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Modeling COVID‑19 data 
with a novel neutrosophic Burr‑III 
distribution
Farrukh Jamal 1, Shakaiba Shafiq 1, Muhammad Aslam 2*, Sadaf Khan 1, Zawar Hussain 1 & 
Qamer Abbas 1

In this study, we have presented a novel probabilistic model called the neutrosophic Burr‑III 
distribution, designed for applications in neutrosophic surface analysis. Neutrosophic analysis allows 
for the incorporation of vague and imprecise information, reflecting the reality that many real‑
world problems involve ambiguous data. This ability to handle vagueness can lead to more robust 
and realistic models especially in situation where classical models fall short. We have also explored 
the neutrosophic Burr‑III distribution in order to deal with the ambiguity and vagueness in the data 
where the classical Burr‑III distribution falls short. This distribution offers valuable insights into 
various reliability properties, moment expressions, order statistics, and entropy measures, making 
it a versatile tool for analyzing complex data. To assess the practical relevance of our proposed 
distribution, we applied it to real‑world data sets and compared its performance against the classical 
Burr‑III distribution. The findings revealed that the neutrosophic Burr‑III distribution outperformed 
than the classical Burr‑III distribution in capturing the underlying data characteristics, highlighting its 
potential as a superior modeling toolin various fields.
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Historically, in 1942, Burr formulated twelve families of distributions through the Kearl Pearson equation, each 
offering distinct density functions with diverse applications. Among these, the Burr-III distribution has gained 
widespread acceptance and recognition. However, the Burr-III distribution has often been overlooked in favor of 
other Burr family of distributions. Examples of its applications include forestry studies by Gove et al.1, life test-
ing investigations by  Wing2,3, operational risk assessments by Chernobai et al.4, analyses of option market price 
distributions by Sherrick et al.5, metrological studies by  Mielk6, crop yield modeling by Tejeda and  Goodwin7, and 
reliability assessments by Abdel-Ghaly et al.8. The Burr-III distribution often referred to as the Dagum distribu-
tion in income and earning studies (as observed  in9) is significant component in the field of science. In the realm 
of real-world applications, it is known as the inverse Burr-XIII distribution (as highlighted  in10). Benjamin et al.11 
had leveraged the Dagum distribution to model maximum daily levels of troposphere ozone, demonstrating the 
versatility and relevance of the Burr-III distribution in various scientific domains. The cumulative distribution 
function (CDF) of the classical Burr-III distribution is given as:

Despite the widespread use of the Burr-III distribution, existing research work has encountered certain 
limitations with the classical Burr-III distribution as:

1. One primary challenge is its inability to effectively capture the complexities of real-world datasets char-
acterized by uncertainty and ambiguity. Many complex problems inherently involve vague and imprecise 
information, which classical Burr-III model often struggle to address adequately.

2. The classical Burr-III model assumed that data is crisp and well-defined, which may not always hold true in 
practice. This discrepancy between the assumptions of classical Burr-III model and the nature of real-world 
data introduces a significant source of error and uncertainty in statistical analyses.

(1)G(x; θ , �) =
(

1+ x−θ
)−�

, �, θ > 0, x > 0.
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To address these limitations, there is a growing need for alternative approaches that can accommodate uncer-
tainty and indeterminacy in data analysis. One promising paradigm shift in this regard is the field of neutrosophic 
analysis, which introduces a novel approach for handling data uncertainty.

The concept of “Neutrosophic Statistics” introduces a novel approach for handling data uncertainty. It encom-
passes both uncertain data and the methodologies employed to evaluate such data. The distinguishing feature 
of neutrosophic statistics lies in its ability to accommodate uncertainty and indeterminacy, a departure from 
classical statistics where all data is crisp and well-defined. Neutrosophic statistics come into play when data con-
tains indeterminacy, offering valuable tools for analyzing such uncertain information. Numerous neutrosophic 
probability distributions have been developed in the literature, for instance, neutrosophic Weibull distribution 
by Al-hasan and  Smarandache12, neutrosophic uniform, neutrosophic exponential and neutrosophic Poisson by 
Al-habib et al.13, neutrosophic normal and neutrosophic binomial distributions by Pareto and  Smarandache14, 
neutrosophic Rayleigh distribution by  Aslam15 and neutrosophic Beta distribution by Sherwani et al.16.

In this study, we aim to introduce a ground breaking probabilistic model known as the Netrosophic Burr-III 
(NeS-BrIII) distribution, specifically designed to tackle the intricacies of neutrosophic surface analysis. Our 
exploration into the NeS-BrIII distribution delves deep into its capabilities, unveiling its potential to address 
the challenges posed by ambiguity and vagueness in the data that the classical Burr-III distribution cannot meet 
these challenges. This unique distribution not only offers insights into reliability properties, moment expres-
sions, order statistics, and entropy measures but also serves as a versatile tool for unraveling the complexities 
of real-world datasets. To gauge the practical significance of our proposed NeS-BrIII distribution, we applied it 
to real-world datasets and subject it to rigorous performance evaluation. By comparing its results against those 
of the classical Burr-III distribution, we aim to showcase the NeS-BrIII distribution’s prowess in capturing the 
nuanced characteristics of data, thereby highlighting its potential as a superior modeling tool across a spectrum 
of fields and applications.

The structure of the paper is formatted as: Section "The model with properties" laid the foundation for 
the current study by presenting the development of the NeS-BrIII distribution. We have derived the extensive 
properties of the NeS-BrIII distribution. We delved into its characteristics and conduct simulations to further 
elucidate its behavior. This section serves as a comprehensive examination of the distribution’s features. In Sec-
tion "Applications of the NeS-BrIII distribution", we applied the NeS-BrIII distribution to real-world data sets, 
demonstrating its practical utility. Through these applications, we showcase how the distribution can be effectively 
employed to analyze and model real data, offering insights into its performance and versatility. The final section, 
Section "Conclusion", serves as the conclusion of our study by summarizing the key findings, contributions and 
implications of our research.

The model with properties
In this section, we delve into the development of the neutrosophic model based on the classical Burr-III distribu-
tion. This section provides a framework for the development of the NeS-BrIII distribution as:

1. The first step in developing the NeS-BrIII distribution involves extending the classical Burr-III distribution 
to accommodate neutrosophic concepts. This extension involves incorporating neutrosophic parameters 
and defining neutrosophic versions of PDF and CDF as: FNeu(x; �Neu,αNeu) = FL[(XL + XLINeu); �L,αL) 
and fNeu(x; �Neu,αNeu) = fL[(XL + XLINeu); �L,αL).

2. After model development, the second step involves investigating the properties and characteristics of the 
NeS-BrIII distribution, including moments, reliability properties, order statistics, and entropy measures. 
These analyses provide insights into the behavior and performance of the distribution in various contexts.

3. Next, the maximum likelihood estimation method along with simulation is being tailored to the NeS-BrIII 
distribution. This method leverage neutrospohic statistics to estimate the parameters of the distribution from 
the observed data

The model development
If the random variable X follow the Burr-III distribution having CDF defined in Eq. (1) and considering that 
Neu is a neutrosophic statistical number and that INeu ∈ (IL, IN ) is an interval of indeterminacy. Such that 
XNeu ∈ (nL, nN ) if the neutrosophic variable XNeu ∈ (XL,XN ) generates neutrosophic observations. Hence the 
neutrosophic form can be expressed as: XNeu = XL + XLINeu . Where, in INeu ∈ (IL, IN ) , IL and IN represents 
the classical and neutrosophic statistics, respectively. Similarly, in XNeu ∈ (nL, nN ) and XNeu ∈ (XL,XN ) ; nL,XL  
represent the classical statistic and nN ,XN represent the neutrosophic statistics.

Thus the CDF of the NeS-BrIII distribution can be defined as:

Here �Neu, θNeu are the shape parameters. The CDF graphs of the NeS-BrIII distribution given in Fig. 1 are 
representing an increasing function of the CDF of the NeS-BrIII distribution. The probability density function 
(PDF) of the NeS-BrIII distribution derived from Eq. (2) is expressed as:

The PDF plots of the NeS-BrIII distribution are being presented in Fig. 2. Notably, the PDF plots of the NeS-
BrIII model prominently display aunimodel behavior, indicating a central tendency within the variable being 

(2)F(x; �Neu, θNeu) =
{

1+ [(1+ INeu)x]
−θNeu

}−�Neu
, �Neu, θNeu > 0, x > 0.

(3)f (x; �Neu, θNeu) = (1+ INeu)
−θNeu�NeuθNeux

−θNeu−1
{

1+ [(1+ INeu)x]
−θNeu

}−�Neu−1
,
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modeled. This unimodel nature of the model suggests that the distribution predominantly exhibit a single peak, 
signifying a concentration of values around a specific point.

The survival function (SF) and hazard rate function (HRF) of the NeS-BrIII model are respectively expressed 
given below

and

Figure 3 represents the HRF plots of the NeS-BrIII distribution. The HRF plots of the NeS-BrIII model 
vividly portray two distinct shapes: a decreasing pattern and a bathtub pattern. These two shapes offer valuable 
insights into the distribution’s behavior, highlighting both the initial decline in HRF by a resurgence as a unique 
characteristic of the NeS-BrIII distribution.

Properties and simulation
The NeS-BrIII distribution offers a wealth of properties and computations that significantly enhance the under-
standing of its practical implementation within distribution theory. Key properties such as moments, percentiles, 
random number generation, as well as maximum likelihood estimation (MLE) and dependability measures have 
been rigorously determined for the NeS-BrIII distribution. These calculated properties and measures collectively 
contribute to a comprehensive characterization of the NeS-BrIII distribution, enhancing its utility in various 
theoretical and practical contexts within distribution theory.

Moments of the NeS‑BrIII distribution
Moments serve as essential statistical measures that bridge theory and observations. Moments are calculated 
values that describe key properties of a distribution, specifically the expected values of different powers of the 
random variable. In practice, moments reveal crucial insights into the distribution’s behavior and characteris-
tics. To apply moments to real-world data, we adjust them to match sample moments. This adjustment process 

(4)S(x; �Ne , θNeu) = 1−
{

1+ [(1+ INeu)x]
−θNeu

}−�Neu
,

(5)h(x; �Ne , θNeu) =
(1+ INeu)

−θNeu�NeuθNeux
−θNeu−1

{

1+ [(1+ INeu)x]
−θNeu

}−�Neu−1

1−
{

1+ [(1+ INeu)x]
−θNeu

}−�Neu
.

Figure 1.  CDF plots of NeS-BrIII distribution.
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involves equating estimated moments from observed data to their corresponding population moments. The 
number of equations generated in this process equals the number of parameters being estimated. One prominent 
application of moments is Pearson’s correlation coefficient, which establishes a connection between numerical 
moments of a distribution and population moments. This coefficient is widely used for analyzing relationships 
within data is fundamental in statistical analysis.

The r th moments of NeS-BrIII distribution are

where B(Ar,Br ) is a beta function, A r = 1 − r
θNeu

 , B r = �Neu + r
θNeu

 and r < θNe.
The negative moments of NeS-BrIIIare

For �Neu, θNeu > r.
The mean and variance of NeS-BrIII distribution are given as:

And

Skewness  (C1) and kurtosis  (C2) can be computed from the following moment ratios:

(6)µ′
r = (1+ INeu)

r

∞
∫

0

xrLf (xL)dxL = �Neu(1+ INeu)
rB(Ar , Br), r = 1, 2, . . .

(7)µ′
−r = (1+ INeu)

r
�NeuB

(

r

θNeu
+ 1, �Neu −

r

θNeu

)

, r = 1, 2, . . .

(8)E(X) = (1+ INeu)�NeuB

(

1

θNeu
+ 1, �Neu −

1

θNeu

)

,

(9)Var(X) = (1+ INeu)
2
�Neu

[

B

(

2

θNeu
+ 1, �Neu −

2

θNeu

)

− �NeuB
2

(

1

θNeu
+ 1, �Neu −

1

θNeu

)]

.

(10)C1 =
E(X3)− 3E(X)E(X2)+ 2E3(X)

Var 32 (X)

Figure 2.  PDF plots of NeS-BrIII distribution.
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Table 1 provides a comprehensive overview of computed statistical first four moments, variance (V), skewness 
 (C1) and kurtosis  (C2) for the some arbitrary parametric values of NeS-BrIII distribution using R-Programming 
language.

(11)C2 =
E(X4)− 4E(X)E(X3)+ 6E(X2)E2(X)− 3E4(X)

Var2(X)

Figure 3.  HRF plots of the NeS-BrIII distribution.

Table 1.  The numerical values of the first four moments ( µr ′ , r = 1,2,3,4), V,  C1and  C2 of the NeS-BrIII model 
for some parameter values.

�Neu , θNeu µ1′ µ2′ µ3′ µ4′ V C1 C2

[0.1,0.2],[0.2,0.3] [0.010,0.028] [0.004,0.013] [0.003,0.009] [0.002,0.006] [0.004, 0.012] [9.283,5.351] [112.20,47.98]

[0.3,0.4],[0.4,0.5] [0.053,0.081] [0.025,0.040] [0.016,0.026] [0.012,0.019] [0.022,0.033] [3.761,2.889] [32.74,27.530]

[0.5,0.6],[0.6,0.7] [0.109,0.136] [0.055,0.070] [0.036,0.047] [0.027,0.035] [0.043,0.052] [2.335,1.954] [25.679, 25.108]

[0.7,0.8],[0.8,0.9] [0.160,0.179] [0.086,0.100] [0.058,0.068] [0.043, 0.051] [0.060, 0.067] [1.678,1.475] [24.911,24.641]

[0.9,1],[1,1.1] [0.194,0.205] [0.112,0.123] [0.077,0.086] [0.059,0.066] [0.074, 0.080] [1.325,1.219] [24.113,23.305]

[1.1,1.2],[1.2,1.3] [0.212,0.216] [0.131,0.138] [0.094,0.100] [0.072,0.078] [0.086,0.091] [1.148,1.108] [22.286, 21.157]

[1.3,1.4],[1.4,1.5] [0.217, 0.216] [0.143, 0.146] [0.105,0.109] [0.083,0.087] [0.096,0.099] [1.092,1.098] [20.009,18.910]

[1.5,1.6],[1.6,1.7] [0.212, 0.208] [0.148,0.148] [0.112,0.114] [0.090,0.092] [0.102,0.105] [1.121,1.157] [17.903,17.010]

[1.7,1.8],[1.8,1.9] [0.202,0.195] [0.147,0.145] [0.115,0.115] [0.093,0.094] [0.106,0.107] [1.205,1.263] [16.24,15.592]
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Quantile function and random numbers generation
In general the quantile function (QF) is a mathematical expression used to determine specific quantiles of the 
distribution. In the realm of probability distribution, a distribution function typically adheres to two important 
characteristics: it is a non-decreasing function, and its QF is left-continuous. The QF maps values from the range 
[0, 1], representing the probabilities. The QF of the NeS-BrIII distribution is

When we set the quantile value to 0.5 in Eq. (13), we obtain the median of the NeS-BrIII distribution. The 
median is a crucial measure that divides the distribution into two equal halves, making it an essential indicator 
of central tendency in this particular distribution.

Reliability function of the NeS‑BrIII distribution
Reliability is often defined as a device’s capacity to work under a specific set of circumstances until it fails. Strength 
that can withstand stress under constant operating conditions is included into several of the devices’ designs. The 
link between stress and strength is complex. Engineering, medicine, sociology, and other fields of study have all 
examined it. If P(X < Y),P(X < Z), and other probability are estimated. This, nevertheless, the "stress-strength" 
or "reliability" models are a collection of probabilistic models.

If X1 represents a stochastic element’s strength and X2 represents its stress, the stress strength model charac-
terizes the unpredictable element’s life. When the component is subjected to stress that exceeds its strength, it 
will fail, but it will still work properly. Whenever X2 < X1 , hence

where R is a measure of reliability.
Let X1 and X2 be the independent NeS-BrIII distributions’ variables as:X1 follows the NeS-BrIII(�Neu1, θNeu ) 

and X2 follows the NeS-BrIII(�Neu2, θNeu ). Then fromEquations (3) and (4), we have

Ordrer statistics of the NeS‑BrIII distribution
Order statistics are essential in data analysis and their features. Statistical implementations have been extensively 
researched in the literature.The oldest model for ordered random variables is probably order statistics. When 
observations in a sample are ordered in increasing order of size, order statistics emerge naturally in life.Order 
statistics is also useful for studying distribution of maximum, minimum and median etc. Based on random vari-
ables, let X1,X2, ...,Xn, follows the NeS-BrIII density function with absolutely continuous distribution function, 
the ith order statistics of NeS-BrIII is defined as:

Ith order moments of NeS-BrIII is

Renyi’s entropy
An entropy is a numerical measure of a system’s uncertainties. The higher the entropy, the more unpredictable 
the data. The entropy of Renyi is defined as:

From Eq. (3), we have

(12)xq = (1+ INeu)
−1

[

q
1

�Neu − 1

]− 1
θNeu

.

(13)R = P(X2 < X1) =

∞
∫

0

f1(x)F2(x)dx,

(14)

R = (1+ INeu)�Neu1θNeu

∞
∫

0

[(1+ INeu)x]
−(θNeu+1)

{

1+ [(1+ INeu)x]
−θNeu

}−(�Neu1+�Neu2)−1
d(x) =

(1+ INeu)�Neu1

�Neu1 + �Neu2
.

(15)fx(j) (x) =
(1+ INeu)

j+k
�NeuθNeun!

(j − 1)!(n− j)!

n−j
∑

k=0

(−1)k
(

n−j

k

)

x−θNeu−1(1+ x−θNeu )−�Neu(j+k)−1.

(16)

E(xr(j)) =
(1+ INeu)

j+k
�NeuθNeun!

(j − 1)!(n− j)!

n−j
∑

k=0

(−1)k
(

n−j

k

)

∞
∫

0

xr−θNeu−1(1+ x−θNeu)−�Neu(j+k)−1dx

= E(xr(j)) =
(1+ INeu)

j+k
�Neun!

(j − 1)!(n− j)!

n−j
∑

k=0

(−1)k
(

n−j

k

)

B

(

1−
r

θNeu
,

r

θNeu
+ �Neu(j + k)

)

.

(17)IR(ε) =
1

1− ε
log [I(ε)],
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Maximum likelihood estimation
MLE is a fundamental statistical method used to estimate the parameters of a statistical model by maximizing 
the likelihood function. MLE provides efficient and asymptotically unbiased estimates, and its widespread use 
in various fields underscores its importance as a robust and consistent method for parameter estimation. The 
log likelihood function of the Nes-BrIII model is

Taking derivative of L(θNeu, �Neu) with respect to θNeu, �Neu , and equating the resulting expressions to zero 
will yield the MLE(s) of the NeS-BrIII model as:

As the above expressions are non-linear equations so the numerical integration is applied using R program-
ming language to compute the MLE(s) of the NeS-BrIII model.

Simulation study
In this section, we carried out a simulation study to check the behavior of proposed estimators for the NeS-BrIII 
model.

1. We have generated 5000 samples of sizes, n = 30, 50, 100, 200 and 300 from the NeS-BrIII distribution with 
different combinations of parameters.

2. The average estimates (AEs), biases and mean square error (MSEs) are computed to check the performance 
of the best estimator as:

3. The results of the simulation study are listed in Tables 2, 3 and 4. The results given in the Tables 2, 3 and 
4 showed that MLEs are consistent estimators. The biases and MSEs decreased by increased in the sample size. 
Moreover, the results of the NeS-BrIII model are more precise and error free as presented in the form of interval.

Applications of the NeS‑BrIII distribution
An application on two actual data setsis being presented in this section.We have converted the classical data into 
neutrosophic form to deal with the imprecision, uncertainty or ambiguity in the classical data. Table 5 represents 
the crisp values for data set 1 and 2, respectively, by converting the classical data into neutrosophic form by 
letting  INeu = [0, 0.05] in  XNeu =  [XL,  XL(1 +  IN)]. The lower values represent the classical statistics and the upper 
values represent the neutrosophic statistics in the interval form of the data. We considered several goodness of 
fit criterion that allowed us to compare the fits of the NeS-BrIII by considering  INeu = 0.05and classical Burr-III by 

(18)I(ε) = (1+ INeu)
ε(�NeuθNeu)

ε

∞
∫

0

x−ε(θNeu+1)
[

1+ x−θNeu
]−ε(�Neu+1)

dx

(19)= (1+ INeu)
ε
�
ε
Neu

θ
ε−1
Neu

B

(

ε

(

1+
1

θNeu

)

+ 1, ε

(

�Neu +
1

θNeu

)

− 1

)

.

L(θNeu, �Neu) = n log θ + n log �Neu − nθNeu log(1+ INeu)

+ (−θNeu − 1)

n
∑

i=1

log xi + (−�Neu − 1)

n
∑

i=1

log
{

[(1+ INeu)xi]
−θNeu

}

Lθ =
n

θ
− n log(1+ INeu)−

n
∑

i=1

xi + (�+ 1)

n
∑

i=1

log [(1+ INeu)xi] = 0

L� =
n

�
−

n
∑

i=1

log
[

((1+ INeu)xi)
−θ

]

= 0

AEs =

N
∑

i=1

v̂i/5000,Bias =

N
∑

i=1

(

v̂i

5000

)

− vi ,MSE =

N
∑

i=1

(

v̂i − vi
)2
/5000

Table 2.  Parameter estimates for �Neu = [0.5, 1] and θNeu = [3, 2].

n

AEs Biases MSEs

�Neu θNeu �Neu θNeu �Neu θNeu

30 [0.5803, 2.1940] [6.6985, 4.1667] [0.0803, 0.6940] [3.6985,0.1667] [0.8829, 156.3868] [18.978, 159.7938]

50 [0.6115, 2.0949] [6.4642, 3.7285] [0.1115, 0.5949] [3.4642,0.2715] [0.4398, 164.7720] [14.492, 161.7065]

100 [0.6228, 2.3596] [6.3480, 5.1059] [0.1228, 0.8596] [3.3480,1.1059] [0.2387, 172.6290] [12.505, 179.7079]

200 [0.6528, 2.5516] [6.3511, 2.5953] [0.1528, 1.0516] [3.3511,-1.4047] [0.0247, 161.0996] [11.462, 155.3355]

300 [0.6501, 1.7067] [6.3340, 4.8442] [0.1501, 0.2067] [3.3340,0.8442] [0.0234, 170.3878] [11.2413, 172.796]
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considering  INeu = 0 models numerically. Among these information criteria (ICs), Akaike information criterion 
(AIC), corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn 
information criterion (HQIC) were used to choose the best model. The lower the values of AIC, CAIC, BIC and 
HQIC, shows the better fit of the model. The fits of the NeS-BrIII model were compared with the well-known 
classical models namely Burr-III, Burr-XII, Weibull (W) and Nadarajah and Haghighi (NH) models.

Data 1: Data 1 represents a COVID-19 data belonging to the Netherlands of 30 days, which have been 
recorded from 31 March to 30 April 2020. This data had been formed of rough mortality rate taken from Almongy 
et al.17. Advancements and perspectives in COVID-19 research are essential for addressing the multifaceted chal-
lenges posed by the pandemic, protecting public health, and building a more resilient and prepared society for the 
future. Recent studies have highlighted innovative computational diagnostics and severity analysis techniques for 
COVID-19, such as multilevel threshold image segmentation for chest  radiography18, deep learning methods for 
diagnosing COVID-19 and its  variant19, and analysis of COVID-19 severity using evolutionary machine learn-
ing approaches by  Shi20. Su et al.21 provided a network based drug target set enrichment analysis method, which 
offered valuable insights into leveraging existing drugs for repurposing against COVID-19. Moreover, Xiong  
et al.22 investigated that the COVID-19 has accelerated the adoption of e-learning worldwide, with initiatives 
like ubiquitous e-teaching and e-learning gaining momentum.

Data 2: The second data set is taken from paper of Jamal et al. (2019). It represents therelief times of 20 
patients receiving analgesic. The data values are given as follows in the Table 5.

Tables 6 and 7 revealed noteworthy observations: all information criteria associated with the NeS-BrIII model 
are consistently smaller when compared to the classical models. This comparison underscores the precision and 
reliability of the NeS-BrIII distribution’s results, as evident in the provided intervals. In stark contrast, the classical 
distributions exhibited unclear and ambiguous findings, primarily due to their inherent imprecision and errors. 
These limitations are notably absent in the NeS-BrIII distribution, making it a preferred choice for modeling and 
analysis. For a visual representation of the NeS-BrIII model’s performance, refer to Fig. 4, showcasing the fitted 
plots that further underscore its accuracy and suitability for practical applications. Further, we executed a visual 
comparison of NeS-BRIII model with classical BrXII model by plotting the numerical findings of these ICs in 
Fig. 5. The shaded region signifies the estimated interval values of the proposed NeS-BrIII model. Naturally, we 
can observe that the projected model yields least results in comparison to traditional BrXII model which is the 
prerequisite for all these ICs based on a trade-off between model intricacy and goodness of fit.

Table 3.  Parameter estimates for �Neu = [2, 3] and θNeu = [5, 6].

n

AEs Biases MSEs

�Neu θNeu �Neu θNeu �Neu θNeu

30 [2.5467, 3.205] [5.279, 5.1355] [0.5467, 0.205] [0.2791, − 0.8645] [165.125, 164.698] [186.712, 146.370]

50 [1.9374, 2.1365] [5.2322, 6.6268] [− 0.0626, − 0.8635] [0.2322, 0.6268] [172.641, 168.386] [161.902, 174.045]

100 [1.9364, 1.7966] [5.0903, 5.8185] [− 0.0636, − 1.2034] [0.0903, 0.1815] [174.680, 170.570] [155.784, 169.080]

200 [1.4211, 3.2801] [5.7962, 5.6657] [− 0.5789, 0.2801] [0.7962, 0.3343] [147.449, 162.112] [154.387, 170.439]

300 [0.9290, 1.8930] [4.2522, 5.4604] [− 1.0710, − 1.1070] [− 0.7478, 0.5396] [184.149, 168.487] [181.309, 174.949]

Table 4.  Parameter estimates for �Neu = [4, 4.5] and θNeu = [7, 7.5].

n

AEs Biases MSEs

�Neu θNeu �Neu θNeu �Neu θNeu

30 [4.5841, 4.7289] [6.7477, 7.0813] [0.5841, 0.2289] [0.2523, 0.4187] [172.366, 182.541] [158.872, 176.007]

50 [4.0612, 4.9979] [6.4350, 7.8684] [0.0612, 0.3684] [− 0.5650, 0.3684] [181.070, 158.172] [176.790, 160.662]

100 [5.1519, 2.9119] [8.2333, 7.2606] [1.1519, − 1.5881] [1.2333, − 0.2394] [175.365, 175.512] [195.365, 165.819]

200 [4.2100, 4.9594] [6.9854, 7.4938] [0.2100, 0.4594] [0.0146, − 0.0062] [172.806, 169.929] [188.124, 163.348]

300 [3.9717, 4.2411] [6.5841, 6.7488] [− 0.0283, − 0.2589] [− 0.4159,− 0.7512] [191.327, 177.967] [157.121, 177.275]

Table 5.  The data values for the data 1 and data 2.

Data 1 Data 2

(14.918, 15.66390), (10.056, 11.18880), (12.274, 12.88770), (10.289, 10.80345), (10.832, 11.37360), (7.099, 
7.45395), (5.928, 6.22440), (13.211, 13.87155), (7.968, 8.36640), (7.584, 7.96320), (5.555, 5.83275), (6.027, 
6.32835), (4.097, 4.30185), (3.611, 3.79155), (4.960, 5.20800), (7.498, 7.87290), (6.940, 7.28700), (5.307, 
5.57235), (5.048, 5.30040), (2.857, 2.99985), (2.254, 2.36670), (5.431, 5.70255), (4.462, 4.68510), (3.883, 
4.07715), (3.461, 3.63405), (3.647, 3.82935), (1.974, 2.07270), (1.273, 1.33665), (1.416, 1.48680), (4.235, 
4.44675)

(1.1, 1.155), ( 1.4, 1.470), (1.3, 1.365), (1.7, 1.785), (1.9, 1.995), (1.8, 
1.890), (1.6, 1.680), (2.2, 2.310), (1.7, 1.785), (2.7, 2.835), ( 4.1, 4.305), 
(1.8, 1.890), (1.5, 1.575), (1, 1.050)
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Conclusion
This study introduced a novel probabilistic model, the neutrosophic Burr-III distribution, tailored for applica-
tions in neutrosophic surface analysis. In the realm of real-world problem, our exploration of the neutrosophic 
Burr-III distribution has shown its aptitude in addressing data ambiguity and vagueness, an aspect where the 
classical Burr-III distribution falls short. The neutrosophic Burr-III distribution not only insights into reliability 
properties, moment expressions, order statistic, and entropy measures but also proves its versatility as a robust 
tool for deciphering complex data. To validate its practical significance, we applied the neutrosophic Burr-III 
distribution to real-world data sets, placing it in a head-to-head comparison with the well-known classical dis-
tributions. The outcomes of the analysis unequivocally demonstrated that the neutrosophic Burr-III distribution 
surpassed its classical counterpart in capturing the intricate nuances of the underlying data, signaling its potential 
as a superior modeling tool across various domains. Thus the neutrosophic Burr-III distribution opens up new 
avenues for addressing the complexities of real-world problems, where ambiguity is often the norm rather than 
the exception. This study also opens up several avenues for researchers and practitioners for future research in 
neutrosophic analysis and probabilistic modeling, ranging from the development of new models and algorithms 
paving the way for new insights, methodologies and applications in data analysis and decision making. However, 
this study acknowledges some limitations in specific contexts, such as theoretical and computational challenges. 

Table 6.  MLEs and their standard errors (in parentheses) and goodness-of-fit statistics for models for data set 
1. Significant values are given in bold.

Distribution

MLEs and standard errors (in 
parentheses) Goodness-of-fit statistics for models

�̂Neu θ̂Neu AIC CAIC BIC HQIC

NeS-BrIII
INeu = [0, 0.05]

[10.009, 10.636]
(2.634, 2.862)

[1.655, 1.665]
(0.198, 0.199) [164.721,167.727] [165.165,168.171] [167.523,170.529] [165.617,168.624]

Burr-XII 7.51 (6.06) 0.080 (0.066) 193.26 193.71 196.07 194.16

W 0.026 (0.014) 1.86 (0.24) 164.70 165.52 167.87 165.97

NH 20.32 (22.03) 0.005 (0.006) 164.92 165.36 167.72 165.81

Table 7.  MLEs and standard errors (in parentheses) and goodness-of-fit statistics for models for data set 2. 
Significant values are given in bold.

Distribution

MLEs and standard errors (in 
parentheses) Goodness-of-fit statistics for models

�̂Neu θ̂Neu AIC CAIC BIC HQIC

NeS-BrIII
INeu = [0, 0.05]

[5.226, 6.043]
(1.680, 2.044)

[3.897, 3.841]
(0.736, 0.723) [27.809,29.181] [28.900,30.272] [29.087,30.459] [27.690,29.063]

Burr-XII 37.47 (51.48) 0.045 (0.062) 46.47 47.18 48.46 46.86

W 0.121 (0.055) 2.785 (0.425) 45.17 45.87 47.16 45.561

NH 32.39 (99.36) 0.011 (0.036) 59.757 60.46 61.74 60.14
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Figure 4.  Estimated plots for the NeS-BrIIImodel for data sets 1 and 2, respectively.
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Moreover the study is valid only when the data is ambiguous and vague. If the data is crisp and well-defined the 
classical model is valid leaving no space for the neutrosophic analysis.

However, we acknowledge limitations in specific contexts, such as theoretical and computational challenges.

Data availability
The data used in the article is given therein.
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