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Impact of pilot diesel injection 
timing on performance 
and emission characteristics 
of marine natural gas/diesel 
dual‑fuel engine
Xiao Zhang 1, Jianqun Gao 2, Dawei Fan 3, Qizheng Yang 1, Fangjun Han 1 & Hongliang Yu 1*

In diesel-ignited natural gas marine dual-fuel engines, the pilot diesel injection timing (PDIT) 
determines the premixing time and ignition moment of the combustible mixture in the cylinder. 
The PDIT plays a crucial role in the subsequent development of natural gas flame combustion. In 
this paper, four PDITs (− 8 °CA, − 6 °CA, − 4 °CA, and − 2 °CA) were studied. The results show that the 
advancement of PDIT increased the engine’s power, thermal efficiency, and natural gas flame spread 
velocity, and increased NO emissions and CH4 emissions of the marine engine. The PDIT affected the 
ignition delay period and the rapid combustion period to a greater extent than the slow combustion 
period and the post combustion period. With each 2 °CA advancement of PDIT, the engine’s power 
increased by 69.87 kW, thermal efficiency increased by 0.42%, radial flame spread velocity increased 
by 2 m/s, axial flame spread velocity increased by 1.7 m/s, NO emissions increased by 6.1%, and CH4 
emissions increased by 3.75%.
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Green and low-carbon development has become a global consensus. The global trend of using ships for trans-
portation has continued to expand in recent years1, and the transportation sector is an important battlefield 
for the realization of the “carbon peaking and carbon neutrality” strategy, and the shipping industry plays an 
important role in this process. The 78th session of the International Maritime Organization’s Marine Environ-
ment Protection Committee (MEPC 78), held remotely in June 2022, highlighted new mandatory measures to 
reduce the carbon intensity of international shipping to achieve a sustainable shipping industry by 20502. The 
goal of reduces greenhouse gas emissions by 50% from 2008 levels. To build a clean, low-carbon, safe and efficient 
energy system, liquefied natural gas (LNG), as a clean and efficient low-carbon fossil energy, has attracted more 
and more attention in the field of marine engines3. In recent years, the number of marine engines using natural 
gas as the green and low-carbon alternative fuel has increased rapidly.

Natural gas/diesel dual-fuel (NDDF) engine technology is an important aspect for decreasing greenhouse gas 
(GHG) emissions of marine engines. Many scholars had done experimental research on natural gas engine4–10. 
The experimental research method is suitable for small and medium-sized engines. For large-scale low-speed 
dual-fuel marine engines, the research method of data collection through hundreds or thousands of tests has 
space and equipment limitations. Numerical research on natural gas engine11–16 were mainly concerned with the 
impact on the parameters. Many parameters such as swirl ratio17, exhaust gas recirculation (EGR)18, premixed 
ratio19, injection strategy20,21, spray angle22,23, fuel characteristics24–26, piston bowl geometry27,28, and start of 
injection timing29 affected the RCCI engine’s performance and emission30. Marine low-speed two-stroke dual-
fuel engines have different scavenging styles, injector positions, and combustion chamber styles than small and 
medium-sized engines. The emission laws for marine two-stroke machines cannot directly use the laws for 
four-stroke engines. Researchers had extensively explored the optimization methods of combustion and emis-
sion performance of natural gas engines31–34, but most research focus on the impact of operating conditions on 
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performance35–39, and few studies were conducted on the quantification of combustion process and the control 
of combustion stages for marine large-bore engines.

In a direct injection natural gas engine, pilot diesel injection timing (PDIT) has a significant impact on the 
ignition timing and combustion quality of the combustible mixture in the cylinder. In a dual-fuel engine ignited 
by diesel, PDIT directly affects the ignition delay period (IDP) of the engine and plays a crucial role in whether 
the natural gas and air in the cylinder can be well mixed. Too much advance or too much lag of PDIT will also 
lead to too low cycle thermal efficiency of the engine. Poor PDIT cannot ensure efficient combustion and affect 
the working ability of the engine. Therefore, the computational fluid dynamics simulation technology and image 
quantitative research method were used to conduct a detailed numerical study on the low-speed two-stroke 
NDDF engine under different PDIT. In the study, the PDIT was changed, but the other boundary conditions 
such as initial state, load, speed, and natural gas injection timing (NGIT) were kept unchanged. The PDIT change 
was two crank angle deg (°CA), and the change range was from − 8 to − 2 °CA.

Methodology
Engine bench test
MAN B&W 6S50ME-C-GI engine is an NDDF engine with in-cylinder high-pressure injection. The engine is 
presently used as the main engine of offshore barges, marine police enforcement vessels, ocean-going container 
vessels and LNG vessels. Main data of engine are shown in Table 1.

The marine engine factory conducted bench tests of propulsion characteristics before the main engine left 
the factory to ensure that the main engine operated safely and stably, and can be reliably remote controlled 
and operated. All indicators of marine engines meet the requirements of ship inspection authorities. The sche-
matic diagram of the bench test is shown in Fig. 1. The diesel particulate emission collection equipment uses 
HOR1BAMDLT-1302TMA, the exhaust analyzer uses HORJBAMEXA-1600DS, and the other test equipment 
is shown in Table 2.

All equipment must be calibrated before the test to ensure its effectiveness. The test focuses on marine dual-
fuel engines and their propulsion characteristics. The engine runs for 30 min at a power of 2025 kW and a speed 
of 68 revolutions per minute (rpm). After stable operation at 4050 kW power and 85.7 r/min speed, 6075 kW 
power and 98.1 r/min speed, and 8100 kW power and 108 r/min speed, the operational and emission data were 
measured for each respective load condition.

Table 1.   Main data of engine.

Name Data Name Data

Cylinder number 6 Engine type 2-stroke

Bore × Stroke/mm 500 × 2000 Method of aspiration Pressure charged

Rated speed/(r/min) 108 Rated power/kW 8100

Diesel injection holes 5 × Φ1.05 mm NG injection holes 4 × Φ2.2 mm

Maximum cylinder pressure/MPa 17 Nominal compression ratio 15

Figure 1.   Bench test.
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Calculation model
For marine dual-fuel engines with cylinder diameters less than 500 mm, two natural gas and two diesel nozzles 
were set for each cylinder. The nozzles arrangement is shown in Fig. 2. The nozzle extended 35 mm deeply into 
the cylinder. Diesel nozzles had five holes, holes towards the cylinder side of the 63° angle range. The natural gas 
nozzle had four holes, and the holes were oriented toward the cylinder center at a 51° angle range. The volume of 
the combustion chamber was measured using a three-dimensional (3D) assembly model (Fig. 3). The established 
combustion chamber model was then imported into AVL FIRE Version 8 (https://​www.​avl.​com) software to 
create the computational volume grid using the Hybird Assistant module in Fame Meshing. Finally, the tran-
sient moving grid was divided by the Fame Engine module in Fame Motion. Due to the large size of the engine 
combustion chamber and the large number of static volume grids generated, the FIRE software imposes strict 
requirements on the quality of the moving grid in the numerical calculation of the combustion process. During 
the transient moving grid division process from the volume grid, irregular grid or grid deformation often occurs, 
leading to non-convergence, divergence, and abnormal termination of the calculation process. After numerous 
attempts and mesh independence calculations with various grid sizes, it was discovered that dividing the moving 
grid into 2 cm unit lengths and the non-moving grid into 1 cm unit lengths significantly enhances calculation 
speed and accuracy. The mesh calculation model of the combustion chamber is shown in Fig. 4.

Table 2.   Test main instruments.

Analyzer Model Measurement ranges Deviation (%)

CO/10–6 AIA 240 0–1000 0.16

CO2/% AIA 240 0–16.0 0.12

NO/10–6 FAC 246 0–2000 0.11

O2/% IMA 241 0–25 − 0.10

HC/10–6 FAC 246 0–2000 0.15

t/oC FC2022 0–1000 0.1

p/kPa FC2022  − 50 to 4000 0.1

speed/(r/min) FC 2010 0–3000 0.1

Torque/N m CFSR-26 0–37,300 0.25

Fuel flow/(kg/h) FC 2210 0–1000 0.1

LNG flow/(m3/h) CMF 200 M 0–2000 0.2

Figure 2.   Nozzles arrangement on cylinder cover.

https://www.avl.com
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Condition terms
We used the 3D Computational Fluid Dynamics (CFD) software AVL FIRE to calculate the in-cylinder flow, 
spray, and combustion process of the engine. The top dead center (TDC) is 0 °CA. The combustion calculation 
started at 138 °CA before the top dead center (BTDC) at the moment of scavenging port closing (SPC) and ended 
at 114 °CA after the top dead center (ATDC) at the moment of exhaust valve opening (EVO). The initial pressure 
in the cylinder was 3.34 bar, the initial temperature was 372 K, and the gas composition was set according to the 
scavenging air. The calculated data at 8100 kW power and 108 r/min speed were given in Table 3. The in-cylinder 
flow field was calculated using a k − ε turbulence model40. The fuel spray, breaking, fragmentation, and evapora-
tion processes were calculated using Walljet1, Wave, and Multicomponent models41,42. The transmission, ignition, 
and combustion processes of each component were calculated by the Coherent Flame combustion model43,44. The 
emission model commonly used was the Heywood original NOx model and the Kinetic soot emission model45.

Figure 3.   Combustion chamber assembly.

Figure 4.   The mesh calculation model of combustion chamber .

Table 3.   Calculated data.

Name Data Name Data

NGIT/°CA − 4 to 20 NG temperature/°C 45

NG injection pressure/MPa 30 NG supply/(g/r) 182.94

PDIT/°CA − 8 to − 4, − 6 to − 2, − 4 to 0, − 2 to 2 Diesel temperature/°C 38

Diesel injection pressure/MPa 35 Diesel supply/(g/r) 7.26

EVO/°CA 114 SPC/°CA − 138

Valve temperature/°C 570 Piston temperature/°C 388

Liner temperature/°C 218 Pilot diesel ratio/% 5
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Validation of numerical modeling
The test was carried out on the engine test cell of the marine diesel engine factory. Figure 5 shows the comparison 
of indicator diagram pressures of the engine under 25%, 50%, 75%, and 100% load. Comparing the pressure 
curves of each load, it was found that there was a certain deviation between the calculated values and the experi-
mental values. The reasons are analyzed as follows: First, natural gas was set to CH4 with 100% in the calculation 
under the diesel ignited natural gas (DING) mode. Second, the diesel reaction mechanism in full diesel (FD) 
mode was set as an n-heptane reaction mechanism. Third, the air involved in the numerical combustion calcu-
lation was set as the ideal gas. Although there were deviations, the overall linear trend of the calculated value 
was consistent with the experimental values, which showed that the calculation model could correctly reflect 
the characteristics of the combustion process of the engine. The calculated value of CO2, NOx and HC were 
agreement well with the experimental value in the overall linear trend, indicating that the emission model could 
accurately predict the emission characteristics of DING combustion conditions.

Results and discussion
Mean pressure and temperature analysis
The engine speed is 108 r/min at 100% load, with a total fuel mass of 31.7 g in a single-cylinder, single-cycle 
combustion chamber. This includes 30.49 g of natural gas and 1.21 g of diesel fuel. Figure 6 and Fig. 7 show 
that the in-cylinder mean pressure and in-cylinder mean temperature curves also show two peaks. The reasons 
are consistent with those in the NGIT study43. The maximum in-cylinder burst pressure gradually advances 
and increases with the advancement of PDIT in the Fig. 6. For every 2 °CA advance of PDIT, the maximum 
in-cylinder burst pressure increases by 1.4%. The highest combustion pressure of 17.57 MPa occurs at − 8 °CA 
of PDIT. At this point, the engine does not experience knocking because both natural gas and diesel undergo 
high-pressure direct injection before reaching top dead center. The diesel fuel ignites first, preparing for the sub-
sequent ignition of the injected natural gas. Natural gas is injected into the cylinder at − 4 °CA BTDC, primarily 
for the diffusion combustion of the Diesel cycle, which explains the engine’s low tendency for knocking. The 
advancement of PDIT causes the ignition moment to advance and IDP to be short, resulting in a rapid increase 
in pressure during the rapid combustion period (RCP), the combustion phase moving to the TDC, and the 
combustion phase continuously shifting forward, increasing the engine’s work capacity. Therefore, if the PDIT 
is reasonably advanced, the combustion will be completed near the TDC, the combustion will be more adequate 
and the engine will be more powerful. During the PDIT process from − 2 to − 8 °CA, the engine power increased 
by 210 kW, and the thermal efficiency increased by 1.27%. Calculated based on the lower heating value of natural 
gas at 48,280 kJ/kg, this is equivalent to saving 4.74 g of natural gas per cycle. With each 2 °CA advancement of 
PDIT, the engine’s power increased by 69.87 kW, thermal efficiency increased by 0.42%. In Fig. 7, as the PDIT 
is advanced, the maximum in-cylinder temperature also appears to advance and increase. For every 2 °CA of 
PDIT advance, the maximum in-cylinder temperature increases by 0.5%, while the peak in-cylinder temperature 
phase almost does not change, which is because the diesel fuel ignited with natural gas only accounts for 5% of 
the total calorific value, and has little impact on the peak temperature in the cylinder.

Combustion period analysis
Figure 8 shows the impact of PDIT on each stage of the in-cylinder combustion process. Figure 8 shows that the 
PDIT is constantly advanced, the IDP becomes shorter, and the RCP, slow combustion period (SCP), and the post 
combustion period (PCP) become longer. Early PDIT causes ignition moment to be earlier, the IDP becomes 
shorter, leading to insufficient premixing of NG and air. Premature ignition causes the temperature inside the 
cylinder to rise prematurely. This leads to an increase in the diffusion rate of the natural gas injected later due 
to the elevated temperature in the cylinder. Natural gas forms a combustible mixture with air when diffused. 
Additionally, the early ignition of diesel provides energy, accelerating the combustion velocity of natural gas and 
prolonging the RCP. The SCP and PCP become longer causing a large amount of CH4 to stall in the cylinder.

High temperature volume analysis
To investigate the frequent occurrence of combustion instability in natural gas/diesel dual-fuel engines, an 
analysis was conducted on the volume of the region inside the cylinder where the temperature exceeds 1800 K 
during the combustion process. Due to the transient nature of natural gas combustion in the cylinder of dual-
fuel engines, the stability of the combustion process is primarily indicated by the fluctuation in the volume of 
the high-temperature flame region. Figures 9 and 10 show that the volume ratio and volume change ratio of high 
temperature at different PDIT show the same law as that under the NGIT: both of them are “increasing and then 
decreasing” of law43. The maximum high temperature volume ratio was 72.2%, 73.3%, 75.9%, and 76.1% under 
the PDIT on − 2 °CA, − 4 °CA, − 6 °CA and − 8 °CA. The maximum high temperature volume ratio rise by 1.3% 
for PDIT advanced every 2 °CA. The law is also consistent with that under NGIT: the advancement of PDIT 
leads to a larger high temperature volume in-cylinder. With the PDIT from − 2 to − 8 °CA, the maximum high 
temperature volume change ratio is 17.1%, 15.3%, 17.4%, and 17.2%, respectively. The high temperature volume 
change ratio rise by 0.03% for PDIT advanced every 2 °CA. Based on the linear pattern of the high-temperature 
volume change ratio curve in Fig. 10, it can be concluded that unstable combustion mainly occurs at 5–9 °CA. 
To maintain stable engine combustion, PDIT should be appropriately delayed.

Flame spread velocity analysis
The high-temperature flame spread velocity in the cylinder can be calculated by measuring the distance the 
high-temperature flame boundary moves within a unit of time. By capturing instantaneous images within the 
cylinder for a specific time interval, segmenting the high-temperature flame boundary in image processing, and 
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(a) FD 25% Load

(b) DING 25% Load

(c) FD 50%Load

(d) DING 50%Load

(f) DING 75%Load

(g) FD 100%Load

(h) DING 100%Load
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Figure 5.   Comparison between calculated value and experimental value.
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Figure 6.   Impact of PDIT on pressure and phase.
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Figure 7.   Impact of PDIT on the temperature and phase.
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identifying the displacement coordinates of the flame boundary points A (xi, yi), it is possible to calculate the 
distance(∆l) of consecutive movements of the boundary points.

∆l is the distance of consecutive movements of the boundary points. v is the flame propagation velocity. ∆t is the 
time interval between two consecutive movements of the flame boundary point A.

(1)�l =

√

(xi+1 − xi)
2
+

(

yi+1 − yi
)2

(2)v = �l/�t
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Figures 11 and 12 show the radial flame spread velocity and axial flame spread velocity in-cylinder under 
different PDIT, respectively. The linear law of flame spread velocity under different PDIT is consistent with that 
under NGIT: the radial flame spread velocity has a bump fluctuation, and the axial flame spread velocity has 
a wavy fluctuation. With the PDIT changed from − 2 to − 8 °CA, the maximum radial flame spread velocity 
changed from 28.9 to 34.9 m/s, and the maximum axial flame spread velocity changed from 7.8 to 12.8 m/s. The 
maximum radial and axial flame spread velocity rise by 2 m/s and 1.7 m/s for the PDIT advanced every 2 °CA.

CH4 combustion interruption analysis
Figure 13 shows the residual CH4 mass fractions in-cylinder after combustion completes at different PDIT. The 
advancement of PDIT caused the reduction of residual CH4 in the cylinder after combustion completes. The 
residual CH4 in-cylinder of combustion completes at PDIT of − 2 °CA, − 4 °CA, − 6 °CA, and − 8 °CA, the mass 
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Figure 11.   Impact of PDIT on the radial flame spread velocity.
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fractions were 1.92%, 1.31%, 1.05%,and 1.01%, respectively. Residual CH4 mass fractions at each PDIT with the 
EVO were 0.038%, 0.040%, 0.046%, and 0.058%, respectively.

The main reason for the high CH4 emissions in dual-fuel engines is incomplete combustion in the cylinder. 
The incomplete combustion of CH4 is mainly due to the CH4 concentration inside the cylinder not reaching the 
ignition limit and the local temperature inside the cylinder being too low for CH4 to ignite temperature (650 °C). 
Therefore, the phenomenon where the CH4 flame cannot propagate further due to the above two reasons is called 
combustion interruption. The region where the temperature in the combustion chamber is below 650 °C and 
the residual CH4 mass fraction exceeds 0 is termed as the incomplete combustion zone of CH4. The ratio of the 
incomplete combustion area of CH4 to the full combustion chamber area is defined as the combustion inter-
ruption factor. Figure 14 shows that with the advance of PDIT, the combustion interruption factor gradually 
moves forward, the peak of the combustion interruption factor gradually rises, and the peak of the combustion 
interruption factor gradually increases from 15.12% at − 2 °CA to 16.81% at − 8 °CA. In the case of constant 
NGIT, the NG injected into the cylinder met the ignition flame, and the combustion ratio of NG became faster 
due to the advancement of PDIT to make the ignition energy in-cylinder sufficient. It made CH4 and air mix 
badly and caused the combustion interruption to increase. The combustion interruption factor rise by 0.57% 
for PDIT advanced every 2 °CA.

Emissions analysis
The fuel conditions of dual-fuel engines are divided into pure diesel conditions and diesel-ignited natural gas 
conditions. To distinguish between the hydrocarbon emissions in the diesel-ignited natural gas condition and 
the pure diesel combustion condition of the engine, the hydrocarbon emissions, mainly unburned methane, 
in the diesel-ignited natural gas condition are denoted as methane-based unburned hydrocarbon (MHC). Fig-
ure 15 shows the law of NO emission and MHC equivalent ratio under different PDIT. The MHC ratio gradually 
decreases as the PDIT moves toward TDC, and the decrease rate increases between − 6 and − 4 °CA. The NO 
emission shows a decreasing trend with the delay of PDIT. The MHC equivalent ratio decreases by 3.75% for 
each 2 °CA delay of PDIT. The NO emission decreases by 6.1% for each 2 °CA delay of PDIT.
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Conclusion
The PDIT has an extremely important influence on the NG mixture and the effective combustion organization. 
The impacts of PDIT on flame spread velocity, high temperature volume, CH4 combustion interruption, and 
emission products of marine low-speed two-stroke dual-fuel engine combustion process had investigated when 
PDIT varies from − 2 to − 8 °CA, respectively.

The advancement of PDIT accelerates the flame combustion velocity of in-cylinder NG, shifts the combus-
tion phase toward TDC, makes the exothermic process more concentrated. With each 2 °CA advancement of 
PDIT, the engine’s power increased by 69.87 kW, thermal efficiency increased by 0.42%. The unstable combus-
tion mainly occurs at 5–9 °CA. To maintain stable engine combustion, PDIT should be appropriately delayed.

The PDIT affects the IDP and RCP to a greater extent than the SCP and PCP. Marine NDDF engines can 
control the IDP and RCP by changing the PDIT. Delaying the PDIT can reduce the high temperature volume 
in the cylinder, which can reduce the combustion interruption factor of NG, and reduce NO emission and CH4 
emission. The proper delay of PDIT is beneficial to the marine NDDF engine to achieve carbon peak and carbon 
neutrality.

With the PDIT advanced every 2 °CA, the mean pressure and mean temperature rise by 1.4% and 0.5%, the 
high temperature volume and its change ratio rise by 1.3% and 0.03%, the radial and axial flame spread velocity 
accelerate by 2 m/s and 1.7 m/s, NO emission rises by 6.1%, combustion interruption factor rises by 0.57%, and 
MHC emission rises by 3.75%.

Data availability
The data that support the findings of this study are available from Yantai CIMC Raffles Offshore Limited but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permis-
sion of Yantai CIMC Raffles Offshore Limited. Please contact Hongliang Yu if you need data from this study.
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