LNSP, miscarriage, pregnancy of unknown location (PUL) or 
tubal EP (tEP). Miscarriage, PUL and tEP were grouped together into a CAO group. Human chorionic 
gonadotrophin β (β-hCG) and progesterone concentrations were measured in plasma. Serum samples 
were subjected to untargeted metabolomic profiling. The cohort was randomly split into train and 
validation data sets, with the train data set subjected to variable selection. Nine metabolite signals 
were identified as key discriminators of LNSP versus CAO. Random forest models were constructed 
using stable metabolite signals alone, or in combination with plasma hormone concentrations and 
demographic data. When comparing LNSP with CAO, a model with stable metabolite signals only 
demonstrated a modest predictive accuracy (0.68), which was comparable to a model of β-hCG and 
progesterone (0.71). The best model for LNSP prediction comprised stable metabolite signals and 
hormone concentrations (accuracy = 0.79). In conclusion, serum metabolite levels and biochemical 
markers from a single blood sample possess modest predictive utility in differentiating LNSP from 
CAO pregnancies upon first presentation, which is improved by variable selection and combination 
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using machine learning. A diagnostic test to confirm LNSP and thus exclude pregnancies affecting 
maternal morbidity and potentially life-threatening outcomes would be invaluable in emergency 
situations.
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Abbreviations
BMI  Body mass index
CI  Confidence interval
CAO  Combined adverse outcomes
CRS  Correlation reliability score
CRL  Crown rump length
EP  Ectopic pregnancy
FDR  False discovery rate
GSD  Gestational sack diameter
β-hCG  Human chorionic gonadotrophin β
IQR  Interquartile range
LNSP  Live normally sited pregnancy
NVNSP  Non-viable normally sited pregnancy
NMR  Nuclear magnetic resonance
PUL  Pregnancy of unknown location
PPV  Positive predictive value
POC  Products of conception
PCA  Principal component analysis
P4  Progesterone
TVS  Transvaginal ultrasound
tEP  Tubal ectopic pregnancy

Pelvic pain and vaginal bleeding are common in early pregnancy. Up to 30% of women will experience these 
symptoms during the first  trimester1,2 and require a medical assessment and elimination of differential diagnosis 
that includes miscarriage, ectopic pregnancy (EP) or pregnancy of unknown location (PUL). Approximately 15% 
of known correctly sited pregnancies end in miscarriage and can cause significant morbidity if heavy bleeding 
or infection  occurs3. A further 1–2% of pregnancies are located outside the endometrial cavity, with the major-
ity (~ 98%) implanting in the fallopian tubes; these EPs are the leading cause of maternal mortality in the first 
 trimester4,5. PUL describes a pregnancy that cannot be located on transvaginal ultrasonography (TVS); 5–42% 
of early pregnancy scans fall into this  category6. Those pregnancies that are assigned as PULs at first emergency 
presentation have clinically heterogenous outcomes; their final diagnosis includes (i) a live normally-sited preg-
nancy (LNSP), (ii) a non-viable normally-sited pregnancy (NVNSP), (iii) an EP, (iv) a failed PUL or (v) a persis-
tent  PUL7. Considering the possible consequences of each pregnancy outcome, early and accurate identification 
upon first presentation of symptomatic women with a LNSP from any other pregnancy outcome will reduce the 
diagnostic burden, as well as maternal morbidity and mortality.

Diagnosis of an adverse early pregnancy outcome in clinical practice depends on a combination of ultra-
sonographic, biochemical, clinical, and sometimes surgical assessment. TVS at first presentation is inconclusive 
in approximately 4–40% of cases, likely due to (i) a LNSP before the detection limit of TVS, (ii) failure before 
gestation sac formation or (iii) being an  EP8. The detection limit of a LNSP by TVS is ~ 6 weeks of  gestation9, 
however, a significant proportion of pregnancies are  unplanned10. Therefore, dating of the pregnancy from last 
menstrual period is frequently unreliable, which further complicates diagnosis at first emergency presentation. 
Human chorionic gonadotrophin β (β-hCG) and progesterone are used in routine clinical practice to monitor 
pregnancies not located on TVS; doubling of β-hCG over 48 h is indicative of a  LNSP11, and TVS should be able to 
locate a LNSP with a serum β-hCG level ≥ 1500 IU/L12. An initial progesterone level cutoff of ≤ 2 nmol/L has been 
shown to accurately categorise low risk  PULs13. However, serial β-hCG concentrations are required to accurately 
differentiate LNSPs from adverse  outcomes8. Such management runs the risk of tubal rupture in women with EP, 
and unwarranted anxiety and clinical intervention in others with  LNSP14. Since most symptomatic patients will 
have a LNSP, their rapid identification at first presentation and reassurance will allow focussing of the available 
diagnostic resources on women with a high risk of conditions that can be associated with maternal morbidity 
and mortality. A plethora of novel blood and urine biomarkers have been identified in the pursuit of improved 
diagnostics for miscarriage, EP and  PUL7,8,15–18. However, none have yet been translated to routine clinical care. 
Few studies have assessed biomarkers for the definitive diagnosis of a LNSP in symptomatic cohorts containing 
multiple adverse outcomes. Therefore, there is an urgent need for a rapid, non-invasive, and single measurement 
test to accurately identify a LNSP, and exclude NVNSPs and EPs.

Metabolomics is the comprehensive analysis of small molecules (< 1500 Da) in biological samples such as cells, 
tissues and biofluids. In humans, metabolomic profiling can be used to identify disease biomarkers and elucidate 
metabolic pathways involved in pathological  processes19. Nuclear magnetic resonance (NMR) spectroscopy and 
mass spectrometry (MS) are the two most employed techniques in metabolomic  research20,21. NMR metabolomic 
analysis provides highly reproducible, global quantitation of measurable analytes in biological samples in an 
unbiased and non-destructive  fashion22. Routinely collected biofluids in early pregnancy assessment, such as 
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blood and urine, are well-established sample types for NMR metabolomic profiling and are ideal for biomarker 
screening with simple and minimally invasive sample collection.

The analysis of omics data and its exploitation for in-silico biomarker discovery using machine learning is 
not trivial, with an ongoing crisis of reproducibility in the  field23. We have applied a state-of-the-art pipeline to 
detect consensus, robust signals across patients. In this study, we propose a composite biomarker of early LNSP 
when compared with non-viable correctly sited pregnancies and EPs (these were grouped together as combined 
adverse outcomes, henceforth CAO). We apply a novel machine learning pipeline for robust biomarker identi-
fication and create models that integrate untargeted 1H NMR small molecule profiling of serum combined with 
biochemical markers (progesterone, β-hCG) and patient demographics.

Results
Study cohort
A total of 370 participants were recruited to this study. Of these participants, 31 were excluded before sample 
analysis (Supplementary Table 1); two were found to be non-pregnant, and two had twin pregnancies, which 
were excluded on the basis that they may confound metabolomic profiles of singleton pregnancies. Two par-
ticipants had vanishing twin syndrome (dual outcome). It was decided to include only confirmed tEP within 
the ectopic group, therefore, a left ovarian EP and a caesarean section EP were excluded. Nine participants were 
excluded based on an unknown pregnancy outcome; these patients typically had a PUL or an early LNSP (a 
pregnancy within the uterine cavity which has a potential to develop normally)24; however, they had a termina-
tion of pregnancy before 12 weeks’ gestation or were lost to follow up. Finally, 14 participants were excluded 
due to missing clinicodemographic data including BMI, gestational age, and hormone levels (Supplementary 
Table 1). The remaining 339 participants were categorised into four pregnancy outcomes: LNSP, miscarriage, 
PUL and tEP (Fig. 1). Following serum spectra acquisition and quality control, 18 spectra that did not meet the 
minimum reporting standards were removed from further analysis. Furthermore, three spectra were found to 
contain EDTA, suggesting that plasma had been erroneously collected before serum during serial blood speci-
men acquisition and thus were excluded. Finally, one sample contained a high level of gluconic acid and was 
removed from further analysis (Supplementary Table 1). In total, 146 LNSPs, 77 miscarriages, 42 PULs and 51 
tEPs were included in this study. Participant demographic information is summarised in Table 1. There were no 
significant differences in known confounding variables in metabolomics research between groups, including 
BMI and smoking status.

Plasma β-hCG and progesterone concentrations across early pregnancy outcomes
Plasma concentrations of β-hCG and progesterone were significantly higher in the LNSP group compared with 
the adverse outcomes of miscarriage, PUL and tEP (Table 1). Gestational age demonstrated a highly significant 
positive correlation (p < 0.001) with plasma β-hCG concentrations in the LNSP group, and weak positive cor-
relations in the miscarriage and PUL groups. Progesterone concentration did not significantly correlate with 
either gestational age or β-hCG in any group (Supplementary Table 2).

Metabolite identification
Proton spectra of serum were divided into 162 bins, of which 92 (56.8%) were assigned to a metabolite. A total 
of 32 unique metabolites were annotated, which included amino acids (e.g., phenylalanine, valine, leucine, iso-
leucine), organic acids (e.g., lactate, formate) and saccharides (e.g., glucose) (Fig. 2, Table 2). Metabolites identi-
fied using two independent, orthogonal datasets were allocated MSI level 1 assignment in accordance with best 
 practice25,26 (Table 2). To remove redundant peaks arising from the same molecule, correlations were calculated 
between all signals originating from individual metabolites. The highest correlating peaks were then selected as 
most representative of a given metabolite and taken forward for statistical analysis (Table 2). The refined data 
set contained 102 bins in total, comprising annotated metabolites (32 bins) and unannotated signals (70 bins).

Metabolite abundances across early pregnancy outcomes
The cohort was randomly split into discovery (80%, n = 253) and validation (20%, n = 63) sample sets (Fig. 3). 
Univariate analysis of the discovery set revealed 21 metabolite signals as significantly different in the LNSP group 
when compared with miscarriage, PUL or tEP groups (Supplementary Table 3). When miscarriage, PUL and 
tEP outcomes were grouped together (CAO) and compared with LNSP (Supplementary Table 4), there were 
15 metabolite signals with significantly different abundances (Supplementary Table 5). Four group and two 
group comparisons showed 11 and five unique metabolite signals, respectively, with an overlap of 12 signals. 
Unsupervised PCA using plasma hormones and significant metabolite signals from univariate analysis did not 
demonstrate group separation (Supplementary Fig. 2).

Selection of stable metabolite signals for biomarker identification
The pipeline for variable selection described in the methods and Fig. 3 identified nine metabolite signals as key 
to discriminate LNSP from CAO using a composite marker approach: acetate, alanine, arginine, glutamate, glu-
tamine, phenylalanine, and unlabelled signals 30, 54 and 130 (Fig. 4A). The median abundances of glutamate, 
phenylalanine, and unlabelled signals 30, 54 and 130 were higher in LNSP compared with CAO. Acetate, alanine, 
arginine, and glutamine levels were higher in the CAO group. When visualised by PCA, a discrete structure 
and subtle separation of groups by stable metabolite signals was apparent (Fig. 4B). Following the assessment of 
variance undertaken to choose the univariate analyses covariates, we also tested a model that would incorporate 
additional clinicodemographic variables including β-hCG, progesterone, age, BMI, and gestational age. When 
comparing LNSP to CAO, more clear group structure was observed in the PCA score plot (Fig. 4C). Further 
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Figure 1.  Project workflow and clinical features of pregnancy outcomes. Abbreviations: POC products of 
conception, GSD gestational sack diameter, CRL crown-rump length, TVS transvaginal ultrasound, LNSP 
live normally-sited pregnancy, PUL pregnancy of unknown location, tEP tubal ectopic pregnancy.

Table 1.  Participant demographics. BMI body mass index, β-hCG human chorionic gonadotrophin β, IQR 
interquartile range, LNSP live normally-sited pregnancy, PUL pregnancy of unknown location and tEP tubal 
ectopic pregnancy. a Kruskal–Wallis; bChi-squared.

LNSP Miscarriage PUL tEP p-value

Number 146 77 42 51

Age in years, median (IQR) 30 (8) 31 (10) 31 (10) 29 (10) 0.21a

Caucasian ethnicity, n (%) 127 (87.0) 63 (81.9) 36 (87.8) 41 (89.1) 0.63b

BMI (kg/m2), median (IQR) 25.8 (7.9) 25.8 (9.4) 23.6 (6.3) 24.7 (8.4) 0.13a

Smoker, n (%) 36 (24.7) 18 (23.4) 7 (17.1) 14 (27.5) 0.70b

Nullipara, n (%) 54 (37.0) 25 (32.5) 18 (43.9) 15 (29.4) 0.54b

Gestational age in weeks, median (IQR) 6 (2) 6 (1) 6 (2) 6 (2) 0.10a

β-hCG U/L, median (IQR) 9893 (42,310) 607 (3562) 100 (378) 859 (2686)  < 0.001a

Progesterone nmol/L, median (IQR) 57 (44) 25 (44) 12 (43) 25 (42)  < 0.001a
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investigations tested signals able to discriminate between all pregnancy outcomes, but model performances were 
just slightly better than random (Supplementary Fig. 3A and 3B). Addition of covariates to hormone concentra-
tions and selected metabolite signals did not significantly improved discrimination of LNSP, miscarriage, PUL 
and tEP groups by PCA (Supplementary Fig. 3C).

Performance of machine learning models to predict pregnancy outcome
Random forest models were constructed for the prediction of pregnancy outcome using stable metabolite signals 
only or in combination with plasma hormones and clinicodemographic variables. Models were generated using 
the discovery cohort and performance was assessed using the independent validation cohort, which was not 
used for stable metabolite identification, thus preventing data leakage. Model performance was poor when all 
four pregnancy outcomes were included, regardless of variable inclusion (accuracy 0.48–0.58, Supplementary 
Table 6). When differentiating LNSP from CAO, a model with stable metabolite signals only demonstrated 
a modest predictive accuracy (0.68), which was comparable to a model of β-hCG and progesterone (0.71) 
(Table 3). The predictive accuracy of β-hCG and progesterone was marginally improved with the addition of clini-
codemographic variables (accuracy = 0.73). Combining stable metabolites with hormones produced a superior 
model (accuracy = 0.79), while the addition of clinicodemographic variables did not improve the model further 
(Table 3). Clinicodemographic variables alone were unable to differentiate LNSP from CAO (accuracy = 0.44).

Discussion
We report the development of predictive models that can discriminate LNSP from multiple adverse outcomes 
(CAO group) at first presentation using combinations of hormone levels, metabolites and clinicodemographic 
features. These findings are important, since they allow for early identification of a LNSP in symptomatic women 
upon initial presentation to an EPAU and grants their accurate stratification for further investigations. Our study 
design was pragmatic to demonstrate the utility of our method in real world situations. Importantly, this study has 
generated a composite biomarker of early LNSP when compared with adverse pregnancy outcomes (miscarriage, 
PUL and tEP) using a novel machine learning pipeline. This approach has overcome the deficiencies in previous 
studies regarding reproducibility, while integrating untargeted 1H NMR small molecule profiling of serum with 
biochemical markers (β-hCG and progesterone) and patient demographics.

Figure 2.  Serum metabolite annotation. Typical 700 MHz Carr–Purcell–Meiboom–Gill (CPMG) 1H spectra of 
human serum in phosphate buffer. Peaks derived from identified metabolites are annotation.
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Previously examined cohorts are unlikely to be translatable to emergency clinical situations, yet a diagnostic 
biomarker in these scenarios would require withstanding demographic and behavioural heterogeneity (e.g., diet, 
exercise habits) amongst patients. Our study collected samples from symptomatic patients prior to medical assess-
ment, including TVS, thus our data is applicable for all settings, including where access to TVS is not immediately 
available. In this regard, our patient population and the analytic approach are realistic and opportunistic, thus, 
make this data to be generalisable. Our methodology is unique in that it incorporates testing within the cohort 
to ensure reproducibility, whilst avoiding overfitting in the machine learning pipeline. The result is a selection of 
consensus variables with robust biomarker potential that should be further validated in a larger study.

Previous studies have shown that a single measurement of β-hCG cannot discriminate a LNSP from  EP27,28. 
The ‘M4’ logistic regression model, which uses both the initial β-hCG concentration and β-hCG ratio to cat-
egorise PULs into low or high-risk  categories29, performed well in the prediction of viable pregnancies as the 
final outcome from  PULs7. However, its utility in a cohort of symptomatic women including miscarriage has not 
yet been tested. Inclusion of initial serum progesterone level in the M4 model  (M6p model) has been shown to 
improve the discrimination of EPs from failed PULs and LNSPs in a PUL  cohort13. In agreement, meta-analysis 
has concluded that a low progesterone concentration (11–21 nmol/L) can exclude a LNSP with high accuracy but 

Table 2.  Metabolites annotated in serum using Chenomx (level 2/3) or identified using in-house standards 
(level 1) as recommended by the Metabolomics Standard Initiative (MSI). For metabolites giving rise to 
multiple signals, a representative peak was selected by correlation scoring and taken forward to statistical 
analysis. All peaks were included for metabolites with correlation scores below 56.6% (*).

Database identifier Metabolite Reliability Representative bin (ppm)

HMDB0000008 2-Hydroxybutyrate MSI level 2 0.932–0.921

HMDB0000407 2-Hydroxyisovalerate MSI level 2 0.893–0.879

HMDB0001863 2-Hydroxyvalerate MSI level 2 1.621–1.530

HMDB0000357 3-Hydroxybutyrate MSI level 2 1.209–1.120

HMDB0000042 Acetate MSI level 1 1.923–1.914

HMDB0000094 Citrate MSI level 1 2.552–2.521

HMDB0000064 Creatine MSI level 1 3.935–3.925

HMDB0000562 Creatinine MSI level 1 4.059–4.052

HMDB0000122 d-glucose MSI level 1 3.741–3.732

HMDB0304356 Formate MSI level 2 8.483–8.455

HMDB0000190 Lactate MSI level 1 4.124–4.093

HMDB0000161 l-alanine MSI level 1 1.500–1.464

HMDB0000517 l-arginine* MSI level 2 1.914–1.860

3.236–3.203

HMDB0000148 l-glutamate MSI level 1 2.278–2.257

HMDB0000641 l-glutamine MSI level 1 2.177–2.109

HMDB0000123 l-glycine MSI level 2 3.569–3.556

HMDB0000177 l-histidine* MSI level 2 3.157–3.104

3.184–3.163

7.081–7.045

7.816–7.759

HMDB0000172 L-isoleucine MSI level 1 1.018–0.100

HMDB0000687 L-leucine MSI level 1 0.975–0.955

HMDB0000182 L-lysine MSI level 1 3.037–3.025

HMDB0000159 L-phenylalanine MSI level 1 7.342–7.298

HMDB0000162 L-proline* MSI level 2 2.029–1.986

2.337–2.278

2.406–2.375

3.367–3.360

HMDB0000167 L-threonine MSI level 1 3.620–3.592

HMDB0000158 L-tyrosine MSI level 1 6.916–6.877

HMDB0000883 L-valine MSI level 1 1.052–1.029

N/A Lipid MSI level 3 4.009–3.935

N/A Mobile lipids MSI level 3 1.986–1.930

N/A Mobile lipids HLDL MSI level 3 0.800–0.793

N/A Mobile lipids LDL MSI level 3 0.857–0.800

N/A Mobile lipids VLDL MSI level 3 0.879–0.857

HMDB0000211 Myo-inositol MSI level 1 3.592–3.569
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cannot separate EP and miscarriage  cases30. Furthermore, previous studies have included participants beyond 
10 weeks’ gestation, at which point progesterone levels are rising in viable pregnancies and likely exhibit a 
larger difference compared with non-viable gestations. In this study, a considerable number of participants in 
the LNSP group exhibited a low progesterone level, which may be due to the transient, physiological decline in 
progesterone between gestational weeks six to eight, corresponding to the luteal-placental  shift31. Addition of 
β-hCG and progesterone to selected metabolites improved the accuracy of the prediction model. Addition of 
the demographic features that are known to be associated with adverse pregnancy outcomes did not improve 
model performance for identifying LNSPs.

We have identified perturbations in the serum metabolome pertinent to pregnancy outcome using 1H NMR 
profiling. Maternal circulatory concentrations of most essential and non-essential amino acids decrease during 
normal gestation, hypothetically due to placental transfer to the foetus and pregnancy adaptation for protein 
 conservation32. Alanine, arginine, and glutamine levels were significantly lower in the LNSP group compared with 
CAO, which may reflect perturbed foetal utilisation of amino acids and thus the non-viable status of miscarriage 
and tEP. Furthermore, increased levels of glutamine metabolites in the endometrium have been associated with 
recurrent  miscarriage33. Some amino acids, including valine, leucine, phenylalanine and glutamate have been 
shown to increase in early pregnancy relative to non-pregnant  women34. Glutamate and phenylalanine levels were 
significantly higher in LNSP compared with CAO, thus reflecting the abnormal progression of failed LNSPs and 
ectopically located pregnancies. Therefore, maternal amino acid levels may represent promising biomarkers to 
differentiate a normal pregnancy from adverse outcomes. Importantly, serum concentrations of these metabolites 
can be easily measured in a clinical setting, allowing for the development of predictive algorithms that could 
combine biochemical markers and demographic variables at the bedside.

A study by Turkoglu et al.35 identified eight plasma metabolites as significantly perturbed in tEP compared 
with LNSP controls including acetate, lactate, and glucose. Acetate levels were increased in tEP, which agrees 
with our study findings, however, the remaining seven metabolites were not significantly different in our cohort. 
Three unlabelled metabolite signals were found to be stable markers differentiating LNSP from CAO. Unlabelled 
signals were those that could not be annotated from a metabolite library. It may be possible to identify these 
metabolites using multidimensional NMR spectroscopy or MS  methods36,37.

Blood samples included in this study were collected from a single sex cohort with a relatively small age range, 
thus were expected to demonstrate any striking differences in the serum metabolome relevant to pregnancy 
outcome. However, these samples were subject to several metabolomic confounders including age, fasting status, 
medication intake, symptomology, obesity, and smoking status. BMI and smoking have been shown to induce 
confounding effects on the serum  metabolome38. Age and BMI were found to contribute substantially to the 
observed variance in metabolite abundance between pregnancy outcomes. Several risk factors have been identi-
fied for EP, such as smoking, tubal surgery, previous EP, and sexually transmitted  infections39,40. Risk factors for 
miscarriage include advanced maternal age, previous miscarriage and low or high  BMI41–43. We did not observe 
differences in participant age, BMI, or smoking status between groups. Accordingly, the addition of maternal 
age and BMI as covariates had minimal impact on predictive accuracy in machine learning models. We excluded 
twin pregnancies from our LNSP group, yet any one of the CAOs may have been an undiagnosed twin pregnancy. 
The influence of undiagnosed twin pregnancies on the metabolomic profile would be extremely challenging to 
unpick, however, we would assume the impact to be very small due to the low twinning rate in our population.

In summary, this study identifies a metabolite profile associated with LNSP and incorporates this in to rou-
tinely collected hormone levels and clinicodemographic data providing predictive models that can discriminate 

Figure 3.  Data analysis workflow for variable selection and prediction model building.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11172  | https://doi.org/10.1038/s41598-024-61690-3

www.nature.com/scientificreports/

LNSP from multiple adverse early pregnancy outcomes with reasonable accuracy. These findings may be useful 
in the development of a future diagnostic test to confirm a LNSP in symptomatic women and thus, exclude preg-
nancy loss and potentially life-threatening early pregnancy outcomes. Larger studies with independent cohorts 
are required to validate the accuracy, translatability and clinical utility of the predictive models described herein.

Figure 4.  Differential abundances of biochemical markers and serum metabolites in live normally sited 
pregnancy (LNSP) and combined adverse outcomes (COA). (a) Boxplots of β-hCG, progesterone, acetate, 
alanine, arginine, glutamate, glutamine, phenylalanine, and unlabelled 30, 54 and 130 in LNSP and COA 
groups. (b) Principal component analysis of pregnancy outcomes using selected metabolites alone or (c) selected 
metabolites, β-hCG, progesterone, participant age, gestational age, and BMI.
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Methods
Study group
A total of 370 participants were recruited to the current study. These women presented as emergency clinical 
attendance to the Early Pregnancy Assessment Unit (EPAU) at Liverpool Women’s Hospital with symptoms 
of EP (abdominal pain and/or vaginal bleeding). Therefore, at this first emergency presentation, all eligible 
patients were symptomatic and pregnant, were ≤ 10 weeks of gestation by their last menstruation dates, without 
a confirmed location of pregnancy and without known final pregnancy outcome. All eligible participants self-
reported to the EPAU and were triaged upon arrival. Pregnancy was confirmed with a urinary pregnancy test. 
Women were provided with an information leaflet, and informed written consent was obtained. Inclusion criteria 
comprised pregnant women aged ≥ 18 years, presenting with abdominal pain and/or bleeding at ≤ 10 weeks of 
gestation (calculated from last menstrual period). Women who did not meet the inclusion criteria were excluded. 
Demographic data were collected at the time of consent, including age and body-mass index (BMI), as well as 
detailed information concerning smoking status, alcohol intake, and dietary and exercise preferences. A full 
medical, surgical, medication and gynaecological history was also collected.

Clinical outcomes
The final pregnancy outcomes were allocated at 12 weeks of gestation and the data were retrieved from hospital 
information software systems including PENS™ (Royal Liverpool University Hospitals NHS Trust, Liverpool, 
UK), MEDITECH™ (Westwood, MA, USA) and IDEAS™ (Mellowood Medical, Toronto, Canada) and subse-
quently collated. Where applicable, serial β-hCG measurements and TVS were also reviewed using Sunquest 
ICE™ (Sunquest Information Systems, Tucson, AZ, USA) and Picture Archiving and Communication System 
(PACS™) (©Carestream Health Inc, 2023, USA), respectively. Outcomes were classified in accordance with ter-
minology guidance from the European Society of Human Reproduction and Embryology (ESHRE)24,44. Patients 
were divided into four groups: (i) LNSP; (ii) EP; (iii) miscarriage; and (iv) PUL. LNSP was defined as a preg-
nancy inside the uterine cavity with evident foetal heart pulsations. EP was defined as a pregnancy located 
outside of the uterine cavity, diagnosed either surgically at laparoscopy or on TVS. EPs were classified in line 
with ESHRE  guidance24. The term miscarriage was used to describe loss of a normally sited (within the uterine 
cavity)  pregnancy24. Miscarriage was diagnosed using guidance from the National Institute for Health and Care 
Excellence (NICE) on EP and miscarriage: diagnosis and initial  management45. Diagnostic criteria included a 
mean gestational sac diameter (GSD) ≥ 25 mm with no obvious yolk sac or foetal pole on two TVS a minimum 
of seven days apart, or a crown-rump length (CRL) ≥ 7 mm without foetal heart pulsations on two TVS a mini-
mum of seven days apart. Miscarriage was also diagnosed in the presence of heavy vaginal bleeding with an 
open cervical os, with or without products of conception. A PUL was defined as a pregnancy that had not been 
localised on TVS and was either treated with methotrexate or resolved spontaneously.

Sample collection
All biosamples were processed within 1 h of collection. Blood was collected into uncoated S-Monovette® Z-Gel 
tubes and S-Monovette® EDTA KE tubes (Sarstedt, Leicester, UK) for serum and plasma isolation, respectively. 
Blood in Z-Gel tubes was allowed to clot for ≥ 20 min before centrifuging at 1600×g for 10 min at 4 °C. EDTA 
KE tubes were processed immediately upon receipt; samples were centrifuged at 1600×g for 10 min at 4 °C. 1 mL 
aliquots of serum and plasma were stored in sterile cryovials at − 80 °C.

Sample preparation
Serum aliquots were thawed and 300 μL of serum was diluted to a final volume containing 50% [v/v] serum, 
40% [v/v] dd 1H2O (18.2 MΩ), 10% (v/v) 1 M  PO4

3− pH 7.4 buffer  (Na2HPO4, VWR International Ltd., Radnor, 
Pennsylvania, USA and  NaH2PO4, Sigma-Aldrich, Gillingham, UK) in deuterium oxide (2H2O, Sigma-Aldrich) 
and 1.2 mM sodium azide  (NaN3, Sigma-Aldrich). Samples were vortexed for 1 min, centrifuged at 21,500×g at 
4 °C for 5 min and 600 μL transferred into 5 mm outer diameter NMR tubes.

Spectral acquisition
Non-targeted 1D 1H NMR spectra were acquired at 37 °C using a 700 MHz Bruker Advance III spectrometer 
equipped with a TCI cryoprobe and chilled Sample-Jet autosampler (Bruker). 1D 1H NMR standard experi-
ment with the cpmgpr1d filters for selective observation of low molecular weight components with optimal 

Table 3.  Performance of random forest models to discriminate live normally sited pregnancy from combined 
adverse outcomes in the independent validation cohort. BMI body mass index, CI confidence interval, GA 
gestational age, β-hCG human chorionic gonadotrophin β, PPV positive predictive value and P4 progesterone.

Model Accuracy (95% CI) Sensitivity Specificity PPV F1 score

Metabolites 0.68 (0.55–0.79) 0.68 0.70 0.72 0.70

β-hCG + P4 0.71 (0.59–0.82) 0.71 0.72 0.75 0.73

Metabolites + β-hCG + P4 0.79 (0.67–0.89) 0.76 0.83 0.84 0.80

β-hCG + P4 + age + GA + BMI 0.73 (0.60–0.83) 0.71 0.76 0.77 0.74

Metabolites + β-hCG + P4 + age + GA + BMI 0.79 (0.67–0.89) 0.74 0.86 0.86 0.80

Age + GA + BMI 0.44 (0.32–0.58) 0.59 0.28 0.49 0.54
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water suppression was acquired. Pulse sequence was vendor supplied using Carr-Purcell-Meiboom-Gill (CPMG) 
sequence. Serum spectra were acquired with 32 transients at 17 ppm spectral width, 72 K complex points, 3 ms 
echo time, 3.1 s acquisition time and a 4 s interscan delay. Full 1H spectrum parameter sets are available with the 
data deposited at MetaboLights public repository (MTBLS6219)46.

Spectral processing
Automated Fourier transformation and phasing were performed in Topspin version 3.2. All spectra were indi-
vidually analysed to ensure conformity with the recommended minimum reporting standards set out by the 
Metabolites Standard Initiative (MSI)25,26. Serum spectra were aligned to glucose anomeric peak at 5.244 ppm. 
Overall peak shapes were appraised, and average full width half maximum (FWHM) was calculated for the align-
ment peak; spectra with a FWHM value > 2 standard deviations from the mean were either repeated or excluded 
(Supplementary Table 1). No baseline corrections were applied.

Metabolite annotation
Serum spectra were annotated using Chenomx NMR Suite 8.2 (332-mammalian metabolite library, Chenomx 
Inc., Edmonton, AB, Canada). Where possible, the identities of the annotated metabolites were confirmed by 
comparison to an in-house metabolite library in accordance with the MSI best practice. Metabolite identities 
were allocated to levels 1–3 of assignment confidence; level 1 required 1H information complemented with a 
secondary orthologous method (1H–13C heteronuclear single quantum coherence (HSQC), 1H–1H J-resolved, 
1H–1H– correlation spectroscopy (COSY) and/or total correlation spectroscopy (TOCSY)); level 2 required 
matching 1D–1H NMR spectrum of an in-house metabolite library or external libraries available in Chenomx to 
the experimental spectra; level 3 comprised putatively characterised compound classes. Spectra were integrated 
into 162 bins with 89 annotated, corresponding to 32 unique metabolites. Annotated spectra were integrated to 
data matrices of peak intensities for statistical analysis. Negative intensity values, which are common in binned 
 data47, were replaced with 1/5 of the minimum positive values of their corresponding variables. In order to select 
the most representative bin for metabolites giving rise to multiple signals, an in-house correlation reliability 
score (CRS) metric was  utilised48. Correlations scores were calculated for each unique metabolite giving rise to 
multiple peaks, and the median score minus the standard deviation across all metabolites was set as the passing 
score (56.6%). When no peaks passed the CRS threshold for a given metabolite, all were included. However, such 
peaks are likely in overlapped regions of the spectra, therefore, metabolite annotation is of lower confidence. 
Spectral data is available with annotation via the MetaboLights repository (MTBLS6219)46.

Progesterone and β-hCG testing
Progesterone and β-hCG concentrations were measured at the Royal Liverpool University Hospital accred-
ited biochemistry laboratory. Plasma progesterone and β-hCG were analysed with the Elecsys Progesterone 
III assay and Elecsys HCG + β assay (Roche), respectively. Assays were performed on a cobas e 801 analyser 
(Roche) according to the manufacturer’s instructions. Assay coefficients of variability were as follows: proges-
terone 3 pmol/L = 10.9%, 35 pmol/L = 7.9%, 67 pmol/L = 8.1%. β-hCG: 2.9 mIU/L = 4.9%, 25 mIU/L = 5.9%, 497 
mIU/L = 6.8%.

Statistical analysis and model building
Participant age, ethnicity, BMI, smoking status, parity, gestational age, and plasma concentrations of β-hCG 
and progesterone were compared. Normality testing concluded that these variables did not follow a Gaussian 
distribution across all groups, therefore, non-parametric methods were employed. The Kruskal–Wallis test with 
Dunn’s multiple comparison post hoc test was used to investigate continuous variables. For categorical variables, 
a Chi-squared test was used. All analyses were conducted in GraphPad Prism (version 5.0). Spearman’s Rank 
correlation coefficients were performed in Origin Pro (version 2021b 9.85).

Metabolomics data was exploited using a univariate and multivariate statistical approach, with analyses con-
ducted in R (version 4.1.249, using in-house scripts. Data were normalised via probabilistic quotient normalisa-
tion (PQN)50 and log2 transformed. Technical variation/batch was assessed and removed using ComBat from 
the package  sva51. This analysis can be consulted via the GitHub repository (https:// github. com/ EvaCa amano/ 
ExPeD iTe_ publi cation/ tree/ v1.0.0)52. Briefly, metabolite data was split in 80/20% train/validation sets. The train 
set was used to undergo variable selection firstly by a univariate statistical approach. The package  limma53 was 
used to generate linear mixed models to find metabolite signals different between the groups of study considering 
relevant metadata (BMI, age and gestation—these covariates were chosen as they explained a significant propor-
tion of variance of the data—see Supplementary Fig. 1) with significance adjusted for false discovery rate (FDR) 
using Benjamini and  Hochberg54. Significant signals at 5% FDR were taken forward for multivariate selection. 
The train dataset was subjected to a tenfold cross-validation in a 90/10% split, where each 90% split underwent 
100 rounds of Least Absolute Shrinkage and Selection Operator (LASSO, glmnet  package55) selection. Signals 
that were selected in at least 80% of the rounds and more than 8 folds were taken forward for modelling. Ran-
dom forest  models56 were constructed with selected metabolites and metadata variables and performances were 
assessed in both train and validation datasets. Further tests were done by building generalised linear models and 
calculating area under the receiver operator characteristic curves (AUROCs).

Data visualisation was performed with Origin Pro and R package  ggplot257. Significant p values are high-
lighted with asterisks (p < 0.05*, p < 0.01**, p < 0.001***).

https://github.com/EvaCaamano/ExPeDiTe_publication/tree/v1.0.0
https://github.com/EvaCaamano/ExPeDiTe_publication/tree/v1.0.0
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