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Activation 
of Einstein–Podolsky–Rosen 
steering sharing with unsharp 
nonlocal measurements
Xin‑Hong Han 1,2, Tian Qian 1, Shan‑Chuan Dong 1, Shuo Wang 3, Ya Xiao 1* & Yong‑Jian Gu 1*

Einstein–Podolsky–Rosen (EPR) steering is commonly shared among multiple observers by utilizing 
unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not 
encompass all nonlocal measurement‑based cases. In this work, a method for finding beneficial local 
measurement settings has been expanded to include nonlocal measurement cases. This method 
is applicable for any bipartite state and offers benefits even in scenarios with a high number of 
measurement settings. Using the Greenberger–Horne–Zeilinger state as an illustration, we show 
that employing unsharp nonlocal measurements can activate the phenomenon of steering sharing 
in contrast to using local measurements. Furthermore, our findings demonstrate that nonlocal 
measurements with unequal strength possess a greater activation capability compared to those 
with equal strength. Our activation method generates fresh concepts for conservation and recycling 
quantum resources.

In 1936, Schrödinger first proposed the concept of quantum steering as a response to the EPR  paradox1,2. Many 
years later, Wiseman et al. point out the logic relation between EPR steering, nonlocality, and  entanglement3. EPR 
 steering4 logically sits between Bell  nonlocality5 and quantum  entanglement2 and exhibits a distinctive asym-
metric  property6–11, which describes the ability of one party, Alice, to nonlocally manipulate the state of another 
party, Bob, even if Bob does not trust Alice’s measurement apparatus. As an essential type of quantum resource, 
EPR steering has great applications in quantum key  distribution12,13, subchannel  discrimination14, asymmetric 
quantum  network15, randomness  generation16,17 and randomness  certification18. Improving the utilization effi-
ciency of EPR steering is of great importance, not only for fundamental quantum information science but also 
for applications in quantum communication.

To improve the utilization efficiency of EPR steering resources, researchers have relaxed the no-signaling 
 condition19 and found that the steering of a single copy of the entangled states can be shared among multiple 
sequential observers either by unsharp  measurements19 or standard projective  measurements20,21. This method, 
known as steering sharing, has been extensively studied in bipartite  systems22,23 and has also been used to inves-
tigate the reuse of genuine multipartite  steering24.

Until now, all researches aimed at improving the efficiency of EPR steering has been restricted to local 
 measurements25–29, In the case of local measurements, each observer measures the qubit in the hand. Mathemati-
cally, each observer’s measurement results can be obtained by measuring his or her respective reduced density 
matrices. However,nonlocal measurements mean operating instantaneous measurements on spacelike separate 
 subsystems30,31. Indeed, nonlocal measurements between spatially separated observers cannot be accomplished 
through local measurements and classical communication. Thus, local measurement does not encompass all 
quantum information tasks that require nonlocal measurements, such as quantum teleportation. Nonlocal 
observables, however, are essential to quantum theory and can be found in everything from Bell inequalities 
and different postelection paradoxes to quantum error correction  codes30. This raises some interesting questions: 
Is it possible to transform an unsteerable state into a steerable one by employing unsharp nonlocal measure-
ments? If yes, how can we construct these beneficial nonlocal measurements? In particular, can unsharp nonlocal 

OPEN

1College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, People’s Republic 
of China. 2College of Computer Science and Technology, Shandong University of Technology, Zibo 255000, 
People’s Republic of China. 3China Ship Research and Development Academy, Beijing 100101, People’s Republic of 
China. *email: xiaoya@ouc.edu.cn; yjgu@ouc.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61649-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11462  | https://doi.org/10.1038/s41598-024-61649-4

www.nature.com/scientificreports/

measurements still be more effective than unsharp local measurements in activating steering, even though each 
observer obtains the same classical measurement outcomes?

In this paper, we propose a steering sharing scenario using sequential unsharp nonlocal measurements. 
Focusing on the linear steering criterion for n-setting measurements, we extend a method that finds beneficial 
local measurement settings and apply it to nonlocal measurement scenarios. As an example, we consider the 
Greenberger–Horne–Zeilinger (GHZ) state in the case of two-setting measurements, and demonstrate that using 
unsharp nonlocal measurements can activate more steering sharing than using unsharp local measurements. 
We quantify the measurement strength ranges that can be used to activate the steering sharing and find that 
these ranges can be further extended by replacing equal-strength nonlocal measurements with unequal-strength 
ones. Our activation method produces new ideas for useful conservation and recycling of quantum resources.

The paper is organized as follows: In “Steering sharing using sequential unsharp nonlocal measurements”, we 
present the steering sharing scenario based on sequential unsharp nonlocal measurements. The method used to 
construct the beneficial nonlocal measurement settings is described in “Methods for finding beneficial unsharp 
nonlocal measurement settings”. An illustration of steering sharing activation is given in “Example of steering 
sharing activation”. Finally, we present the conclusion and some outlooks in “Discussion and conclusion”.

Steering sharing using sequential unsharp nonlocal measurements
Figure 1 illustrates a steering sharing scenario based on sequential unsharp nonlocal measurements. A three-qubit 
state ρABC is shared among Charlie and multiple pairs of observers, labeled as Ai and Bi where i ∈ {1, 2, ...,m} . 
The task of each pair of Ai and Bi is to remotely steer the quantum state of Charlie, simultaneously and indepen-
dently. Charlie will be convinced by Ai and Bi if the correlation between their measurement outcomes cannot 
be explained by the LHV-LHS model. In our scenario, each pair of Ai and Bi (except the last Am and Bm ) must 
perform unsharp measurements to generate strong correlations between them and Charlie to elude the LHV-
LHS model, while preserving enough entanglement for the next pair of observers to achieve the same goal. Sup-
pose the k-th nonlocal measurement setting of Ai and Bi is �̂(i)

k  and the corresponding measurement strength is 
�
(i)
k  . And the k-th local sharp measurement setting of Charlie is denoted as �̂k . The success of the steering task 

among Ai , Bi and Charlie can be tested by violating the bipartite n-setting linear steering inequality of the  form32

The bound Cn = max
�k

{�max(
1
n

∑n
k=1 �k�̂k)} is the maximum value of steering parameter S(i)n  if LHV-LHS model 

exists, where �k∈{++,+−,−+,−−} denotes a random variable, and �max(Û) denotes the largest eigenvalue 
of Û  . The expectation value ��̂(i)

k ⊗ �̂k� = Tr[O�(i)
k

⊗ O�kρ
(i)
ABC] is evaluated with respect to the average post-

measurement states ρ(i)
ABC shared among Ai , Bi , and Charlie, which can be expressed as

where µ, ν ∈ {+,−} indicates the outcomes resulted from the �̂(i)
k  of Ai and Bi , �̂(i)

µ,ν|k(µ, ν ∈ {+,−}) are the 
four elements of �̂(i)

k  . As unsharp nonlocal measurement �̂(i)
k  is a particular class of positive operator val-

ued measurement (POVM)33, the elements �̂(i)
µ,ν|k can be implemented with corresponding Kraus operators as 

�̂
(i)
µ,ν|k=K

(i)
µ,ν|k

†K
(i)
µ,ν|k . And the four elements of �̂(i)

k  satisfy  that25

(1)S(i)n ≡
1

n

n∑

k=1

�
(i)
k ��̂(i)

k ⊗ �̂k�≤ Cn.

(2)ρ
(i)
ABC =

1

n

n∑

k=1

∑

µ,ν=−1,1

[(K (i)
µ,ν|k ⊗ IC)ρ

(i−1)
ABC (K

(i)
µ,ν|k

† ⊗ IC)],

Figure 1.  The scenario of steering sharing using sequential unsharp nonlocal measurements. A three-
qubit state is initially shared between the spatially separated A1 , B1 and Charlie. A1 and B1 perform nonlocal 
measurement on their qubits and transmit the post-measurement qubits to A2 and B2 . This process is repeated 
until the last pair of Am and Bm measure the qubits. Meanwhile, Charlie performs local measurements on his 
single qubit. The goal is for multiple pairs {Ai ,Bi} , i.e., {A1,B1} , {A2,B2}, ..., {Am,Bm} to remotely steer the 
quantum state of Charlie simultaneously and independently.
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Specifically, the elements �̂(i)
µ,ν|k can be described  as22,25

where E(·) means the density matrix for corresponding eigenstate of nonlocal measurement �̂(i)
k  , I is the identity 

matrix.
To demonstrate the existence of steering ability among Ai , Bi and Charlie, it is essential to ensure that their 

measurement settings {�̂(i)
k , �̂k} can achieve the better violation of the linear steering inequality Eq. (1).

Methods for finding beneficial unsharp nonlocal measurement settings
Building on the previous  method34, we aim to extend the method and find the beneficial unsharp nonlocal meas-
urement settings {�̂(i)

k , �̂k} for detecting steering in the scenario depicted in Fig. 1. The specific steps are to first 
fix the measurement setting �̂k in a certain direction, and then explore the corresponding measurement setting 
�̂

(i)
k  to maximize ��̂(i)

k � ; then, change �̂k to another direction and repeat the above process; finally, by searching 
�̂k in the entire operator space, the measurement settings {�̂(i)

k , �̂k} that increase the difference between S(i)n  
and Cn can be obtained.

In the process, given the measurement setting for Charlie is fixed, we can straightforwardly calculate the 
corresponding beneficial measurement setting �̂(i)

k  for Ai and Bi with the following two conditions: Firstly, the 
eigenvector list {e(i)k } of �̂(i)

k  is the same as the normalized conditional state ρ̃(i)
AB of Ai and Bi after Charlie measures 

his qubit by �̂k . Secondly, the eigenvector list {α(i)
k } of �̂(i)

k  has the same order as the eigenvalue list {β(i)
k } of ρ̃(i)

AB
34. 

And the situation is similar when the measurement setting �̂(i)
k  of Ai and Bi is fixed. In fact, when the state ρ(i)

ABC 
coincides with the eigenstate of measurement operator {�̂(i)

k ⊗ �̂k} , the nonlocal measurement �̂(i)
k  is beneficial.

Using the three-qubit GHZ state |GHZ� = (|000� + |111�)/
√
2 as an example, we may apply the method 

mentioned above to acquire the beneficial nonlocal measurement settings, which can activate more EPR steer-
ing sharing. According to  research35, the ideal measurement operator for GHZ state under local measurement 
is typically made up of a combination of σx and σy . Therefore, here we first assume that Charlie’s measurement 
setting is �̂1 = σx , then the elements �̂(i)

µ,ν|k can be found using the method mentioned above, and Eq. (4) can 
be expressed as follows

Moreover, when the measurement setting for Charlie is changed to �̂2 = σy , the Eq. (4) will be rewritten as

(3)

�ψ |�̂(i)
µ,ν|k|ψ� = �ψ |K (i)

µ,ν|k
†K

(i)
µ,ν|k|ψ� = �φ|φ� ≥ 0,

�̂
(i)
+,+|k + �̂

(i)
+,−|k + �̂

(i)
−,+|k + �̂

(i)
−,−|k = I ,
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(i)
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(i)
+,−|k − �̂

(i)
−,+|k + �̂

(i)
−,−|k = �

(i)
k �̂

(i)
k .

(4)
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(i)
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1− �
(i)
k

4
I + �

(i)
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k

4
I + �

(i)
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1− �
(i)
k

4
I + �

(i)
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(i)
−,−|k =
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(i)
k

4
I + �

(i)
k E(µ=−, ν=−),

(5)
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(i)
+,+|1 =

1− �
(i)
1

4
I +

�
(i)
1

2
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�̂
(i)
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1− �
(i)
1

4
I +

�
(i)
1

2
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(i)
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1− �
(i)
1

4
I +

�
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1

2
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1

4
I +

�
(i)
1

2
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(6)
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I +
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2
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(i)
2

4
I +

�
(i)
2

2
(|10� − i|01�)(�10| + i�01|),



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11462  | https://doi.org/10.1038/s41598-024-61649-4

www.nature.com/scientificreports/

Thus far, the beneficial two-setting measurements for the GHZ state has been established, i.e. 
{�(i)1 �̂

(i)
1 = �̂

(i)
+,+|1 − �̂

(i)
+,−|1 − �̂

(i)
−,+|1 + �̂

(i)
−,−|1 , �̂1 = σx} and {�(i)2 �̂

(i)
2 = �̂

(i)
+,+|2 − �̂

(i)
+,−|2 − �̂

(i)
−,+|2 + �̂

(i)
−,−|2 , 

�̂2 = σy}.
Similarly, we can always get nonlocal measurements of Ai and Bi , provided we know the measurement direc-

tion of Charlie. By searching �̂k in the entire operator space, the beneficial measurement settings {�̂(i)
k , �̂k} can 

be obtained. Furthermore, we will be able to activate more EPR steering sharing with the aid of these unsharp 
nonlocal measurements than we could with local ones.

Example of steering sharing activation
In this section, we use the three-qubit GHZ state as an illustration to show how sequential unsharp nonlocal 
measurements can activate the sharing ability of steering that cannot be realized by sequential unsharp local 
measurements. To simplify the analysis, we focus on the case of two-setting measurements. The POVM elements 
of nonlocal measurement of Ai and Bi are displayed in Eq. (5) and Eq. (6) when Charlie’s measurement settings 
are �̂1=σx , �̂2=σy , respectively. Then the steering inequality Eq. (1) can be rewritten as

where F
�
(j)
1

=
√

1− (�
(j)
1 )2 , F

�
(j)
2

=
√

1− (�
(j)
2 )2 . Given that {�1,�2}∈{++,+−,−+,−−} denote the random 

variables, then the classical bound C2 = max
�1,�2

{�max(
1
2
(�1�̂1 +�2�̂2))}=1/

√
2 can be obtained by finding the 

maximum of 16 largest eigenvalues in Eq. (8) below.

 In comparison, when unsharp local measurements are used, the measurement settings for Ai , Bi , and Charlie 
would be {M̂Ai

1 = η
(i)
1 σy , M̂

Bi
1 = γ

(i)
1 σy , M̂

C
1 = σx} and {M̂Ai

2 = η
(i)
2 σy , M̂

Bi
2 = γ

(i)
2 σx , M̂

C
2 = σy} . The correspond-

ing steering parameter S̃(i)2  can be expressed as

where F
γ
(j)
1

=
√

1− (γ
(j)
1 )2 , F

γ
(j)
2

=
√

1− (γ
(j)
2 )2 . And similar to the nonlocal measurement case abovemen-

tioned, the classical bound in the local measurement case can also be obtained as C2 = 1/
√
2 . The specific values 

of measurement strength parameters �(i)k  , η(i)k  and γ (i)
k  should satisfy �(i)k = η

(i)
k ∗ γ (i)

k  , k ∈ {1, 2} . It should be noted 
that since the GHZ state is an eigenstate of M̂Ai

k ⊗ M̂Bi
k ⊗ M̂C

k  , these measurement settings are still optimal in 
the case of unsharp local measurements.

The measurement settings with equal strength
We first investigate the activation of steering sharing when the strength of the two-setting nonlocal measurements 
used by Ai and Bi is equal, i.e., �(i) = �

(i)
1 = �

(i)
2  , and the strength of two-setting local measurements used by each 

observer is equal, i.e., η(i) = η
(i)
1 = η

(i)
2  , γ (i)=γ

(i)
1 =γ

(i)
2  . The steering parameters in Eqs. (7) and  (9) can be 

respectively rewritten as S(i)2 = 1

2i−1

[
�
(i)

∏
1≤j≤i−1

(1+
√
1− (�(j))2)

]
 and ̃S(i)2 = 1

2i−1

[
�
(i)

∏
1≤j≤i−1

(1+
√
1− (γ (j))2)

]
 . 

Obviously, in order to satisfy the condition of �(i) = η(i) ∗ γ (i) , if �(i) < γ (i) , then S(i)2 > S̃
(i)
2  . In other words, 

more steering sharing can be discovered in the scenario of nonlocal measurements compared to that of local 
measurements. As a result, unsharp nonlocal product measurement can be used to activate the sharing ability 
of steering.

To clarify the effects of nonlocal measurements on activating steering sharing, we set η(i) = γ (i) =
√
�(i) , 

where i ∈ {1, 2, 3} . Figure 2a–c show the steering regions for the first, second, and third pairs of Ai and Bi , 
respectively. These regions are parameterized by the measurement strength �(1) and �(2) . Obviously, the ranges 
of �(1) and �(2) that can be used to verify the existence of steering among A1 , B1 and Charlie are the same in both 
unsharp nonlocal and local measurements. However, as the number of pairs of Ai and Bi increases, the ranges 
of �(1) and �(2) that satisfy Si2 > 1

√
2 are larger than the ranges that satisfy S̃i2 > 1

√
2 . For example, in Fig. 2b, c, 

(7)S
(i)
2 =

1

2i

[
�
(i)
2

∏

1≤j≤i−1
(1+F

�
(j)
1

)+ �
(i)
1

∏

1≤j≤i−1
(1+F

�
(j)
2

)

]
≤C2,

(8)

{�1=++,�2=++}, {�1=++,�2=−−}, {�1=−−,�2=−−}, {�1=−−,�2=++}

: �max

(
1

2

(
σx + σy

))
=1/

√
2;

{�1=++,�2=+−}, {�1=++,�2=−+}, {�1=−−,�2=+−}, {�1=−−,�2=−+}

: �max

(
1

2

(
σx − σy

))
=1/

√
2;

{�1=+−,�2=++}, {�1=−+,�2=++}, {�1=+−,�2=−−}, {�1=−+,�2=−−}

: �max

(
1

2

(
−σx + σy

))
=1/

√
2;

{�1=+−,�2=+−}, {�1=−+,�2=+−}, {�1=+−,�2=−+}, {�1=−+,�2=−+}

: �max

(
1

2

(
−σx − σy

))
=1/

√
2.

(9)S̃
(i)
2 =

1

2i

[
�
(i)
2

∏

1≤j≤i−1
(1+F

γ
(j)
1

)+ �
(i)
1

∏

1≤j≤i−1
(1+F

γ
(j)
2

)

]
≤C2,
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the steering regions I (marked in purple) and II (marked in pink) can be activated with unsharp nonlocal meas-
urements. This suggests that nonlocal measurement can activate steering sharing that is impossible to achieve 
through local measurement.

In Fig. 2d, we present the steering parameters S(i)2  and S̃(i)2  ( i ∈ {1, 2, 3} ) varying with the measurement strength 
�
(1) . S(1)2  and S̃(1)2  are represented by the same dashed blue line. S(2)2  and S̃(2)2  are represented by the solid purple and 

dotted yellow lines, respectively. S(3)2  and S̃(3)2  are represented by the solid pink and dotted green lines, respectively. 
Especially, when the measurement strength �(1) = 0.5 , S(2)2 = 0.75 and is greater than 1

√
2 , while S̃(2)2 = 0.68 

and is less than 1
√
2 , Therefore, unsharp nonlocal measurements can activate more steering. When �(1) = 0.4 , 

the amounts by which S(2)2  and S̃(2)2  exceed the classical bound 1
√
2 are 0.003 and 0.059, respectively. This means 

that steering can be easier to implement in experiments via unsharp nonlocal measurements. Additionally, it is 
clear that the values of S̃(3)2  are consistently lower than the classical bound C2 , whereas S(3)2  has the potential to 
exceed C2 . And it is possible for S(3)2  to exceed S̃(2)2  . For example, when �1 = 0.4 , S̃(2)2  and S̃(3)2  have values of 0.71 
and 0.61, respectively, while S(2)2  and S(3)2  have values of 0.77 and 0.73, respectively. It is also evident that there 

Figure 2.  The comparison diagram illustrating the successful steering regions for unsharp nonlocal 
measurements versus unsharp local measurements. Specifically, (a–c) respectively show the successful steering 
regions for the first, second, and third pairs of Ai and Bi . In each of these diagrams, the solid and dotted curves 
represent the boundaries of S(i)2 = 1/

√
2 and S̃(i)2 = 1/

√
2 , respectively. The regions within these boundaries 

indicate successful steering between the corresponding pairs of observers. Notably, the purple region (labeled 
as I) and the pink region (labeled as II) correspond to S(2)2 >1

√
2&S̃

(2)
2 ≤ 1

√
2 and S(3)2 >1

√
2&S̃

(3)
2 ≤ 1

√
2 

respectively. (d) Steering parameters S(i)2  and S̃(i)2  as a function of the measurement strength �(1) when �(2) = 0.8 
and �(3) = 0.95.
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are no values of �(1) that satisfy S(1)2 > 1
√
2 , S(2)2 > 1

√
2 , and S(3)2 > 1

√
2 . This indicates that at most two pairs 

of Ai and Bi can share steering with Charlie simultaneously.

The measurement settings with unequal strength
Here, we relax the requirement that the strength of the two-setting nonlocal measurements used by each pair 
of Ai and Bi need to be equal, i.e., �(i)1  = �

(i)
2  . We also relax the requirement that the strength of the two-setting 

local measurements used by each Ai and Bi need to be equal, i.e., η(i)1  = η
(i)
2  , γ (i)

1  = γ
(i)
2  . However, we still ensure 

that η(i)k = γ
(i)
k =

√
�
(i)
k  is satisfied, where k ∈ {1, 2} . We find the maximum number of pairs of Ai and Bi that can 

simultaneously share steering with Charlie can not be increased by using measurements with unequal strength. 
Figure 3 illustrates the effect of measurement strength �(1)2  on the steering parameters in three cases: (i) using 
unequal strength local measurements (dotted blue line for A1 and B1 , dashed purple line for A2 and B2 ), (ii) using 
equal strength nonlocal measurements (solid blue line for A1 and B1 , solid purple line for A2 and B2 ) and (iii) 
using unequal strength nonlocal measurements (dotted blue line for A1 and B1 , dotted purple line for A2 and 
B2 ). It is evident that the steering parameters of the first and second pairs of Ai and Bi can exceed the classical 
bound at the same time when the measurement strength �(1)2  is increased to 1/

√
2 in all three cases. Additionally, 

the range of �(1)2  that steering can be shared simultaneously among the first and second pair of A1 , B1 , A2 , B2 and 
Charlie is (1/

√
2, 0.917) and (1/

√
2, 0.910) in case (i) and case (ii) respectively, which can be further extended 

to (1/
√
2, 0.993) in case (iii). The results show that when �(1)2  is in the range of (0.917, 0.993), the sharing of EPR 

steering can be further activated by using nonlocal measurements with unequal strength.
In addition, the quantum steering ellipsoid represents the states that the steering party can collapse the 

steered party to, considering all possible measurements performed on his  subsystem36. To provide a more intui-
tive visualization of the distinction between steering sharing activation of equal and unequal strength nonlocal 
measurements, we also examined how the steering ellipsoids of A2 and B2 , as well as steering ellipsoids of Charlie 
change as the measurement strengths �(1)1  and �(1)2  vary. However, since the steering ellipsoid is only available for 
two-qubit systems, we need to compress the three-qubit state into a two-qubit state. By defining |00� ≡ |0̃� and 
|11� ≡ |1̃� , we can compress the state ρ(i)

ABC in terms of a two-qubit state.
Considering all possible measurements by Ai and Bi , the state of Charlie can be steered to an ellipsoid �(i)

C  , 
which is centered at o(i)C = (�n− Tm̃)/(1− |m̃|2) . The orientation and the squared lengths of the ellipsoid’s 
semiaxes are given by the eigenvectors and eigenvalues of the ellipsoid  matrix36

where m̃ and �n are the Bloch vectors of the reduced states ρ(i)
AB and ρC of ρ(i)

ABC , T is the correlation matrix, and I 
is the identity operator. Similarly, the steering ellipsoid �(i)

AB of Ai and Bi can be obtained by swapping the roles 
of Charlie with Ai and Bi.

The volume of Charlie’s steering ellipsoids generated by the measurements of Ai and Bi can be written  as37

(10)O
(i)
C =

(T − �nm̃⊺)

1− |m̃|2

(
I +

m̃m̃⊺

1− |m̃|2

)(
T⊺ − m̃�n⊺

)
,

(11)V
(i)
C =

| det(T − m̃�n⊤)|/(1− |m̃�n|2)2

4π/3
.

Figure 3.  The steering parameters S(i)2  and S̃(i)2  as functions of measurement strength �(1)2  . The solid line 
represents the situation when the measurement strengths are equal, while the dotted and dashed lines represent 
the situation when the measurement strengths are unequal. The blue and purple lines, respectively, indicate the 
steering parameters of A1 and B1 , A2 and B2.
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Obviously, the volume of steering ellipsoids is normalized relative to the total volume of the Bloch sphere, which 
is 4π/337. Similarly, the volume of the ellipsoid of Ai and Bi ( V (i)

AB ), as generated by Charlie’s measurements, can 
also be obtained. For the post-measurement state, the volumes V (2)

AB and V (2)
C  are the same whether equal or 

unequal strength measurements are used because the steering ellipsoids �(2)
AB and �(2)

C  are identical. The results 
of nonlocal measurements with equal strength are presented in the first row of Fig. 4, while those of nonlocal 
measurements with unequal strength are shown in the second row of Fig. 4. Clearly, with the increasing of �(1)1  
and �(1)2  , the steering ellipsoid contracts towards the sphere’s center along all three principal axes simultane-
ously using equal strength measurements. However, when fixing �(1)1  at 1/

√
2 , it can be observed that with the 

increase of �(2)1  , the steering ellipsoid only contracts towards the center of the sphere along the y and z axes. The 
length of principal axe in the x direction is 0.854, remains constant. The principal axe shrinks in length in the 
y direction at the same rate as in the case of equal strength measurements. In the z direction, the principal axe 
shrinks in length at a rate that is approximately half as slow as it is when measured with equal strength. However, 
the volume reduction rate of the steering ellipsoid is usually slower when nonlocal measurements of unequal 
strength are employed.

Discussion and conclusion
To summarize, we have presented a scheme to activate EPR steering sharing among multiple pairs of Ai and 
Bi as well as a single Charlie using unsharp nonlocal measurements. Interestingly, we have found that unsharp 
nonlocal measurements can be used to discover more steering sharing than their local counterparts, although 
they behave the same in terms of measurement outcome. Additionally, we have demonstrated that the steering 
sharing activation of nonlocal measurements can be further enhanced by replacing equal strength measurements 
with unequal strength measurements. Therefore, there is greater ability of unsharp nonlocal measurement to 
activate additional steering sharing in contrast to unsharp local measurement, generating novel ideas for recy-
cling quantum resources.

There are several relevant open problems that still need to be addressed. Firstly, there requires a rigorous proof 
anout whether the steering ellipsoid geometry have any potential to help find beneficial nonlocal measurements 
and lower search complexity. Secondly, it would be interesting to optimize the nonlocal measurement strategy to 
increase the number of observers who can share steering beyond the two pairs of sequential observers achieved 
in our work. This may be possible to achieve by employing unsharp nonlocal measurements on both sides, allow-
ing sequential observers to share classical information and use an adaptive strategy, or by adopting mutually 
biased measurements, which requires further investigation in the future. Finally, our method could potentially 
be applied to other types of quantum correlations, such as Bell nonlocality, quantum entanglement, quantum 

Figure 4.  (a–d) The steering ellipsoids �(2)
AB

 and �(2)
C

 as the function of �(1)1  and �(1)2 when �(1)1 = �
(1)
2  . (e–h) The 

steering ellipsoids �(2)
AB

 and �(2)
C

 as the function of �(1)2  when �(1)1 = 1/
√
2 . The inner pink ellipsoids represent 

the steering ellipsoid, and the outer gray spheres represent the Bloch spheres.
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coherence, and quantum contextuality. This may promote the development of general relevant information 
protocols, such as quantum random access code, self-testing, and quantum randomness expansion.

Data availability
All data generated or analysed during this study are provided within the manuscript.
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