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Entanglement and quantum 
coherence of two YIG spheres 
in a hybrid Laguerre–Gaussian 
cavity optomechanics
Abdelkader Hidki 1,8, Jia‑Xin Peng 2,8, S. K. Singh 3,4*, M. Khalid 5,6 & M. Asjad 7*

We theoretically investigate continuous variable entanglement and macroscopic quantum coherence 
in the hybrid L–G rotational cavity optomechanical system containing two YIG spheres. In this system, 
a single L–G cavity mode and both magnon modes (which are due to the collective excitation of spins 
in two YIG spheres) are coupled through the magnetic dipole interaction whereas the L–G cavity 
mode can also exchange orbital angular momentum (OAM) with the rotating mirror (RM). We study in 
detail the effects of various physical parameters like cavity and both magnon detunings, environment 
temperature, optorotational and magnon coupling strengths on the bipartite entanglement and the 
macroscopic quantum coherence as well. We also explore parameter regimes to achieve maximum 
values for both of these quantum correlations. We also observed that the parameters regime for 
achieving maximum bipartite entanglement is completely different from macroscopic quantum 
coherence. So, our present study shall provide a method to control various nonclassical quantum 
correlations of macroscopic objects in the hybrid L–G rotational cavity optomechanical system and 
have potential applications in quantum sensing, quantum meteorology, and quantum information 
science.

Cavity Optomechanics (COM) explores the interaction between the electromagnetic field and the mechanical 
motion through the radiation  pressure1 and in the last decades, a significant progresses achieved in this area 
emerging of  research2–6. It has also made several advances in the modern era of quantum technology such 
as ultrahigh-precision  measurement7, gravitation-wave  detection8, quantum  entanglement9–15, macroscopic 
quantum  coherence16,17, optomechanically induced transparency/absorption phenomena (OMIT/OMIA) and 
normal mode  splitting18–22, photon  blockade23–25 including weak force  sensing26,27. Furthermore, the bipartite 
entanglement between the cavity field and the mechanical oscillator in the Fabry-Perot cavity was reported in 
seminal  work28 whereas Paternostro et al also proposed a scheme that showed the signatures of multipartite 
entanglement generated by radiation pressure in a cavity optomechanical  system29. So, the quantum entangle-
ment in cavity optomechanical systems has major practical implications for quantum information processing 
and quantum  technologies30. It also provides a robust platform for studying the boundary between classical and 
quantum physics, as well as exploring the interface between quantum mechanics and the macroscopic  world31. 
At the same time, another important quantum correlation known as quantum  coherence17,32,33 which arises due 
to the well-known superposition principle is also a key concept in quantum information, quantum thermody-
namics and quantum  optics34–37. Based on a rigorous mathematical framework to quantify  it38, the macroscopic 
quantum coherence in a simple cavity optomechanical system was first studied  in16 and later on also explored in 
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hybrid optomechanical  systems39, a whispering-gallery-mode optical  microresonator40 as well as the transfer of 
quantum coherence between the cavity and mechanical modes in a linear optomechanical  system41.

In all of these above mentioned works, the radiation pressure induces the optomechanical interaction of 
the mechanical mode with the cavity field due to the exchange of linear momentum in between these two 
modes. However, Bhattacharya and  Meystre42 first proposed a rotational-cavity optomechanical system in which 
a macroscopic rotating mirror is coupled to a Laguerre–Gaussian (L–G) cavity mode only through the exchange 
of orbital angular momentum and later on subsequently the ground-state cooling of the rotating mirror due to 
the action of the radiation torque in a double L–G cavity with an atomic ensemble studied in Ref.43. All these 
works on the rotating mirror lead to further investigation of macroscopic quantum phenomena in rotational 
cavity optomechanical systems such as bipartite quantum  entanglement42,44–49,macroscopic quantum  coherence32, 
OMIT  phenomena50–53 including its applications for the measurement of orbital angular  momentum50,54,55.

Overall, hybrid quantum systems have the potential to unlock new capabilities in the field of quantum 
 technology56. These interfaces are generally composed of different quantum systems and simultaneously can 
perform several tasks like reliable storage, processing and transmission of  information57. Seminal progress in the 
direction of COM leads to the design of such hybrid quantum systems that can be used to investigate coherent 
dynamics simultaneously both at the microscopic and macroscopic domains for example optomechanical system 
with atomic  gas58,59, Bose-Einstein  condensate60 including semiconductor  nanostructures61. One of the major 
advantages of these spin ensembles is to significantly enhance the bipartite entanglement in COM as found 
 in62,63. At present, macroscopic ferromagnetic materials such as yttrium iron garnet (YIG) crystal attracted 
significant attention due to its high-quality magnetic  properties64,65. The collective excitation of spins in YIG 
spheres known as ”magnons” is a promising platform for developing a robust macroscopic quantum interface as 
its frequency is effectively controlled by adjusting a bias magnetic  field64–67. The spin density in magnons is also 
significantly higher than other spin ensembles such as two level atomic ensembles and hence makes it possible 
to realise strong coupling with the cavity  field64–66,68. In addition to this, the Kittel mode existing inside the YIG 
sphere also has unique characteristics such as a low damping rate and a long coherence  time69–71. So far, various 
interesting quantum phenomena such as tunable magnomechanically induced transparency and  absorption66,72, 
Four wave  mixing73, Magnon Kerr  effect74–76, bipartite and tripartite  entanglement77–88 including nonclassical 
quantum  correlations33,89–91 successfully explored in cavity magnomechanical systems. Moreover, Xiong et al 
recently proposed a theoretical scheme to realize the nonreciprocal bipartite and tripartite entanglements among 
magnons, photons, and phonons in a hybrid cavity-magnon optomechanical  system92.

Based on these studies, in this present work, we have investigated the bipartite entanglement and quantum 
coherence in the hybrid L–G rotational cavity optomechanical system coupled with two magnon modes. We 
explore in detail the effect of various physical parameters on bipartite entanglement and quantum coherence. 
We also analyze the underlying physical mechanisms in detail and elucidate the difference between quantum 
entanglement and coherence.

This paper is organized as follows. In Sect. "The model Hamiltonian", we introduce the model Hamiltonian 
for the L–G rotational cavity optomechanical system coupled with two magnon modes. Section "Quantum 
dynamics" deals with the quantum Langevin equations as well as their steady-state solutions. In this Section, we 
also calculate the quadrature fluctuation equations for our system Hamiltonian. In Sect. "Bipartite entanglement 
and macroscopic quantum coherence", we provide an analytical mathematical formulation for exploring bipartite 
entanglement and macroscopic quantum coherence between different modes. We discuss the effects of various 
physical parameters on bipartite entanglement and macroscopic quantum coherence in Sect. "Results and 
discussion". We conclude our results in Sect. "Conclusion".

The model Hamiltonian
As depicted in Fig. 1, the L–G rotating cavity optomechanical system is composed of a fixed mirror (FM) and a 
rotational mirror (RM) mounted on support as well as which can rotate about the cavity axis. Both the mirrors 
have spiral phase elements and the FM is partially transparent however it does not change the topological 
charge of any beam which passes through it. However, it removes a fixed topological charge of an incident beam 
2l upon reflection. The RM is perfectly reflective and adds a charge of 2l to a beam reflected from it. When a 
Gaussian input beam passes through this FM, the reflected component gets a topological charge −2l whereas 
the transmitted one has a charge 0. The transmitted beam with charge 0 gets reflected again from the RM and 
charged to 2l. When it returns back subsequent reflection at FM results in a mode with charge 0 whereas the 
transmission component comes with a charge 2l32,42,46. This system also includes two YIG spheres which give two 
magnon modes excited by bias magnetic fields HB1 and HB2 . Our system Hamiltonian reads  as92:

where a and a† (with commutation relation [a, a†] = 1 ) are the annihilation and creation operators of the L–G 
cavity mode with frequency ωa . Similarly, mj and m†

j  ( [mj ,m
†
k] = δjk ) represents the annihilation and creation 

operators of the jth magnon mode with frequency ωmj determined by the gyro-magnetic ratio γ and the bias 
magnetic field HBj related through ωmj = γHBj where ( j = 1, 2 ). The other quantum operators Lz and φ describe 
the angular momentum and angular displacement of the RM respectively with corresponding commutation rela-
tion [Lz ,φ] = −i and ωφ is its angular frequency. Here we would like to mention that the RM in this system is 
modeled as a harmonic oscillator for the angular deviations φ ≪ 2π which has the equilibrium position φ0 = 0 . 
The coupling rate gmj denotes the linear coupling between the L–G cavity mode and the jth magnon mode 
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whereas the term gφa represents the optorotational coupling rate with relation gφa = (cl/L)
√

�/Iωφ  . Here, L 
is the length of the cavity and I = mR2/2 is the moment of inertia of the RM of mass m and radius R about the 
cavity axis. The last term describes the input driving by a Gaussian beam with frequency ωl where E is related to 
input laser power Pl as E =

√
2γaPl/�ωl .

Quantum dynamics
To examine the quantum dynamics of this system Hamiltonian, we exploit the well-known quantum Langevin 
equations (QLEs), which take into account the Brownian noise acting on the rotating mirror as well as the 
vacuum fluctuations entering the L–G cavity.

In the frame rotating at the driving laser frequency ωl as well as applying the rotating-wave approximation, 
the corresponding QLEs can be written as:

Here �a = ωa − ωl , �m1 = ωm1 − ωl and �m2 = ωm2 − ωl denote the detuning of the cavity photon and both 
the magnon modes respectively with respect to the external driving field with frequency ωl . In addition, Dφ 
represents the intrinsic damping constant of the RM whereas the γa is the decay rate of the L–G cavity field and 
the γmj is the jth magnon mode decay rate. The terms containing ain and min

j  are the noise operators for the cavity 
and jth magnon modes respectively, whereas ξ in is the Brownian noise operator which represents the mechanical 
noise that couples to the RM from its environment. The mean values of these noise operators are zero, however, 
their nonzero correlation functions are given  as27,32,93–95:

In Eqs. (3), the average thermal photon, magnon and phonon numbers at temperature T are given by 

n̄o =
[

e�ωo/kBT − 1
]−1 ( o = a,m1,m2 ) whereas n̄φ =

[
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 and ωeff  denotes the effective rotation 
frequency of the RM given  as32.
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Figure 1.  Schematic diagram of an L–G rotational-cavity optomechanical setup containing a single RM and 
two YIG spheres inside it. The equilibrium position of RM is given as φ0 whereas the angular displacement is 
represented by the angle φ . At the same time, the interaction between both the magnon modes and the L–G 
cavity mode occurs respectively due to the presence of uniform bias magnetic fields HB1 and HB2 . A Gaussian 
beam of frequency ωl also externally drives the cavity mode.
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Steady state
The steady-state response of the RM, L–G cavity mode and both the magnon modes under the limit of long 
time are obtained as:

with the effective cavity detuning �′
a = �a − gφaφs whereas �1 =

g2m1
γm1+i�m1

 and �2 =
g2m2

γm2+i�m2
.

Quantum fluctuations
To study the influence of quantum fluctuations on the evolution of system dynamics, we decompose each operator 
present into Eq. (2) into a sum of its steady state value and a small quantum fluctuation operator, i.e. o = os + δo 
with o = a,m1,m2, Lz,φ . We can also neglect the nonlinear terms as the mean value of the physical quantity is 
much larger than its fluctuation and the linearized QLEs for the fluctuations can therefore straightforwardly is 
written in the following compact form:

Here uT(t) =
[

δφ(t), δLz(t), δX(t), δY(t), δx1(t), δy1(t), δx2(t), δy2(t)
]

 is the vector of quadrature fluctua-
tions with δX = (δa+ δa†)/

√
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j +min,†
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√
2 and 

yinj = (min
j −min,†

j )/i
√
2 ( j = 1, 2 ). The drift matrix A for this system is given by:

where Gφa =
√
2gφaas represents the effective optorotational coupling parameter.

Bipartite entanglement and macroscopic quantum coherence
As the system Hamiltonian is of Gaussian nature, its state can be fully described in the stationary regime by the 
8× 8 covariance matrix (CM) of elements given as Vjk(∞) = �

[

uj(∞), uk(∞)
]

+�/2 , which is the solution of 
the following standard Lyapunov equation:

where D is the diffusion matrix describing the stationary noise correlations. It is defined by 
Djk δ(t − t ′) = �

[

ηj(t), ηk(t
′)
]

+�/2 and determined by using the correlation functions of Eq.  (3) as 
D = diag[0, γφ(2n̄φ + 1), γa(2n̄a + 1), γa(2n̄a + 1), γm1 (2n̄m1 + 1), γm1 (2n̄m1 + 1), γm2 (2n̄m2 + 1), γm2 (2n̄m2 + 1)].

Furthermore, as the analytical solutions for the Eq. (8) is very complex, we can employ numerical simulations 
to investigate the bipartite entanglement and quantum coherence of this proposed system. This solution can be 
presented as:

where Vj ( j = φ, a,m1,m2 ) is the 2× 2 matrix representing the local properties of the rotating mirror, L–G cav-
ity mode and magnon modes. Wjk ( j, k = φ, a,m1,m2 ) is the 2× 2 matrix describing the correlations between 
the corresponding modes.

In order to explore the entanglement between different bipartitions, i.e., the L–G cavity mode and phonon 
mode, the magnon mode ( m1 ) and phonon mode, the L–G cavity mode and magnon mode ( m1 ) as well as in 
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between the magnon mode ( m1 ) and magnon mode ( m2 ), we employ logarithmic negativity ( EN ) as a measure 
of bipartite entanglement defined  as95–97:

where ϑ− = 2−1/2
[

�−
√

�2 − 4 detVjk

]1/2
, with � = detVj + detVk − 2 detWjk ( j  = k = φ, a,m1,m2 ). Here 

Vjk is a 4× 4 submatrix of the correlation matrix V that captures the pairwise entanglement between two inter-
esting modes, it can be rewritten as:

Furthermore, We now provide a mathematical formulation of the quantum coherence between various Gaussian 
modes. Generally, the quantification of quantum coherence in a given one-mode Gaussian state ρ(V ,

−→
d ) can be 

determined by considering the covariance matrix and the mean value vector, as  follows98:

where ϑ =
√
detV  is the symplectic eigenvalue of V and

The above result can be easily generalized to the multimode Gaussian state, but for our discussion, we will only 
consider the two-mode Gaussian state. Here our main focus is on calculating the quantum coherence of a two-
mode Gaussian state, which can be determined using the following  expression32,98:

where the two symplectic eigenvalues of Vjk are ϑjk,± = 2−1/2
[

�jk ±
√

�2
jk − 4 detVjk

]1/2
 with 

�jk = detVj + detVk + 2 detWjk.
Therefore, it is possible to compute different types of two-mode quantum entanglement and quantum coher-

ence by employing Eqs. (10) and (15), and these calculations will be presented in the following section.

Results and discussion
In this section, we will discuss the generation of the bipartite entanglement and the quantum coherence between 
the different bipartitions present in our system Hamiltonian. We have taken into account the parameters for the 
L–G cavity that can be easily achieved in the  experiments32,42–45,47,73,76 and are given below,

m = 5 ng, R = 10 µm , l = 50 , Pl = 50 mW, the laser wavelength �l = 810 µm , the optical finesse 
F = 1.1× 104 , the quality factor Q = 105 , L = 1 mm, γa/2π = 0.5 MHz, γm1/2π = γm2/2π = 3.75 MHz, 
γφ/2π = 100 Hz, gm1/2π = gm2/2π = 4.5 MHz, ωφ/2π = 21 MHz and T = 0.4 K.

At first, we analyse various bipartitions, namely, EaφN  ( Caφ ), Em1φ ( Cm1φ ), Eam1
N  ( Cam1 ) and Em1m2

N  ( Cm1m2 ) which 
respectively denote the bipartite entanglement (quantum coherence) between L–G cavity mode and phonon 
mode; magnon mode ( m1 ) and phonon mode; L–G cavity mode and magnon mode ( m1 ) and finally in between 
magnon mode ( m1 ) and magnon mode ( m2).

In Fig. 2, we represent the four bipartite entanglements as a function of the normalized detuning �m1/ωφ and 
�m2/ωφ . Here, we have taken the detuning of the L–G cavity mode perfectly resonant with the blue sideband 
regime of the RM, i.e. �′

a = ωφ , which also corresponds to the anti-Stokes process. This leads to significant 
cooling of the RM and so it enhances the entanglement phenomena. In Fig. 2a, the entanglement EaφN  almost 
get saturated with a fixed value when the detunings of both the magnon modes m1 ( m2 ) are resonant only with 
the blue sideband regime of the RM, i.e., �m1 = �m2 = ωφ . However, if we gradually change both the magnon 
detuning towards the red sideband regime of the RM, i.e., �m1 = �m2 ≃ −ωφ , the bipartite entanglement 
E
aφ
N  almost get zero. This is due to the presence of Stokes processes caused by both the magnon modes in this 

regime, which ultimately leads to significant heating of the RM. Hence, we do not obtain any entanglement 
between the L–G cavity mode and the phonon mode of the RM. Furthermore, it can be seen that in Fig. 2b,c, 
the bipartite entanglements Em1φ

N  and Eam1
N  exhibit a maximum value when the detuning of the magnon mode 

m1 and the magnon mode m2 are respectively resonant with the red and the blue sideband regime of the RM, i.e., 
�m1 = −�m2 ≃ −ωφ . This means that both of these bipartitions mainly get their maximum values when the 
first magnon leads to Stokes process whereas the second magnon enhances anti-Stokes phenomena inside the 
cavity. Moreover, when the detunings of both the magnon modes are always kept in resonance with two different 
RM sidebands regimes, i.e., when �m1 = −�m2 ≃ ±ωφ the maximum degree of bipartite entanglement Em1m2

N  
is attained as shown in Fig. 2d , which shows that both anti-Stokes and Stokes processes leading to simultaneous 
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cooling and heating of the RM are required inside the cavity to get maximum entanglement between both the 
magnon modes.

In Fig. 3, for �m2 = ωφ we plot all the four bipartite entanglements as a function of the normalized detun-
ing �m1/ωφ and �′

a/ωφ . We get a very strong bipartite entanglement EaφN  when the effective cavity detuning is 
at �′

a ≃ 0.3ωφ and the detuning of the magnon mode ( m1 ) is approximately resonant with the blue sideband 
of the RM, i.e. �m1 = ωφ , which leads to significant cooling of the RM and enhances EaφN  as shown in Fig. 3a. 
Moreover, Fig. 3b shows that the bipartite entanglement Em1φ

N  reaches the maximum value when the detuning 
of the L–G cavity mode and the magnon detuning of first magnon ( m1 ) are respectively nearly resonant with the 
blue and the red sideband regime of the RM. This corresponds to simultaneous cooling and heating of the RM 
inside the cavity. As compared to other bipartions, Eam1

N  achieves its maximum value with a very low value of 
effective cavity detuning as well as magnon detuning as shown in Fig. 3c. This implies that both anti-Stokes and 
Stokes processes of the RM should be suppressed inside the cavity. In addition, we can also see from Fig. 3d that 
bipartite entanglement Em1m2

N  reaches its maximum value when the detunings due to L–G cavity mode and the 
magnon mode ( m1 ) are approximately resonant with the blue and the red sideband regime which corresponds 
to the simultaneous cooling and heating of the RM respectively.

In Fig. 4, we have shown the four bipartite entanglements as a function of �m1/ωφ and the coupling strength 
ratio gm2/gm1 where we have already taken gm1/2π = 4.5 MHz. It can be seen from Fig. 4 that there are different 
optimal couplings required to achieve maximum entanglement for each bipartition. In fact, for EaφN  ; Em1φ

N  ; Eam1
N  

Figure 2.  Density plot of (a) EaφN  , (b) Em1φ
N  , (c) Eam1

N  , (d) Em1m2

N  versus the normalized detuning �m1
/ωφ and 

�m2
/ωφ . Here we have taken effective cavity detuning �′

a = ωφ for all cases.

Figure 3.  Density plot of (a) EaφN  , (b) Em1φ
N  , (c) Eam1

N  , (d) Em1m2

N  versus the normalized detuning �m1
/ωφ 

and �′
a/ωφ . In all four plots, second magnon detuning is �m2

= ωφ . As shown in Fig. 2, all the four bipartite 
entanglements achieve higher values at this point.
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and Em1m2
N  , the optimal couplings are approximately gm2 ≃ gm1 ; gm2 ≃ 1.5gm1 ; gm2 ≃ 0.7gm1 and gm2 ≃ 2gm1 

respectively. It is important to mention here that there are no universal optimal coupling strength values of gm1 
and gm2 that simultaneously maximize entanglement for all the possible bipartitions. This is due to the asym-
metric transfer of entanglement caused by the interaction of different modes. So, the optimal coupling strengths 
depend upon the specific bipartition that we want to investigate and maximize in our system Hamiltonian. It 
can be also seen that when the detuning of the first magnon becomes resonant to the blue sideband regime of 
the RM, i.e. �m1 = ωφ then the bipartition EaφN  achieves its maximum value whereas all other three bipartitions 
become zero for a broader range of coupling strength ratio gm2/gm1 . However, when the detuning of the first 
magnon is approximately resonant with the red sideband regime of the RM, which means that �m1 ≃ −ωφ then 
it leads to Stokes process and all the remaining three bipartitions can be controlled significantly with a proper 
choice of coupling strength ratio gm2/gm1 . Therefore, the coupling strength ratio of both magnon modes plays an 
important role in controlling all the four bipartite entanglements in our proposed quantum system. Additionally, 
we can also note that although the maximum value of bipartite entanglement for directly coupled mode ( EaφN  ) is 
the highest still indirectly coupled mode like Em1φ

N  attains significant value in the current parameter regime. This 
result holds significant implications for the development of hybrid quantum systems mostly utilized in quantum 
information and quantum communication protocols. This is because optimizing bipartite entanglement for one 
subsystem may not necessarily result in optimal entanglement for other subsystems and different subsystems 
necessitate distinct coupling strength ratio to attain maximum entanglement.

Figure 4.  Density plot of (a) EaφN  , (b) Em1φ
N  , (c) Eam1

N  , (d) Em1m2

N  versus the coupling strength gm2
/gm1

 and 
detuning �m1

/ωφ . We consider other parameters as �m2
= −0.9ωφ and �′

a = ωφ in all four plots.

Figure 5.  Density plot of (a) EaφN  , (b) Em1φ
N  , (c) Eam1

N  , (d) Em1m2

N  versus the normalized detuning �m1
/ωφ and the 

temperature T. Other parameter is �′
a = �m2

= ωφ in all cases.
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In Fig. 5, we give density plots of EaφN  , Em1φ
N  , Eam1

N  , and Em1m2
N  as a function of detuning �m1/ωφ and tem-

perature T. It can be seen that with a gradual change of magnon detuning �m1 , the effect of temperature T on all 
four bipartite entanglements can be significantly controlled. When �m1 ≃ ωφ (anti-Stokes process and leading 
to cooling of the RM), EaφN  has minimum thermal effects whereas for the other three bipartitions, it is observed 
around �m1 ≃ −ωφ (which leads to Stokes process and subsequently heating of the RM), however with a gradual 
increase in environment temperature T due to the decoherence phenomena, all the four bipartitions show deg-
radation of bipartite entanglement in both red as well as blue sideband regimes of the RM.

Furthermore, in Fig. 6, for an effective cavity detuning �′
a = ωφ , we plot all the four types of quantum 

coherence, namely Caφ , Cm1φ , Cam1 including Cm1m2 as a function of the normalized magnon detunings �m1/ωφ 
and �m2/ωφ . As compared to the bipartite entanglement between different modes given in Fig. 2, the optimal 
detunings to achieve maximum quantum coherence between different bipartitions occur when both the magnon 
deunings are approximately resonant with the external cavity driving field, i.e., �m1 = �m2 ≃ 0 . However, to 
enhance the various bipartite entanglements, it is necessary for both magnon modes to be detuned from the 
cavity driving field as shown in Fig. 2. The maximum values of quantum coherence achieved by each bipartition 
in this case is respectively given as Caφ

max ≃ 35.5 , Cm1φ
max ≃ 37.5 , Cam1

max ≃ 42.5 , and Cm1m2
max ≃ 44 . We would like to 

mention here that the difference between the entanglement and the quantum coherence is that these two quanti-
ties measure completely different aspects of a given quantum system. Entanglement is a measure of the quantum 
correlation between different bipartitions present in the system. The maximum entanglement occurs when the 

Figure 6.  Density plot of (a) Caφ , (b) Cm1φ , (c) Cam1 , (d) Cm1m2 versus the normalized detuning �m1
/ωφ and 

�m2
/ωφ . We consider other parameter �′

a = ωφ in all four plots.

Figure 7.  Density plot of (a) Caφ , (b) Cm1φ , (c) Cam1 , (d) Cm1m2 versus the normalized detuning �m1
/ωφ and 

�′
a/ωφ . We consider other parameter �m2

= ωφ in all four plots.
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two considered modes are maximally correlated for a particular set of parameters, e.g. Fig. 2. On the other hand, 
quantum coherence refers to the degree of the superposition between the different quantum states, and it can be 
related to the degree of coherence between different modes of the system. Each mode inside a given quantum 
system has its own quantum coherence, indicating its ability to exist in a superposition of states. This internal 
coherence always helps to maintain the system’s overall quantum coherence. The maximum of quantum coher-
ence occurs when the system is in a state that is maximally superposed between different modes, which can be 
achieved in a different specific parameters regime, e.g. Fig. 6. Such quantum state also represents the ability of a 
given quantum system to exist in maximal superposition across multiple modes at the same time, demonstrating 
the complex interplay of quantum states inside the system. In this scenario, the dynamics of the quantum system 
have a distinct wave-like behavior, with each mode contributing coherently to the total quantum coherence.

In Fig. 7, we have plotted all the four correlations of macroscopic quantum coherence as a function of the 
normalized first magnon detuning �m1/ωφ and the effective cavity detuning �′

a/ωφ while keeping the second 
magnon detuning fixed at the blue sideband regime of the RM, which means �m2 = ωφ . To achieve the maximum 
quantum coherence for all four correlations the magnon mode ( m1 ) should be approximately resonant with the 
external cavity driving field,i.e. �m1 ≃ 0 , and the effective cavity detuning should be kept at �′

a = 0.3ωφ . It can be 
also seen that for the effective cavity detuning �′

a = ωφ which leads to the anti-Stokes process and subsequently 
cooling of the RM, all the four correlations of macroscopic quantum coherence gradually decrease although the 
value of �′

a = ωφ corresponds to RM cooling. Therefore, to achieve a higher degree of quantum coherence in 
this hybrid quantum system we should keep a smaller value of effective cavity detuning �′

a . This again shows 
that the optimal effectice cavity detuning to obtain maximum quantum coherence is completely different from 

Figure 8.  Density plot of (a) Caφ , (b) Cm1φ , (c) Cam1 , (d) Cm1m2 versus the coupling strength gm2
/gm1

 and 
detuning �m1

/ωφ . We take other parameters as �m2
= −0.9ωφ and �′

a = ωφ in all cases.

Figure 9.  Density plot of (a) Caφ , (b) Cm1φ , (c) Cam1 , (d) Cm1m2 versus the normalized detuning �m1
/ωφ and 

the temperature T. We take other parameters as �′
a = �m2

= ωφ in all four plots.
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those required for the bipartite entanglement. These results also highlight the importance of carefully selecting 
experimental parameters to achieve an efficient macroscopic quantum coherence phenomenon.

Further, we examine the effects of coupling ratio strength on quantum coherence as shown in Fig. 8. We plot 
all the four correlations for quantum coherence as a function of �m1/ωφ and gm2/gm1 where we have already 
taken gm1/2π = 4.5 MHz. It can be seen that the maximum quantum coherence of all four bipartitons is achieved 
for coupling ratios strength gm2 ≃ 2.5gm1 and effective magnon detuning �m1 ≈ 0 . As compared to bipartite 
entanglement results given in Fig. 4 it is observed that we have just only one specific value for gm2/gm1 to enhance 
all the four correlations for quantum coherence. Furthermore, we plot all the four quantum coherence with vary-
ing first magnon detuning �m1/ωφ and temperature T in Fig. 9. We can see that for magnon detuning �m1 ≈ 0 
whereas keeping �′

a = �m2 = ωφ , all the four correlations persist despite thermal effects and have a significant 
amount of quantum coherence up to temperature 50 K. So, our proposed quantum system has a significant 
amount of quantum coherence even at higher temperature as compared to the bipartite entanglement given in 
Fig. 5, where due to the decoherence phenomena all the four bipartitions rapidly become zero with a gradual 
increase in environment temperature T. This is very important for the practical application of such systems in 
modern quantum technology however the optimal parameters for achieving significant quantum coherence are 
completely different from the bipartite entanglement.

Conclusion
In conclusion, we have proposed a scheme to achieve maximum bipartite entanglement and quantum coherence 
in the hybrid L–G rotational optomechanical system containing two YIG magnetic nanospheres where both 
the YIG spheres are coupled to the L–G cavity mode through the magnetic dipole interaction. We theoretically 
investigate the variation of various bipartitions present in this quantum system for bipartite entanglement and 
macroscopic quantum coherence. We have also discussed in detail the parameters regime to achieve maximum 
bipartite entanglement and quantum coherence. We observed that the parameters set for achieving maximum 
bipartite entanglement are completely different from macroscopic quantum coherence. This is because one of 
them quantifies the correlation between different modes, while the other quantifies the degree of superposition of 
different quantum states. In addition, our proposed system has significant quantum coherence between different 
bipartitions even at higher temperatures. Our present results are insightful to understand as well as effectively 
control the various kinds of nonclassical quantum correlations in macroscopic quantum systems and have 
potential applications in quantum information, quantum metrology, and quantum computation.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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