
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports

Speculative computing for AAFM
solutions in large‑scale product
configurations
Cristian Vidal‑Silva 1*, Vannessa Duarte 2,5, Jesennia Cárdenas‑Cobo 3,5 & Iván Veas 4,5

Parallel computing is a current algorithmic approach to looking for efficient solutions; that is, to define
a set of processes in charge of performing at the same time the same task. Advances in hardware
permit the massification of accessibility to and applications of parallel computing. Nonetheless,
some algorithms include steps that require or depend on the results of other steps that cannot
be parallelized. Speculative computing allows parallelizing those tasks and reviewing different
execution flows, which can involve executing invalid steps. Speculative computing solutions should
reduce those invalid flows. Product configuration refers to selecting features from a set of available
options respecting some configuration constraints; a not complex task for small configurations and
models, but a complex one for large‑scale scenarios. This article exemplifies a videogame product
line feature model and a few configurations, valid and non‑valid, respectively. Configuring products
of large‑scale feature models is a complex and time‑demanding task requiring algorithmic solutions.
Hence, parallel solutions are highly desired to assist the feature model product configuration tasks.
Existing solutions follow a sequential computing approach and include steps that depend on others
that cannot be parallelized at all, where the speculative computing approach is necessary. This article
describes traditional sequential solutions for conflict detection and diagnosis, two relevant tasks
in the automated analysis of feature models, and how to define their speculative parallel version,
highlighting their computing improvements. Given the current parallel computing world, we remark
on the advantages and current applicability of speculative computing for producing faster algorithmic
solutions.

Keywords Speculative programming, AAFM, Conflict detection, Diagnosis detection, Configuration

Parallel computing leverages the power of multiple processors or computing elements to execute tasks
simultaneously, thereby enhancing the performance and speed of complex computations1. This technology has
gained significant importance in recent years, as it addresses the ever-increasing demand for processing power
and data analysis in various fields, from scientific research2,3, artificial intelligence4, financial modeling5 and
video rendering6. Parallel computing offers several notable advantages but presents particular challenges that
must be carefully considered.

Regarding parallel computing benefits, improvements in processing speed, computing performance,
scalability, adaptability, resource utilization, problem-solving, and redundancy with fault tolerance are
highlighted. Chandrashekhar and Sanjay7 emphasize that parallel computing can dramatically increase processing
speed and performance, particularly relevant for real-time applications and simulations. Robey and Zamora8
note that parallel computing easily scales by adding more processors or nodes, allowing adaptation to changing
demands and avoiding bottlenecks. Parallel computing optimizes hardware resource utilization, minimizing
idle time and ensuring available computing power is harnessed9. Wu et al.10 mention that parallel computing is
ideal for solving complex problems by distributing smaller, independent subproblems across multiple processors.
Huang, Coolen, and Coolen-Maturi11 point out that parallel systems can achieve fault tolerance through
redundancy, redistributing workload if a processor fails. However, parallel computing presents challenges such

OPEN

1School of Videogame Development and Virtual Reality Engineering, Faculty of Engineering, University of
Talca, Av. Lircay S/N, 3460000 Maule, Talca, Chile. 2Escuela de Ciencias Empresariales, Universidad Católica del
Norte, Larrondo 1280, 178142 Coquimbo, Coquimbo, Chile. 3Facultad de Ciencias e Ingenierías, Universidad
Estatal de Milagro, Cdla. Universitaria Km1/2 vía Km 26, 091706 Milagro, Guayas, Ecuador. 4Departamento de
Administración, Facultad de Economía y Administración, Universidad Católica del Norte, Av. Angamos 0610,
1270709 Antofagasta, Antofagasta, Chile. 5These authors contributed equally: Vannessa Duarte, Jesennia
Cárdenas-Cobo and Iván Veas. *email: cvidal@utalca.cl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61647-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

as programming complexity, software and hardware costs, load balancing, data dependency, and Amdahl’s Law12.
A common strategy for enhancing scalability is task-based algorithms, dissociating algorithmic parallelization
from code, data structure, and computational cores13,14.

Speculative programming, an innovative computing approach, anticipates and addresses potential issues
preemptively in software systems15. Speculative execution, as described by16, aims to speed up program execution
by running code segments before their utility is known. Then, speculative execution is the pre-execution or
pre-calculation of results that can contribute to achieving the expected computation outcome17. Thread Level
Speculation (TLS), represented by speculative executions18, tackles the limitations of static approaches through
parallel task execution19. However, speculative executions can yield effective or non-valid outcomes, potentially
impacting program execution time19.

Variability-intensive systems (VIS) focus on variability management and product configuration15,20,21. VIS
product configuration entails designing products based on requirements and configuration rules21,22. Valid
configurations result from adhering to defined combination rules23, necessitating systematic management of
features and composition rules15. Feature Models (FMs) and Orthogonal Variability Models (OVMs) are key in
variability management, with FMs representing functional commonalities and variabilities24. OVMs describe
variant parts of base models25, with FMs being widely used in software product line (SPL) practices26 as part of
the feature-oriented domain analysis (FODA) method.

A feature model (FM) defines a set of features and their relationships for defining valid feature combinations
or products, that is, sets of features that respect the FM’s defined relationships. Figure 1 illustrates an FM for a
videogame product family. We can appreciate different relationships between single-parent–child mandatory
and optional features, set-parent–children alternative and optional (OR), and cross-tree requires and excludes
constraints.

Problem statement, goal and contributions
Product configuration enables mass customization production23. VIS instances in software engineering manage
variability throughout development phases, crucial for meeting user expectations of adaptable software
 products27. Research on managing VIS variability exists, evident in works on Linux, Debian-based distributions,
Android, and Drupal28–32, employing variability models for analysis.

Software product lines (SPLs) systematically manage commonalities and variabilities for software product
 configuration33. SPLs define domain engineering as analyzing and developing reusable functionalities and
producing customized products based on user feature selection. Valid configuration definition in SPLs poses
challenges due to increasing configuration knowledge base complexity31. Manual analysis of variability models,
like feature models (FMs), is error-prone and time-consuming, particularly with growing model sizes24. For
instance, Debian-based distribution models encompass around 28,000 variability points30. Automated analysis
of feature models (AAFM) offers solutions to address these challenges24.

A configuration in a feature model (FM) represents a set of features, where each software variant within
an FM corresponds to a valid configuration or product34. FMs provide a framework for organizing the
configuration space and facilitating the construction of software variants by defining configuration options
through interdependent features or functionalities. Thus, configuring FM products can be a valid or non-valid
process; each selected option respects each configuration rule, or some rule is non-respected. By considering
FM configuration rules, Figures 2 and 3 serve as illustrations of a valid and non-valid configuration in an FM,
respectively.

Additionally, AAFM operations, crucial for resolving conflict-free FMs and configurations, represent high-
value tasks. However, existing AAFM operations typically adhere to a sequential computing paradigm, limiting
their scalability when confronted with large-scale and high-variability models, particularly in interactive

Figure 1. Feature model (FM) of a videogame products family.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

application scenarios. While numerous algorithms and solutions for AAFM are documented in the literature,
such as QuickXPlain35, FastDiag36 designed for detecting minimal conflicts and minimal-preferred diagnoses
within conflicting sets of constraints, respectively, these recursive solutions are constrained by their inability
to leverage additional resources for parallel and distributed computing, such as multiple cores or network
technologies. In response to these limitations, AAFM solutions have been reimagined in their speculative
versions, emphasizing their potential for enhanced computing efficiency in the product configuration of large-
scale models.

The objective of this research is to assess and enhance parallel computing solutions in the context of
product configuration in feature models (FMs). This encompasses both the evaluation of existing hardware
and programming approaches for parallel computing solutions and the imperative need for optimizing current
solutions to facilitate FM product configuration. This will be achieved through analyzing the functionality and
computational performance of AAFM solutions utilized for minimal conflict detection and minimal diagnosis
within product configuration, parallelized with QuickXPlain and FastDiag. Additionally, the aim is to
highlight improvements in computational performance through the adaptation of speculative programming
to commonly employed AAFM solutions. The goal is to minimize latency and optimize runtime, albeit at the
expense of resource inefficiencies inherent in speculative programming.

Figure 2. Feature model with a valid configuration example.

Figure 3. Feature model with a non-valid configuration example .

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Furthermore, for improving algorithms where traditional or direct parallelism is not viable, speculative
programming enables pre-computation of potential execution paths, thus leveraging parallelism to achieve
runtime enhancements.

To reach the previous goals, the rest of this paper is organized as follows. “Background” describes and
exemplifies the use of FMs. “Automated analysis of variability-intensive systems” describes the Automated
Analysis of Feature Model (AAFM) and the product configuration processes. That section also details the
conflict detection and diagnosis operations with existing solutions and application results. “Speculative
programming solutions” describes the main differences and commonalities of the analyzed solutions for
optimizing them and defining a general speculative solution. Hence, that section details the application results
of ParallelQuickXPlain and ParallelFastDiag for the product configuration for a test set. “Threats to
validity” details a few practical issues of our research. The paper concludes by summarizing the benefits of our
academic experience and detailing the motivation for continuing with it in the current and future years.

To improve the readability of the study, Table 1 presents the different acronyms in those topics with their
meanings.

Background
A feature model is an information model that represents the variant flexibility and maintainability for systems’
variability and configuration22. A feature is an abstraction of a prominent or distinctive user-visible aspect,
requirement, quality, or functional characteristic of a family of software systems37,38; each feature constitutes
a user-visible configuration option of the problem domain39. An FM is a tree-like structure commonly used
to represent common and variable functionalities (features) and their relationships to the configuration of
products in a software product line (SPL)26. Kang et al.26 introduced FMs in the FODA (Feature-Oriented
Domain Analysis) method, and they are the “de facto” standard for describing common and variable features in
system families40,41 regardless of their size because FMs facilitate the software reuse42.

An FM starts with the root feature. Each successively deeper level in the FM corresponds to a more fine-
grained configuration option for product-line variants. Features are nodes of that tree, and their relationships are
the edges (relationships and constraints) between features37. The relationships among features are of two types:
structural relationships between a parent and its child features and cross-tree or cross-hierarchy constraints37.
FMs represent an effective communication medium between customers and developers of SPLs43. As Benavides
et al.24 describe, different FM dialects exist nowadays, such as basic FMs models, cardinality-based FMs, and
extended FMs using feature attributes44–46.

Basic feature models
An essential FM supports two types of relationships between features: structural relationships between parents
and their child features and cross-tree constraints24. Thus, each non-root feature has a parent feature and is either
part of a group or not. The following lines describe each type of FM relationship.

• Structural relationships between parents and their child features:

• Mandatory: A mandatory relationship states that a parent feature requires its child. The top-left figure of
Table 2 shows the graphic representation of a mandatory relationship between parent and child features.

• Optional: An optional relationship states that a child feature may be or not be present (its parent feature
does not require it). The top-right figure of Table 2 illustrates an optional relationship between parent
and child features.

• Set: A defined number of children’s features (sub-features) are selectable for products when their parent
is selected. A cardinality relation [x, y] gives this number of features for x <= y and y <= number of
child features in the set. Two cases are XOR (alternative) and Or (inclusive) sets.

Table 1. Acronym list.

Acornym Meaning

FM, FMs Feature model, feature models

AAFM Automated analysis of feature model

VIS Variability intesive system

VM, VMs Variability model, variability models

OVMs Orthogonal variability models

SPL Software product line

MCS Minimal conflict set

SLR Systematic literature review

MCS Minimal conflict set

MD Minimal diagnosis

FODA Feature-oriented domain analysis

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Inclusive Or: At least one child’s features must be present. In this case, the cardinality relation is [1,
n] (n corresponds to the number of child features). The middle-left figure of Table 2 illustrates an
inclusive relationship between a parent feature and a set of children’s features. The middle-right row of
Table 2 illustrates an alternative relationship between a parent feature and a set of children’s features.
Alternative XOR: Only one child feature must be present. The associated cardinality relation is [1,
1] in this case.

• Cross-tree constraints.

• Requires: for two features, A and B, if A requires B, then A’s presence implies the presence of B in
a product. The top division in the bottom-row of Table 2 illustrates a required cross-tree constraint
relationship between a source feature A and a target feature B.

• Excludes: for two features, A and B, if A excludes B, then A and B cannot be present in the same product.
The bottom division of the bottom row of Table 2 illustrates an excludes cross-tree constraint relationship
between features A and B.

More complex cross-tree relationships exist in the literature to define constraints in generic propositional
formulas such as “A and not B implies C”24.

The application and analysis of FMs is a common approach to performing analysis tasks. Benavides et al.24
mention that the manual analysis of FMs is a time-demanding and error-prone activity, and the AAFM process
permits solving those issues. The AAFM process starts by translating the FM and additional information, such
as global restrictions, into logical constraints. Afterward, queries can proceed with the translated model using
an off-the-shelf solver and other tools such as programming solutions, thus obtaining analysis results47. Figure 4
illustrates the AAFM process.

Such as Galindo et al.47 summarize six different variability facets that exist where the AAFM is currently
applied: (i) product configuration and derivation, (ii) testing and evolution; (iii) reverse engineering; (iv) multi-
model variability-analysis; (v) variability modeling, and; (vi) variability-intensive systems. The first AAFM
application results in the most traditional usage of automated analysis mechanisms. This article aims to contribute
to it.

Developing FM and product configurations without errors or conflicts requires identifying each conflict and
the necessary steps to solve or diagnose it. Hence, conflict detection and diagnosis are operations needed to get

Table 2. Feature model relations. .

Unary relations

Mandatory

 Optional

 Set relations

 Inclusive(OR)

 Exclusive (XOR)

Cross-tree constraints

 Requires

 Excludes

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

conflict-free models. Completing an FM product configuration by hand also represents an error-prone and time-
consuming task. Solutions for those tasks to work on large-scale models represent high-value tasks nowadays.
AAFM solutions for product conflict detection, diagnosis, and completion already exist.

Automated analysis of variability‑intensive systems
The development process of a VIS considers identifying and representing the system’s components and
relationships among those components as two core activities. The application and analysis of FMs is a common
approach to performing those analysis tasks. Benavides et al.24 mention that the manual analysis of FMs is a time-
demanding and error-prone activity, and the AAFM process permits solving those issues. The AAFM process
starts by translating the FM and additional information, such as global restrictions, into logical constraints.
Afterward, queries can proceed with the translated model using an off-the-shelf solver and other tools such as
programming solutions, thus obtaining analysis results47.

For Galindo et al.47, six different variability facets exist where the AAFM is currently applied: (i) product
configuration and derivation; (ii) testing and evolution; (iii) reverse engineering; (iv) multi-model variability-
analysis; (v) variability modeling, and; (vi) variability-intensive systems. The first AAFM application results in
the most traditional usage of automated analysis mechanisms. This article aims to contribute to it.

Developing FM and product configurations without errors or conflicts requires identifying each conflict and
the necessary steps to solve or diagnose them. Hence, conflict detection and diagnosis are operations needed
to get conflict-free models. Completing a product configuration of FM by hand also represents an error-prone
and time-consuming task. Solutions for those tasks to work on large-scale models represent high-value tasks
nowadays. AAFM solutions for product conflict detection, diagnosis, and completion already exist. The following
sections describe an existing algorithm for detecting minimal conflict sets (MCS), a current algorithm for
detecting minimal diagnosis (MD), and traditional approaches to complete product configurations.

Product configuration solutions
Minimal conflict sets (MCS) detection: an MCS of a system represents a minimal set of constraints in conflict.
For Definition 123, it is necessary to identify the set of constraints B that represents a consistent background
knowledge and the set of constraints C that is the suspected subject of a conflict search.

Definition 1 A set AC = B ∪ C = {c1, c2, ..., cn} represents the set of all constraints in the knowledge base; that
is, AC is the union of the consistent knowledge base B and the suspicious set of constraints subject of conflict
search C. Then, a conflict CS = {ca, cb, ..., cz} is a non-empty and non-consistent subset of C. CS is minimal if ¬∃
CS′ such that CS′ ⊂ CS CS is preferred if the order of its constraints follows a defined ranking of preferences.

QuickXPlain35 is an efficient approach to determining a minimal conflict set. QuickXPlain receives C
as the set of suspicious constraints with conflict and B as consistent constraints of the background knowledge.
Then, a conflict does not exist if B ∪ C is consistent or C is empty. On the other hand, QuickXPlain proceeds by
returning the results of the function QX. QX receives the parameters C (initially the complete set of constraints
with conflict), B (initially the knowledge base), and Bδ (initially empty) that represents the last items added to
B. Function QX follows a divide-and-conquer approach for conflict detection. Hence, Bδ corresponds to the
set of constraints added for reviewing the consistency of the knowledge base, and C is the set of constraints to
continue analyzing if the current B is consistent. Algorithms 1 and 2 show the pseudo-code of the functions of
QuickXPlain.

Figure 4. Automated analysis of feature models (AAFM) process21.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Algorithm 1. QuickXPlain(C, B) : CS.

Algorithm 2. QX(C = {c1..cm},B,Bδ) : CS.
QuickXPlain permits determining one MCS per computation. Felfernig et al.23 indicate that we need to

update adequately or delete one of the constraints of an MCS to solve it and, if the model is non-consistent yet,
to apply QuickXPlain and repeat the process. When the resulting model is consistent, the updated constraints
represent a diagnosis or solution for the model. A relevant step of function QX of QuickXPlain is step 1 to check
for the inconsistency of set B, a task performed by an external tool like an SAT or CSP solver.

Assuming a splitting k = ⌊m
2
⌋ of C = {c1..cm} , the worst-case time complexity of QuickXPlain in terms of

the number of consistency checks needed for calculating one minimal conflict is 2k × log2(
m
k)+ 2k where k

is the minimal conflict set size and m represents the underlying number of constraints35. We should optimize
the computing performance of consistency checks because they are the most time-consuming part of conflict
detection.

Table 3 summarizes the results of the QuickXPlain performance analysis to identify a preferred minimal
conflict of product configurations. Each entry represents the average runtime in msec for all knowledge bases
with a preferred conflict set of cardinality n (1–16). We can appreciate that the time increases when more conflicts
exist in the analyzed product configurations. For the mentioned issue that QuickXPlain identifies only one
conflict that, after solving it, a new execution is necessary to determine the remaining one.
Minimal diagnosis detection
Identifying and solving conflicts one by one is necessary to obtain a conflict-free model: we need to identify a
conflict first, adapt (update or eliminate) constraints of that conflict for its solution, and repeat this process until
no more conflict exists, that is, until reaching a consistent model. The set of all the adapted constraints for getting
a conflict-free model represents a diagnosis. Definition 2 formally defines the term diagnosis23,48.

Definition 2 A set AC = {c1, c2, ..., cn} represents the set of all constraints in the problem for diagnosis; that is, AC
is the union of the consistent base knowledge B and the set of constraints subject of the conflict search C: AC =
B ∪ C. Then, a diagnosis is a set of constraints � ⊆ C such that (B ∪ C − �) results in a consistent or conflict-free
set. � is minimal if ¬∃ �′ such that �′ ⊂ � . A minimal diagnosis is of minimal cardinality if there does not exist
a minimal diagnosis �′ such as |�′| < |�|.

A minimal diagnosis for the FM configuration of Fig. 3 has to consider solutions for each conflict. Hence, this
example contains two diagnosis options. To get a conflict-free model, the user has to solve each diagnosis. Cases
with multiple diagnosis instances exist, and determining all the diagnoses can be computationally expensive.
Model constraints can be relevant for obtaining a preferred diagnosis. Obtaining all the diagnoses to look for the
preferred one is a time-demanding and lost time activity since solving one diagnosis is enough for a conflict-free
model. The next lines describe the FastDiag algorithm to determine a minimal preferred diagnosis.

FastDiag algorithm permits determining a preferred or leading diagnosis concerning a previously defined
relevance order of constraints in the knowledge base. FastDiag follows the algorithmic structure and reasoning
of QuickXPlain for a different purpose: diagnosis detection without calculating MCS instances. Hence,
FastDiag is based on conflict-independent search strategies49. Algorithms 3 and 4 give the pseudo-code of
FastDiag functions.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Algorithm 3. FastDiag(C, AC) : diagnosis �.

Algorithm 4. FD(D,C = {c1..cq},AC) : diagnosis �.
Assuming that conflicts to diagnosis exist, If the conflict set C is non-empty, and AC without C is consistent,

algorithm FastDiag calls and waits for the results of the recursive algorithm FD. FD first reviews the consistency
of AC as a source of diagnosis. Because always AC contains C and does not contain D, S is the constraint set with
conflicts, and D is empty; when D is not empty, and AC is consistent, D is the source of conflict. When that base
case is not accomplished, either because D is empty (such as at the beginning) or AC is consistent (this is only
possible after removing elements from AC − D represents the last removed elements from AC), then AC is still
in conflict, and C is a source of conflict. Then, FD reviews the size of C since if it were minimal (size 1), then C is
the diagnosis. If C is not of minimal size, FD proceeds to partition C in the sets C1 and C2 , of which the last one
corresponds to the most preferred partition. Afterward, FD calls FD over C2 , C1 , and AC − C2 to review if C2 is
the diagnosis source and, if not so, to continue reviewing C1 with that goal.

Assuming a splitting d = ⌊ n
2
⌋ of S = {s1..sn} , the worst-case time complexity of FD in terms of the number of

consistency checks needed for calculating one minimal diagnosis is 2d × log2(
n
d)+ 2d where d is the minimal

diagnosis set size and n represents the underlying number of constraints49. The runtime performance of the
underlying algorithms must be optimized because consistency checks are the most time-consuming part of
diagnosis detection.

Table 4 summarizes the results of the FastDiag performance analysis to identify a preferred minimal
diagnosis of product configurations. Each entry represents the average runtime in msec for all knowledge
bases with a preferred diagnosis set of cardinality n (1–16). We can appreciate a surprising time execution
difference between the conflict and diagnosis detection; that is, algorithm FastDiag results more efficient than
QuickXPlain even though they pursue different tasks. We can appreciate in Table 4 that the time increases

Table 3. Avg. runtime (in ms) of QX when determining minimal conflicts. Each cell follows a heat map
coloring: the darker, the slower. In bold, the cells have a faster time for a given conflict cardinality. With lmax=5,
performance deteriorates due to the limitations in terms of available cores.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

when more conflicts exist in the product configurations because FastDiag requires identifying diagnosis of
more cardinality.

In summary, existing product configuration solutions QuickXPlain and FastDiag are algorithms for
identifying MCS and minimal diagnosis. Even though they are efficient sequential-computing solutions, such
as Vidal et al.15 highlight, they are inadequate for large-scale FMs. The following section reviews the computing
performance of those solutions. The QuickXPlain, FlexDiag, and data for experiments are available in https://
github. com/ cvida lmsu/A- Python- QX- imple menta tion, and https:// github. com/ cvida lmsu/A- Python- FD- imple
menta tion, respectively.

Speculative programming solutions
We can appreciate that QuickXPlain and FastDiag share a similar algorithm structure and behavior as the
next lines describe.

• Both solutions start reviewing if a problem exists; that is, (i) if consistency exists in the base set plus the set
of constraints to add to it, or (ii) if the base set minus the set of constraints to remove from it is inconsistent,
to immediately return if some of them hold. The QuickXPlain algorithm appreciates as a second base case
if the set of constraints to add to the base set is empty; that means, the base set is inconsistent, to return the
empty set. The FastDiag algorithm considers that option in the first base case: if the set of constraints to
remove from the base set is empty, then return the empty set.

• If none of the base cases is true in both solutions, they proceed with their main functions: (i) QuickXPlain
receives the set of constraints to look for adding to the base set, the base set, and the set of constraints
previously added to the base set (empty in the first call), whereas (ii) FastDiag receives the set of constraints
already removed from the base set, the set of constraints to look for removing from the base set, and the base
set.

The base set of QuickXPlain represents the primary structural model without additional constraints, like a
feature model without options selection. On the other hand, the base set of FastDiag is the primary structural
model, plus additional constraints. Hence, the primary function of QuickXPlain looks to find inconsistencies
by adding elements to the base set. In contrast, the primary function of FastDiag looks to find consistency
by removing elements from the base set. In summary, QuickXPlain and FastDiag work on a set of base
constraints, a set of constraints to add to or quit from the base set, and the last set added to or quit from that
set, respectively.

The following lines describe the main elements we considered to design and implement speculative parallel
versions of QuickXPlain and FastDiag solutions.

Looking for QuickXPlain and FastDiag optimizations
Consisteny checking
The consistency checking task is a high-cost, recurrent, and sometimes repetitive operation in QuickXPlain and
FastDiag. Then, we look to avoid that operation repetition by storing the consistency checking in a hash table
to check for its existence first and get that value, or, otherwise, to apply the consistency checking operation and
store it (memorization process). This improvement could also be used to improve the computing performance
of the QuickXPlain and FastDiag solutions. Algorithms 5 and 6 illustrate the inconsistency and consistency
checking for QuickXPlain and FastDiag, respectively.

Table 4. Avg. runtime (in ms) of FD (lmax = 1) for determining preferred diagnosis. lmax = 1 is equivalent to
sequential FastDiag. Each cell follows a heat map coloring: the darker, the slower. In bold, the cells with faster
time for a given conflict cardinality.

https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Algorithm 5. Inconsistent(C,B,Bδ):Boolean.

Algorithm 6. Consistent(D, C, AC):Boolean.

Speculative paths
Algorithms 2 and 4 follow a divide-and-conquer approach and behave similarly concerning their specific
goals: minimal conflict and diagnosis detection, respectively. In addition to avoiding the recalculation of
consistency or inconsistency checking previously checked, a general speculative approach should perform that
checking process asynchronously. Then, both solutions must consider that case before speculating regarding
the true or false checking value because QuickXPlain and FastDiag, after the respective consistency and
inconsistency checking, the analyzed set minimality is reviewed. Algorithm 7 details the general steps of
ParallelQuickXPlain50 and ParallelFastDiag15,51 solutions (Gen for QXGen and FDGen).

A relevant element to consider is the speculation level reached for parallelism capacity. Hence, before
evaluating the previously described steps, a first base case is needed to check that situation. |f(X)| denotes
the number of constraints ci in X. The AddCC function triggers an asynchronous task that is in charge of
adding consistency checks (parameter of AddCC) to a LookUp table and issuing the corresponding solver calls
(memorization process). lmax is a global parameter that defines the maximum search depth of one activation.
Each Gen recursive call is executed in parallel (a new parallel task is created to execute that function). Thus,
by each Gen execution, two new Gen tasks could be executed. Hence, parallel hardware capacity is crucial in
speculating eventual execution flows.

Concerning the consistency checking step of original QuickXPlain and FastDiag, our solution proposal
does not parallelize the nature of that task; we applied speculative computing for the execution of each consistency
checking step of QuickXPlain and FastDiag, not in the steps of the consistency checking process itself.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Algorithm 7. Gen(Sa , Sb , Sc , δ , l).
The following subsections describe the specialization of Algorithm 7 for ParallelQuickXPlain and

ParallelFastDiag and application results on a case study.

Parallel QuickXplain
Because the consistency verification represents a high-cost computing task, our speculative computing approach
looks to parallelize the consistency checks in QX by substituting the direct solver call Inconsistent(B) in
QX with the activation of a lookahead function (QXGen) in which consistency checks are not only triggered
to provide feedback to QX requests directly. Moreover, our speculative approach provides fast answers for
consistently checking potentially relevant in upcoming states of a QX instance. We follow the principles of
speculative programming52: we start calculating consistency checks that could be useful in the future to anticipate
resource-intensive reasoning tasks for reaching more efficient computing results. The drawback is that we use
some computation resources that will be wasted if the pre-calculation is finally not used. Therefore, the challenge
in this kind of technique is to find algorithms that can anticipate as many reusable calculations as possible while
reducing calculation tasks that are not reusable.

As Vidal et al.50 describes, the QXGen function is based on the idea of issuing recursive calls and adapting the
parameters of the calls depending on the two possible situations (1) consistent(Bδ ∪ B) and (2) inconsistent(Bδ ∪ B
).

The experimentation was conducted based on a Python3 implementation of the QuickXPlain algorithm
and the parallelized QuickXPlain (QX) version presented in this research. For the implementation, we used
the multiprocessing Python package for running parallel tasks. For representing our test knowledge bases and
conducting the corresponding consistency checks, we used Sat4J53 as it is one of the most used solvers integrated
in many software (product line) engineering tools such as FeatureIDE54, FAMA55, FAMILIAR56 among others57–59.
Python was used for its parallelization capabilities while Sat4J was one of the most used solvers in the SPL
community. Nevertheless, any other technologies could have been used.

Table 5 summarizes the results of our QXGen performance analysis. Compared to Table 3, on average, the
runtime needed by standard QuickXPlain (lmax = 1) to identify a preferred minimal conflict of cardinality 16
is 1.82× higher compared to a parallelized solution based on QXGen (lmax = 4). In Table 5, each entry represents
the average runtime in msec for all knowledge bases with a preferred conflict set of cardinality n, where the same
set of knowledge bases has been evaluated for lmax sizes 2–5. Although speculative computing and memorization
allow for improving the execution speed of conflict detection solutions, that is not a computing efficiency at all
for the required memorization that can be critical for larger models and deeper speculation levels. Nonetheless,
solution speed is more relevant for interactive scenarios, and ParallelQuickXPlain allows improving the
QuickXPlain ones.

It can be observed that with an increasing lmax, the performance of QX increases. However, with lmax = 5 , a
performance deterioration can be observed, which can be explained by the number of pre-generated consistency
checks starting to exceed the number of physically available processors. In the line of our algorithm analysis, the

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

number of relevant consistency checks that can be performed with lmax = 5 is between 5 and 3. Considering
the overheads for managing the parallelized consistency checks, the results support our theoretical analysis of
QXGen. Figure 5 depicts the same results.

Parallel FastDiag
Such as Felfernig et al.23 argue that consistency checking CC is an expensive computing step. Similar to the
Parallel QuicXplain solution, our speculative computing approach to parallelizing the CC in FD substitutes the
direct solver call consistent(AC) with the activation of a lookahead function (FDGen) in which consistency
checks are not only triggered to provide feedback to FD requests directly, but also to be able to provide fast
answers for consistency checks potentially relevant in upcoming states of a FD instance. We again follow the
speculative programming principles52: we start calculating consistency checks that could be useful in the future.
The advantage is that we can anticipate resource-intensive reasoning tasks. The drawback is that we use some
computation resources that will be wasted if some pre-calculation is finally not used. Therefore, the challenge in
this kind of technique is finding algorithms that can anticipate as many reusable calculations as possible while
reducing the calculation tasks that are not reusable.

As Vidal et al.15 and Le et al.51 remark, in the proposed parallelized variant of ParallelFastDiag, CC is
activated by FD with Consistent(D, S, AC). This also activates FDGen that starts to generate and trigger (in a
parallelized fashion) further CC instances that might be relevant in upcoming FD phases. For describing FDGen,
we employ a two-level ordered set notation which requires to embed the FD D into {D} , S into {S} , and AC into
{AC} . In FDGen, D, S, and AC are interpreted as ordered sets.

Table 5. Avg. runtime (in ms) of parallelized QX when determining minimal conflicts. Each cell follows a heat
map coloring: the darker, the slower. In bold, the cells have a faster time for a given conflict cardinality. With
lmax=5, performance deteriorates due to the limitations in terms of available cores.

Figure 5. Performance of QuickXPlain vs ParallelQuickXPlain with 2 to 5 threads.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

We experimented based on the implementation in Python3 of FastDiag and ParallelFastDiag. We used
the multiprocessing Python package for running parallel tasks. We used Sat4J53 for representing our test knowledge
bases and conducting the corresponding consistency checks since it is one of the most used solvers integrated in
many software (product line) engineering tools such as FeatureIDE54, FAMA framework55, FAMILIAR56 among
 others57–59. Nonetheless, we could use any other technology for writing and reasoning on AAFM solutions.

Table 6 summarizes the performance and analysis results of FastDiag and FDGen. On average, the runtime
needed by standard FastDiag (lmax = 1 in Table 4) to identify a preferred minimal diagnosis for conflict of
cardinality 16 is 23, 54% slower compared to a parallelized solution for the same purpose based on FDGen
(lmax = 5). In Table 6, each entry represents the average runtime in msec for all knowledge bases with a
conflict set of cardinality n, where the same set of knowledge bases has been evaluated for lmax sizes 2–5. As
in the ParallelQuickXPlain and QuickXPlain results comparison, although speculative computing and
memorization allow for improving the execution speed of conflict detection solutions, that is not a computing
efficiency at all for the required memorization that can be critical for larger models and deeper speculation
levels. Nonetheless, solution speed is more relevant for interactive scenarios, and ParallelFastDiag allows
improving the FastDiag ones.

We can observe that with an increasing lmax, the performance improvement of FD increases with a few
exceptions: the solution for four threads is the best for models with eight conflicts, and the solution for three
threads is the best for models with sixteen conflicts. A deterioration can exist with lmax = 4 and lmax = 5
because the number of pre-generated consistency checks starts to exceed the number of physically available
processors. The obtained results support our theoretical analysis of FDGen, taking into account the overheads
for managing the consistency checks in parallel. Figure 6 illustrates the performance results of Table 6. The
performance improvement of ParallelFastDiag presents a scalability tendency even though it is not as
notorious as for ParallelQuickXPlain. After reviewing the results, some conflicts are solvable by updating
only one or a few constraints. Then, finding a conflict set with various conflicts can require more computation.

Discussion
Execution environment
All experiments reported were conducted using an AMD EPYC 7571 machine with a CPU with eight cores and
2.60 GHz. Each core maintained up to two threads, which means that 16 cores could be simulated using hyper-
threading. It had 64 GB of RAM.

For evaluation purposes, the experiments of this study did not involve human participants or related data. We
generated configuration knowledge bases (feature models) from the publicly available Betty tool suite45, which
allows for systematic testing of different consistency checking and conflict detection approaches for knowledge
bases. The knowledge base instances that were selected for our evaluation had around 1.000 binary variables
(derived from the 1.000 features used) and also varied in terms of the number of included constraints depending
on the different feature relationships and the total of derived clauses (around 1600 SAT clauses in the generated
CNF files). Based on these knowledge bases, we randomly generated requirements (ci ∈ C) that covered 10%
of the variables included in the knowledge base. These requirements have been generated to analyze conflict
sets of different cardinalities. We also shuffled the background set to get different orders because this can affect
the number of consistency checks needed. In this research work, all methods and experiments were carried out
as part of the research team, taking into account their previous research work and studies. No regulation was
required since we did not involve humans and their data.

This article highlights the usability of speculative programming for optimizing the diagnosis and other conflict
detection operations such as MergeXplain60. Vidal et al.61 showed the usability and efficiency of applying diagnosis
solutions such as FastDiag for product completion.

One issue of speculative programming is the generation of non-effective speculations, that is, computations
with non-usable results. Thus, applying speculative programming demands computing effective speculations
as much as possible, speculations with a high grade of effectiveness. That requires a deep study of the current
solutions to define and compute speculation strategies that can guarantee their effectiveness. To show the
functionality and evaluate the performance of our solutions, we implemented them using Python and FAMA33.

Table 6. Avg. runtime (in msec) of FD (lmax=1) and parallelized FD (lmax > 1) for determining preferred
diagnosis.. Each cell follows a heat map coloring: the darker, the slower. In bold, the cells with faster time for a
given conflict cardinality.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

Threats to validity
This work presents the application of speculative programming to get better computing results with relevant
operations for the Automated Analysis of Product Configuration of Feature Models in parallel regarding their
sequential version. We can appreciate parallelism in solutions with dependent steps. Nonetheless, it is necessary
to discuss the following practical issues:

• We implemented our solutions to run in Python and FAMA33. For executing QuickXPlain and FastDiag,
Python and FAMA should be in the computer. That seems not to be a problem because Python in 2023 is
one of the most used programming environments, and FAMA is freely accessible online.

• We worked with generated FMs by the use of Betty. Product configuration solutions can be more precise in
inaccurate models and configuration cases. Nonetheless, the generated models are adequate for the simulation
goal.

• The effects of speculative computing strongly depend on the hardware; that is, on the number of cores and,
in our solution, probably also on the available memory due to the need to fit several SAT solvers. Thus,
computing results of our solutions ParallelQuickXPlain and ParallelFastDiag, and of their base
solutions QuickXPlain and FastDiag depends on the execution hardware configuration.

• We defined adequate computing solutions for conflict detection and diagnosis in the product configuration
of large-scale feature models, ParallelQuickXPlain and ParallelFastDiag, respectively.

Conclusion
This article describes the speculative programming application to parallelize two classical and sequentially
efficient AAFM solutions to enable them for the automated analysis of large-scale feature models. The obtained
results demonstrate the parallelism computing scalable improvements. This article reviewed the functionality,
computing performance, and main details of QuickXPlain and ParallelQuickXPlain for conflict detection
and FastDiag and ParallelFastDiag for diagnosing the product configuration of small-scale and large-scale
products.

We provided the base and highlighted the speculative programming approach as an algorithmic optimization
technique applicable for optimizing sequential solutions to work on the product configuration of large-scale
products. With more detail,

1. We recognized that conflict detection is a base step for solving configuration issues. We found that
QuickXPlain represents an efficient solution for detecting minimal preferred conflict. Although
QuickXPlain uses an efficient divide-and-conquer algorithmic approach, analyzing large-scale FM
and configurations takes a long time. Moreover, for its sequential nature, QuickXPlain cannot use
computing resources, such as multiple cores for parallel computing. This article parallelized QuickXPlain

Figure 6. Performance of FastDiag vs ParallelFastDiag with 2 to 5 threads.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

to develop a more efficient solution for detecting conflicts in large-scale configuration scenarios. Our
analysis found a costly operation step that uses data from the previous executions in the QuickXPlain
functioning. We pre-calculate that operation by applying speculative computation to look for
improvements. Thus, ParallelQuickXPlain was born. The obtained results validated the improvements
of ParallelQuickXPlain regarding traditional QuickXPlain for analyzing large-scale FM and
configurations.

2. We found that FastDiag represents an efficient solution for detecting minimal preferred diagnosis using
an efficient divide-and-conquer algorithmic approach. However, FastDiag takes a long time to analyze
large-scale FM and configurations, and it cannot use computing resources, such as multiple cores for parallel
computing, for its sequential nature. Hence, we parallelized FastDiag for getting a solution for diagnosis
in large-scale configuration scenarios as our second research goal. Like in the analysis of QuickXPlain,
our analysis found a costly operation step that uses data from the previous executions in the FastDiag
functioning. We pre-calculate that operation by applying speculative computation to look for improvements.
Thus, ParallelFastDiag was born. The obtained results validated the efficiency of ParallelFastDiag
regarding traditional FastDiag for analyzing large-scale FM and configurations.

Data availability
https:// github. com/ cvida lmsu/A- Python- QX- imple menta tion and https:// github. com/ cvida lmsu/A- Python-
FD- imple menta tion.

Code availability
https:// github. com/ cvida lmsu/A- Python- QX- imple menta tion and https:// github. com/ cvida lmsu/A- Python-
FD- imple menta tion.

Received: 18 December 2023; Accepted: 8 May 2024

References
 1. Cakmak, M. C., Okeke, O., Spann, B. & Agarwal, N. Adopting parallel processing for rapid generation of transcripts in multimedia-

rich online information environment. IPDPSWhttps:// doi. org/ 10. 1109/ IPDPS W59300. 2023. 00139 (2023).
 2. Fennell, R. D. & Lesser, V. R. Parallelism in artificial intelligence problem solving: A case study of Hearsay II. IEEE Trans. Comput.

C–26(2), 98–111. https:// doi. org/ 10. 1109/ TC. 1977. 50092 89 (1977).
 3. Wu, Z., Sun, J., Zhang, Y., Wei, Z. & Chanussot, J. Recent developments in parallel and distributed computing for remotely sensed

big data processing. Proc. IEEE 109(8), 1282–1305. https:// doi. org/ 10. 1109/ JPROC. 2021. 30870 29 (2021).
 4. Hu, Y.-C., Lin, Y.-H. & Lin, C.-H. Artificial intelligence, accelerated in parallel computing and applied to nonintrusive appliance

load monitoring for residential demand-side management in a smart grid: A comparative study. Appl. Sci. 10(22), 8114 (2020).
 5. Bhardwaj, A. Exploring the synergy between query optimization and parallel processing for efficient database management. Int.

J. Comput. Appl. Inf. Technol. 12(2), 453–460 (2022).
 6. Verdicchio, M. & Teijeiro Barjas, C. Introduction to high-performance computing. In High Performance Computing for Drug

Discovery and Biomedicine. 15–29. (Springer, 2023).
 7. Chandrashekhar, B.N. & Sanjay, H.A. Performance analysis of sequential and parallel programming paradigms on CPU-GPUS

cluster. In 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV).
1205–1213 https:// doi. org/ 10. 1109/ ICICV 50876. 2021. 93884 69 (2021).

 8. Robey, R. & Zamora, Y. Parallel and High Performance Computing. Manning. https:// books. google. cl/ books? id= jNstE AAAQB AJ
(2021).

 9. Tian, W. & Zhao, Y. 1—An introduction to cloud computing. In Optimized Cloud Resource Management and Scheduling (Tian, W.,
Zhao, Y. eds.). 1–15 (Morgan Kaufmann, 2015). https:// doi. org/ 10. 1016/ B978-0- 12- 801476- 9. 00001-X . https:// www. scien cedir
ect. com/ scien ce/ artic le/ pii/ B9780 12801 47690 0001X.

 10. Wu, H., Zhang, Z., Guan, C., Wolter, K. & Xu, M. Collaborate edge and cloud computing with distributed deep learning for smart
city internet of things. IEEE Internet Things J. 7(9), 8099–8110. https:// doi. org/ 10. 1109/ JIOT. 2020. 29967 84 (2020).

 11. Huang, X., Coolen, F. P. & Coolen-Maturi, T. A heuristic survival signature based approach for reliability–redundancy allocation.
Reliab. Eng. Syst. Saf. 185, 511–517 (2019).

 12. Trobec, R., Slivnik, B., Bulić, P. & Robič, B. Introduction to parallel computing: From algorithms to programming on state-of-the-
art platforms. In Undergraduate Topics in Computer Science. https:// books. google. cl/ books? id= Wnffw QEACA AJ (Springer, 2018).

 13. Garmon, A., Ramakrishnaiah, V. & Perez, D. Resource allocation for task-level speculative scientific applications: A proof of concept
using parallel trajectory splicing. Parallel Comput. 112, 102936. https:// doi. org/ 10. 1016/j. parco. 2022. 102936 (2022).

 14. Bramas, B. Increasing the degree of parallelism using speculative execution in task-based runtime systems. PeerJ Comput. Sci.
5(18), 183. https:// doi. org/ 10. 7717/ peerj- cs. 183 (2019).

 15. Vidal-Silva, C., Felfernig, A., Galindo, J. A., Atas, M. & Benavides, D. Explanations for over-constrained problems with parallelized
QuickXPlain. In Journal of Intelligent Information System—Integrating Artificial Intelligence and Database Technologies (eds Helic,
D. et al.) (Springer, 2021).

 16. Theobald, K.B., Gao, G.R. & Hendren, L.J. Speculative execution and branch prediction on parallel machines. In Proceedings
of the 7th International Conference on Supercomputing. ICS ’93. 77–86. https:// doi. org/ 10. 1145/ 165939. 165958 (Association for
Computing Machinery, 1993).

 17. Tatemura, J. Speculative parallelism of intelligent interactive systems. In Proceedings of IECON ’95—21st Annual Conference on
IEEE Industrial Electronics. Vol. 1. 193–1981 https:// doi. org/ 10. 1109/ IECON. 1995. 483357 (1995).

 18. Martínez, J.F. & Torrellas, J. Speculative synchronization: Applying thread-level speculation to explicitly parallel applications.
In Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems.
ASPLOS X. 18–29. https:// doi. org/ 10. 1145/ 605397. 605400 (Association for Computing Machinery, 2002).

 19. Martinez Caamaño, J. M., Selva, M., Clauss, P., Baloian, A. & Wolff, W. Full runtime polyhedral optimizing loop transformations
with the generation, instantiation, and scheduling of code-bones. Concurr. Comput. Pract. Exp. 29(15), 4192 https:// doi. org/ 10.
1002/ cpe. 4192 (2017).

 20. Silva, C. V., Cárdenas-Cobo, J., Ortiz, A. S., JDuarte, V. & Tupac-Yupanqui, M. Exploring functionality and efficiency of feature
model product configuration solutions. IEEE Access 10, 134318–134332. https:// doi. org/ 10. 1109/ ACCESS. 2022. 32314 49 (2022).

https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://doi.org/10.1109/IPDPSW59300.2023.00139
https://doi.org/10.1109/TC.1977.5009289
https://doi.org/10.1109/JPROC.2021.3087029
https://doi.org/10.1109/ICICV50876.2021.9388469
https://books.google.cl/books?id=jNstEAAAQBAJ
https://doi.org/10.1016/B978-0-12-801476-9.00001-X
https://www.sciencedirect.com/science/article/pii/B978012801476900001X
https://www.sciencedirect.com/science/article/pii/B978012801476900001X
https://doi.org/10.1109/JIOT.2020.2996784
https://books.google.cl/books?id=WnffwQEACAAJ
https://doi.org/10.1016/j.parco.2022.102936
https://doi.org/10.7717/peerj-cs.183
https://doi.org/10.1145/165939.165958
https://doi.org/10.1109/IECON.1995.483357
https://doi.org/10.1145/605397.605400
https://doi.org/10.1002/cpe.4192
https://doi.org/10.1002/cpe.4192
https://doi.org/10.1109/ACCESS.2022.3231449

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

 21. Vidal-Silva, C. et al. Reviewing automated analysis of feature model solutions for the product configuration. Appl. Sci.https:// doi.
org/ 10. 3390/ app13 010174 (2023).

 22. Modrak, V., Bednar, S. & Soltysova, Z. Resolving product configuration conflicts. In Closing the Gap Between Practice and Research
in Industrial Engineering (eds Viles, E. et al.) 95–104 (Springer, 2018).

 23. Felfernig, A., Hotz, L., Bagley, C. & Tiihonen, J. Knowledge-Based Configuration: From Research to Business Cases 1st edn. (Morgan
Kaufmann Publishers Inc., 2014).

 24. Benavides, D., Segura, S. & Ruiz-Cortés, A. Automated analysis of feature models 20 years later: A literature review. Inf. Syst. 35(6),
615–636. https:// doi. org/ 10. 1016/j. is. 2010. 01. 001 (2010).

 25. Galindo, J.A., Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A. & García-Galán, J. Automated analysis of diverse variability models
with tool support. In XIX Jornadas de Ingeniería del Software Y Bases de Datos (JISBD 2014). 160–168 (2014).

 26. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. & Peterson, A.S. Feature-oriented domain analysis (FODA) feasibility study. In
Technical Report. (Carnegie-Mellon University Software Engineering Institute, 1990).

 27. Galster, M. Variability-intensive software systems: Product lines and beyond. In Proceedings of the 13th International Workshop
on Variability Modelling of Software-Intensive Systems. VAMOS ’19. https:// doi. org/ 10. 1145/ 33023 33. 33023 36 (Association for
Computing Machinery, 2019).

 28. She, S., Lotufo, R., Berger, T., Wasowski, A. & Czarnecki, K. The variability model of the linux kernel. In Fourth International
Workshop on Variability Modelling of Software-Intensive Systems, Linz, Austria, January 27–29, 2010. Proceedings. ICB-Research
Report (Benavides, D., Batory, D.S., Grünbacher, P. eds.). Vol. 37. 45–51. http:// www. vamos- works hop. net/ proce edings/ VaMoS_
2010_ Proce edings. pdf (Universität Duisburg-Essen, 2010).

 29. Rothberg, V., Dintzner, N., Ziegler, A. & Lohmann, D. Feature models in Linux: From symbols to semantics. In Proceedings of the
Tenth International Workshop on Variability Modelling of Software-Intensive Systems. VaMoS ’16. 65–72. https:// doi. org/ 10. 1145/
28666 14. 28666 24 (ACM, 2016) .

 30. Galindo, J., Benavides, D. & Segura, S. Debian Packages Repositories as Software Product Line Models. Towards Automated Analysis.
29–34 (2010).

 31. Galindo, J. A., Turner, H., Benavides, D. & White, J. Testing variability-intensive systems using automated analysis: An application
to android. Softw. Qual. J. 24(2), 365–405. https:// doi. org/ 10. 1007/ s11219- 014- 9258-y (2016).

 32. Sánchez, A. B., Segura, S., Parejo, J. A. & Ruiz-Cortés, A. Variability testing in the wild: The Drupal case study. Softw. Syst.
Model.https:// doi. org/ 10. 1007/ s10270- 015- 0459-z (2015).

 33. Lettner, M., Rodas-Silva, J., Galindo, J. A. & Benavides, D. Automated analysis of two-layered feature models with feature attributes.
J. Comput. Lang. 51, 154–172. https:// doi. org/ 10. 1016/j. cola. 2019. 01. 005 (2019).

 34. Lienhardt, M., Damiani, F., Johnsen, E.B. & Mauro, J. Lazy product discovery in huge configuration spaces. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. ICSE ’20. 1509–1521. https:// doi. org/ 10. 1145/ 33778 11. 33803
72 (Association for Computing Machinery, 2020).

 35. Junker, U. QuickXPlain: Preferred explanations and relaxations for over-constrained problems. In 19th National Conference on
Artificial Intelligence. 167–172. (AAAI Press, 2004).

 36. Felfernig, A., Benavides, D., Galindo, J. & Reinfrank, F. Towards anomaly explanation in feature models. In Proceedings of the 15th
International Configuration Workshop (2013).

 37. Benavides, D. & Galindo, J.A. Automated analysis of feature models: Current state and practices. In Proceedings of the 22nd
International Systems and Software Product Line Conference. Vol. 1. SPLC 2018, Gothenburg, Sweden, September 10–14. 298.
https:// doi. org/ 10. 1145/ 32330 27. 32330 55 (2018).

 38. Zhou, F., Jiao, J. R., Yang, X. J. & Lei, B. Augmenting feature model through customer preference mining by hybrid sentiment
analysis. Expert Syst. Appl. 89, 306–317. https:// doi. org/ 10. 1016/j. eswa. 2017. 07. 021 (2017).

 39. Weckesser, M., Lochau, M., Schnabel, T., Richerzhagen, B. & Schürr, A. Mind the gap! Automated anomaly detection for potentially
unbounded cardinality-based feature models. In Proceedings of the 19th International Conference on Fundamental Approaches to
Software Engineering. Vol. 9633. 158–175. https:// doi. org/ 10. 1007/ 978-3- 662- 49665-7_ 10 (Springer, 2016) .

 40. Santos, A. R. & Almeida, E. Do #ifdef-based variation points realize feature model constraints?. SIGSOFT Softw. Eng. Notes 40(6),
1–5. https:// doi. org/ 10. 1145/ 28307 19. 28307 28 (2015).

 41. Segura, S., Sánchez, A.B. & Ruiz-Cortés, A. Automated variability analysis and testing of an E-commerce site: An experience report.
In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering. ASE ’14. 139–150. https:// doi.
org/ 10. 1145/ 26429 37. 26429 39 (ACM, 2014).

 42. Nieke, M., Mauro, J., Seidl, C., Thüm, T., Yu, I.C. & Franzke, F. Anomaly analyses for feature-model evolution. In Proceedings of
the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences. GPCE 2018. 188–201.
https:// doi. org/ 10. 1145/ 32781 22. 32781 23 (ACM, 2018) .

 43. Le, V.-M., Felfernig, A., Uta, M., Benavides, D., Galindo, J. & Tran, T.N.T. Directdebug: Automated testing and debugging of feature
models. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
81–85 https:// doi. org/ 10. 1109/ ICSE- NIER5 2604. 2021. 00025 (2021).

 44. Karataş, A. S. & Oğuztüzün, H. Attribute-based variability in feature models. Requir. Eng. 21(2), 185–208. https:// doi. org/ 10. 1007/
s00766- 014- 0216-9 (2016).

 45. Galindo, J. & Benavides, D. Towards a new repository for feature model exchange. In Proceedings of the 23rd International Systems
and Software Product Line Conference, SPLC 2019 (Cetina, C., Díaz, O., Duchien, L., Huchard, M., Rabiser, R., Salinesi, C., Seidl,
C., Tërnava, X., Teixeira, L., Thüm, T., Zadi, T. eds.). Vol. B. Paris, France, September 9–13, 2019. 85–1854. https:// doi. org/ 10. 1145/
33076 30. 33424 05 (ACM, 2019).

 46. Bhushan, M., Negi, A., Samant, P., Goel, S. & Kumar, A. A classification and systematic review of product line feature model defects.
Softw. Qual. J. 28(4), 1507–1550. https:// doi. org/ 10. 1007/ s11219- 020- 09522-1 (2020).

 47. Galindo, J., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A. & Ruiz-Cortés, A. Automated analysis of feature models: Quo
vadis?. Computing 101(5), 387–433. https:// doi. org/ 10. 1007/ s00607- 018- 0646-1 (2019).

 48. Bhushan, M., Duarte, J. Á. G., Samant, P., Kumar, A. & Negi, A. Classifying and resolving software product line redundancies using
an ontological first-order logic rule based method. Expert Syst. Appl. 168, 114167. https:// doi. org/ 10. 1016/j. eswa. 2020. 114167
(2021).

 49. Felfernig, A., Schubert, M. & Zehentner, C. An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des.
Anal. Manuf. 26(1), 53–62. https:// doi. org/ 10. 1017/ S0890 06041 10000 11 (2012).

 50. Vidal-Silva, C., Felfernig, A., Galindo, J. A., Atas, M. & Benavides, D. A parallelized variant of Junker’s quickxplain algorithm. In
Foundations of Intelligent Systems (eds Helic, D. et al.) 457–468 (Springer, 2020).

 51. Le, V., Silva, C.V., Felfernig, A., Benavides, D., Galindo, J.A. & Tran, T.N.T. FASTDIAGP: An algorithm for parallelized direct
diagnosis. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7–14, 2023 (Williams, B., Chen, Y., Neville, J. eds.). 6442–6449. https:// doi. org/ 10. 1609/
AAAI. V37I5. 25792 (AAAI Press, 2023).

 52. Burton, F. W. Speculative computation, parallelism, and functional programming. IEEE Trans. Comput. C–34(12), 1190–1193.
https:// doi. org/ 10. 1109/ TC. 1985. 63122 18 (1985).

 53. Le Berre, D. & Parrain, A. The sat4j library, release 2.2. J. Satisfiabil. Boolean Model. Comput. 7(2–3), 59–64 (2010).

https://doi.org/10.3390/app13010174
https://doi.org/10.3390/app13010174
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/3302333.3302336
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
https://doi.org/10.1145/2866614.2866624
https://doi.org/10.1145/2866614.2866624
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s10270-015-0459-z
https://doi.org/10.1016/j.cola.2019.01.005
https://doi.org/10.1145/3377811.3380372
https://doi.org/10.1145/3377811.3380372
https://doi.org/10.1145/3233027.3233055
https://doi.org/10.1016/j.eswa.2017.07.021
https://doi.org/10.1007/978-3-662-49665-7_10
https://doi.org/10.1145/2830719.2830728
https://doi.org/10.1145/2642937.2642939
https://doi.org/10.1145/2642937.2642939
https://doi.org/10.1145/3278122.3278123
https://doi.org/10.1109/ICSE-NIER52604.2021.00025
https://doi.org/10.1007/s00766-014-0216-9
https://doi.org/10.1007/s00766-014-0216-9
https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1007/s11219-020-09522-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1016/j.eswa.2020.114167
https://doi.org/10.1017/S0890060411000011
https://doi.org/10.1609/AAAI.V37I5.25792
https://doi.org/10.1609/AAAI.V37I5.25792
https://doi.org/10.1109/TC.1985.6312218

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:11182 | https://doi.org/10.1038/s41598-024-61647-6

www.nature.com/scientificreports/

 54. Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F. & Apel, S. Featureide: A tool framework for feature-oriented
software development. In 2009 IEEE 31st International Conference on Software Engineering. 611–614 (IEEE, 2009).

 55. Alférez, M., Acher, M., Galindo, J. A., Baudry, B. & Benavides, D. Modeling variability in the video domain: Language and
experience report. Softw. Qual. J. 27(1), 307–347 (2019).

 56. Acher, M., Collet, P., Lahire, P. & France, R. B. FAMILIAR: A domain-specific language for large scale management of feature
models. Sci. Comput. Program. 78(6), 657–681. https:// doi. org/ 10. 1016/j. scico. 2012. 12. 004 (2013).

 57. Batory, D. Feature models, grammars, and propositional formulas. In Proceedings of the 9th International Conference on Software
Product Lines. SPLC’05. 7–20. https:// doi. org/ 10. 1007/ 11554 844_3 (Springer, 2005).

 58. Doux, G., Albert, P., Barbier, G., Cabot, J., Del Fabro, M.D. & Lee, S.U.-J. An MDE-based approach for solving configuration
problems: An application to the eclipse platform. In European Conference on Modelling Foundations and Applications. 160–171
(Springer, 2011).

 59. Thum, T., Batory, D. & Kästner, C. Reasoning About Edits to Feature Models. 254–264 (2009).
 60. Shchekotykhin, K., Jannach, D. & Schmitz, T. MERGEXPLAIN: Fast computation of multiple conflicts for diagnosis. In Proceedings

of the 24th International Conference on Artificial Intelligence. IJCAI’15. 3221–3228. http:// dl. acm. org/ citat ion. cfm? id= 28325 81.
28326 98 (AAAI Press, 2015)

 61. Vidal, C., Galindo, J.A., Giráldez, J. & Benavides, D. Automated completion of partial configurations as a diagnosis task. Using
FastDiag to improve performance. In ISMIS 2020, Industry Session, Graz University of Technology, Graz, Austria, September, 2020.
https:// ismis. ist. tugraz. at/ indus try- sessi on/ (2020).

Acknowledgements
We acknowledge that our current institution permits us to work as a research team regardless of location, thanks
to online meetings. We continue working on research and projects as a consolidated team.

Author contributions
All authors have contributed equally.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.V.-S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1007/11554844_3
http://dl.acm.org/citation.cfm?id=2832581.2832698
http://dl.acm.org/citation.cfm?id=2832581.2832698
https://ismis.ist.tugraz.at/industry-session/
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Speculative computing for AAFM solutions in large-scale product configurations
	Problem statement, goal and contributions
	Background
	Basic feature models

	Automated analysis of variability-intensive systems
	Product configuration solutions
	Minimal diagnosis detection

	Speculative programming solutions
	Looking for QuickXPlain and FastDiag optimizations
	Consisteny checking
	Speculative paths

	Parallel QuickXplain
	Parallel FastDiag

	Discussion
	Execution environment

	Threats to validity
	Conclusion
	References
	Acknowledgements

