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Speculative computing for AAFM 
solutions in large‑scale product 
configurations
Cristian Vidal‑Silva 1*, Vannessa Duarte 2,5, Jesennia Cárdenas‑Cobo 3,5 & Iván Veas 4,5

Parallel computing is a current algorithmic approach to looking for efficient solutions; that is, to define 
a set of processes in charge of performing at the same time the same task. Advances in hardware 
permit the massification of accessibility to and applications of parallel computing. Nonetheless, 
some algorithms include steps that require or depend on the results of other steps that cannot 
be parallelized. Speculative computing allows parallelizing those tasks and reviewing different 
execution flows, which can involve executing invalid steps. Speculative computing solutions should 
reduce those invalid flows. Product configuration refers to selecting features from a set of available 
options respecting some configuration constraints; a not complex task for small configurations and 
models, but a complex one for large‑scale scenarios. This article exemplifies a videogame product 
line feature model and a few configurations, valid and non‑valid, respectively. Configuring products 
of large‑scale feature models is a complex and time‑demanding task requiring algorithmic solutions. 
Hence, parallel solutions are highly desired to assist the feature model product configuration tasks. 
Existing solutions follow a sequential computing approach and include steps that depend on others 
that cannot be parallelized at all, where the speculative computing approach is necessary. This article 
describes traditional sequential solutions for conflict detection and diagnosis, two relevant tasks 
in the automated analysis of feature models, and how to define their speculative parallel version, 
highlighting their computing improvements. Given the current parallel computing world, we remark 
on the advantages and current applicability of speculative computing for producing faster algorithmic 
solutions.
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Parallel computing leverages the power of multiple processors or computing elements to execute tasks 
simultaneously, thereby enhancing the performance and speed of complex  computations1. This technology has 
gained significant importance in recent years, as it addresses the ever-increasing demand for processing power 
and data analysis in various fields, from scientific  research2,3, artificial  intelligence4, financial  modeling5 and 
video  rendering6. Parallel computing offers several notable advantages but presents particular challenges that 
must be carefully considered.

Regarding parallel computing benefits, improvements in processing speed, computing performance, 
scalability, adaptability, resource utilization, problem-solving, and redundancy with fault tolerance are 
highlighted. Chandrashekhar and  Sanjay7 emphasize that parallel computing can dramatically increase processing 
speed and performance, particularly relevant for real-time applications and simulations. Robey and  Zamora8 
note that parallel computing easily scales by adding more processors or nodes, allowing adaptation to changing 
demands and avoiding bottlenecks. Parallel computing optimizes hardware resource utilization, minimizing 
idle time and ensuring available computing power is  harnessed9. Wu et al.10 mention that parallel computing is 
ideal for solving complex problems by distributing smaller, independent subproblems across multiple processors. 
Huang, Coolen, and Coolen-Maturi11 point out that parallel systems can achieve fault tolerance through 
redundancy, redistributing workload if a processor fails. However, parallel computing presents challenges such 
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as programming complexity, software and hardware costs, load balancing, data dependency, and Amdahl’s  Law12. 
A common strategy for enhancing scalability is task-based algorithms, dissociating algorithmic parallelization 
from code, data structure, and computational  cores13,14.

Speculative programming, an innovative computing approach, anticipates and addresses potential issues 
preemptively in software  systems15. Speculative execution, as described  by16, aims to speed up program execution 
by running code segments before their utility is known. Then, speculative execution is the pre-execution or 
pre-calculation of results that can contribute to achieving the expected computation  outcome17. Thread Level 
Speculation (TLS), represented by speculative  executions18, tackles the limitations of static approaches through 
parallel task  execution19. However, speculative executions can yield effective or non-valid outcomes, potentially 
impacting program execution  time19.

Variability-intensive systems (VIS) focus on variability management and product  configuration15,20,21. VIS 
product configuration entails designing products based on requirements and configuration  rules21,22. Valid 
configurations result from adhering to defined combination  rules23, necessitating systematic management of 
features and composition  rules15. Feature Models (FMs) and Orthogonal Variability Models (OVMs) are key in 
variability management, with FMs representing functional commonalities and  variabilities24. OVMs describe 
variant parts of base  models25, with FMs being widely used in software product line (SPL)  practices26 as part of 
the feature-oriented domain analysis (FODA) method.

A feature model (FM) defines a set of features and their relationships for defining valid feature combinations 
or products, that is, sets of features that respect the FM’s defined relationships. Figure 1 illustrates an FM for a 
videogame product family. We can appreciate different relationships between single-parent–child mandatory 
and optional features, set-parent–children alternative and optional (OR), and cross-tree requires and excludes 
constraints.

Problem statement, goal and contributions
Product configuration enables mass customization  production23. VIS instances in software engineering manage 
variability throughout development phases, crucial for meeting user expectations of adaptable software 
 products27. Research on managing VIS variability exists, evident in works on Linux, Debian-based distributions, 
Android, and  Drupal28–32, employing variability models for analysis.

Software product lines (SPLs) systematically manage commonalities and variabilities for software product 
 configuration33. SPLs define domain engineering as analyzing and developing reusable functionalities and 
producing customized products based on user feature selection. Valid configuration definition in SPLs poses 
challenges due to increasing configuration knowledge base  complexity31. Manual analysis of variability models, 
like feature models (FMs), is error-prone and time-consuming, particularly with growing model  sizes24. For 
instance, Debian-based distribution models encompass around 28,000 variability  points30. Automated analysis 
of feature models (AAFM) offers solutions to address these  challenges24.

A configuration in a feature model (FM) represents a set of features, where each software variant within 
an FM corresponds to a valid configuration or  product34. FMs provide a framework for organizing the 
configuration space and facilitating the construction of software variants by defining configuration options 
through interdependent features or functionalities. Thus, configuring FM products can be a valid or non-valid 
process; each selected option respects each configuration rule, or some rule is non-respected. By considering 
FM configuration rules, Figures 2 and 3 serve as illustrations of a valid and non-valid configuration in an FM, 
respectively.

Additionally, AAFM operations, crucial for resolving conflict-free FMs and configurations, represent high-
value tasks. However, existing AAFM operations typically adhere to a sequential computing paradigm, limiting 
their scalability when confronted with large-scale and high-variability models, particularly in interactive 

Figure 1.  Feature model (FM) of a videogame products family.
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application scenarios. While numerous algorithms and solutions for AAFM are documented in the literature, 
such as QuickXPlain35, FastDiag36 designed for detecting minimal conflicts and minimal-preferred diagnoses 
within conflicting sets of constraints, respectively, these recursive solutions are constrained by their inability 
to leverage additional resources for parallel and distributed computing, such as multiple cores or network 
technologies. In response to these limitations, AAFM solutions have been reimagined in their speculative 
versions, emphasizing their potential for enhanced computing efficiency in the product configuration of large-
scale models.

The objective of this research is to assess and enhance parallel computing solutions in the context of 
product configuration in feature models (FMs). This encompasses both the evaluation of existing hardware 
and programming approaches for parallel computing solutions and the imperative need for optimizing current 
solutions to facilitate FM product configuration. This will be achieved through analyzing the functionality and 
computational performance of AAFM solutions utilized for minimal conflict detection and minimal diagnosis 
within product configuration, parallelized with QuickXPlain and FastDiag. Additionally, the aim is to 
highlight improvements in computational performance through the adaptation of speculative programming 
to commonly employed AAFM solutions. The goal is to minimize latency and optimize runtime, albeit at the 
expense of resource inefficiencies inherent in speculative programming.

Figure 2.  Feature model with a valid configuration example.

Figure 3.  Feature model with a non-valid configuration example .
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Furthermore, for improving algorithms where traditional or direct parallelism is not viable, speculative 
programming enables pre-computation of potential execution paths, thus leveraging parallelism to achieve 
runtime enhancements.

To reach the previous goals, the rest of this paper is organized as follows. “Background”  describes and 
exemplifies the use of FMs. “Automated analysis of variability-intensive systems”  describes the Automated 
Analysis of Feature Model (AAFM) and the product configuration processes. That section also details the 
conflict detection and diagnosis operations with existing solutions and application results. “Speculative 
programming solutions”  describes the main differences and commonalities of the analyzed solutions for 
optimizing them and defining a general speculative solution. Hence, that section details the application results 
of ParallelQuickXPlain and ParallelFastDiag for the product configuration for a test set. “Threats to 
validity”  details a few practical issues of our research. The paper concludes by summarizing the benefits of our 
academic experience and detailing the motivation for continuing with it in the current and future years.

To improve the readability of the study, Table 1 presents the different acronyms in those topics with their 
meanings.

Background
A feature model is an information model that represents the variant flexibility and maintainability for systems’ 
variability and  configuration22. A feature is an abstraction of a prominent or distinctive user-visible aspect, 
requirement, quality, or functional characteristic of a family of software  systems37,38; each feature constitutes 
a user-visible configuration option of the problem  domain39. An FM is a tree-like structure commonly used 
to represent common and variable functionalities (features) and their relationships to the configuration of 
products in a software product line (SPL)26. Kang et al.26 introduced FMs in the FODA (Feature-Oriented 
Domain Analysis) method, and they are the “de facto” standard for describing common and variable features in 
system  families40,41 regardless of their size because FMs facilitate the software  reuse42.

An FM starts with the root feature. Each successively deeper level in the FM corresponds to a more fine-
grained configuration option for product-line variants. Features are nodes of that tree, and their relationships are 
the edges (relationships and constraints) between  features37. The relationships among features are of two types: 
structural relationships between a parent and its child features and cross-tree or cross-hierarchy  constraints37. 
FMs represent an effective communication medium between customers and developers of  SPLs43. As Benavides 
et al.24 describe, different FM dialects exist nowadays, such as basic FMs models, cardinality-based FMs, and 
extended FMs using feature  attributes44–46.

Basic feature models
An essential FM supports two types of relationships between features: structural relationships between parents 
and their child features and cross-tree  constraints24. Thus, each non-root feature has a parent feature and is either 
part of a group or not. The following lines describe each type of FM relationship.

• Structural relationships between parents and their child features:

• Mandatory: A mandatory relationship states that a parent feature requires its child. The top-left figure of 
Table 2 shows the graphic representation of a mandatory relationship between parent and child features.

• Optional: An optional relationship states that a child feature may be or not be present (its parent feature 
does not require it). The top-right figure of Table 2 illustrates an optional relationship between parent 
and child features.

• Set: A defined number of children’s features (sub-features) are selectable for products when their parent 
is selected. A cardinality relation [x, y] gives this number of features for x <= y and y <= number of 
child features in the set. Two cases are XOR (alternative) and Or (inclusive) sets.

Table 1.  Acronym list.

Acornym Meaning

FM, FMs Feature model, feature models

AAFM Automated analysis of feature model

VIS Variability intesive system

VM, VMs Variability model, variability models

OVMs Orthogonal variability models

SPL Software product line

MCS Minimal conflict set

SLR Systematic literature review

MCS Minimal conflict set

MD Minimal diagnosis

FODA Feature-oriented domain analysis
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Inclusive Or: At least one child’s features must be present. In this case, the cardinality relation is [1, 
n] (n corresponds to the number of child features). The middle-left figure of Table 2 illustrates an 
inclusive relationship between a parent feature and a set of children’s features. The middle-right row of 
Table 2 illustrates an alternative relationship between a parent feature and a set of children’s features.
Alternative XOR: Only one child feature must be present. The associated cardinality relation is [1, 
1] in this case.

• Cross-tree constraints.

• Requires: for two features, A and B, if A requires B, then A’s presence implies the presence of B in 
a product. The top division in the bottom-row of Table 2 illustrates a required cross-tree constraint 
relationship between a source feature A and a target feature B.

• Excludes: for two features, A and B, if A excludes B, then A and B cannot be present in the same product. 
The bottom division of the bottom row of Table 2 illustrates an excludes cross-tree constraint relationship 
between features A and B.

More complex cross-tree relationships exist in the literature to define constraints in generic propositional 
formulas such as “A and not B implies C”24.

The application and analysis of FMs is a common approach to performing analysis tasks. Benavides et al.24 
mention that the manual analysis of FMs is a time-demanding and error-prone activity, and the AAFM process 
permits solving those issues. The AAFM process starts by translating the FM and additional information, such 
as global restrictions, into logical constraints. Afterward, queries can proceed with the translated model using 
an off-the-shelf solver and other tools such as programming solutions, thus obtaining analysis  results47. Figure 4 
illustrates the AAFM process.

Such as Galindo et al.47 summarize six different variability facets that exist where the AAFM is currently 
applied: (i) product configuration and derivation, (ii) testing and evolution; (iii) reverse engineering; (iv) multi-
model variability-analysis; (v) variability modeling, and; (vi) variability-intensive systems. The first AAFM 
application results in the most traditional usage of automated analysis mechanisms. This article aims to contribute 
to it.

Developing FM and product configurations without errors or conflicts requires identifying each conflict and 
the necessary steps to solve or diagnose it. Hence, conflict detection and diagnosis are operations needed to get 

Table 2.  Feature model relations. .

Unary relations

Mandatory 

 Optional 

 Set relations 

 Inclusive(OR) 

 Exclusive (XOR) 

Cross-tree constraints

 Requires 

 Excludes 
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conflict-free models. Completing an FM product configuration by hand also represents an error-prone and time-
consuming task. Solutions for those tasks to work on large-scale models represent high-value tasks nowadays. 
AAFM solutions for product conflict detection, diagnosis, and completion already exist.

Automated analysis of variability‑intensive systems
The development process of a VIS considers identifying and representing the system’s components and 
relationships among those components as two core activities. The application and analysis of FMs is a common 
approach to performing those analysis tasks. Benavides et al.24 mention that the manual analysis of FMs is a time-
demanding and error-prone activity, and the AAFM process permits solving those issues. The AAFM process 
starts by translating the FM and additional information, such as global restrictions, into logical constraints. 
Afterward, queries can proceed with the translated model using an off-the-shelf solver and other tools such as 
programming solutions, thus obtaining analysis  results47.

For Galindo et al.47, six different variability facets exist where the AAFM is currently applied: (i) product 
configuration and derivation; (ii) testing and evolution; (iii) reverse engineering; (iv) multi-model variability-
analysis; (v) variability modeling, and; (vi) variability-intensive systems. The first AAFM application results in 
the most traditional usage of automated analysis mechanisms. This article aims to contribute to it.

Developing FM and product configurations without errors or conflicts requires identifying each conflict and 
the necessary steps to solve or diagnose them. Hence, conflict detection and diagnosis are operations needed 
to get conflict-free models. Completing a product configuration of FM by hand also represents an error-prone 
and time-consuming task. Solutions for those tasks to work on large-scale models represent high-value tasks 
nowadays. AAFM solutions for product conflict detection, diagnosis, and completion already exist. The following 
sections describe an existing algorithm for detecting minimal conflict sets (MCS), a current algorithm for 
detecting minimal diagnosis (MD), and traditional approaches to complete product configurations.

Product configuration solutions
Minimal conflict sets (MCS) detection: an MCS of a system represents a minimal set of constraints in conflict. 
For Definition 123, it is necessary to identify the set of constraints B that represents a consistent background 
knowledge and the set of constraints C that is the suspected subject of a conflict search.

Definition 1 A set AC = B ∪ C = {c1, c2, ..., cn} represents the set of all constraints in the knowledge base; that 
is, AC is the union of the consistent knowledge base B and the suspicious set of constraints subject of conflict 
search C. Then, a conflict CS = {ca, cb, ..., cz} is a non-empty and non-consistent subset of C. CS is minimal if ¬∃ 
CS′ such that CS′ ⊂ CS CS is preferred if the order of its constraints follows a defined ranking of preferences.

QuickXPlain35 is an efficient approach to determining a minimal conflict set. QuickXPlain receives C 
as the set of suspicious constraints with conflict and B as consistent constraints of the background knowledge. 
Then, a conflict does not exist if B ∪ C is consistent or C is empty. On the other hand, QuickXPlain proceeds by 
returning the results of the function QX. QX receives the parameters C (initially the complete set of constraints 
with conflict), B (initially the knowledge base), and Bδ (initially empty) that represents the last items added to 
B. Function QX follows a divide-and-conquer approach for conflict detection. Hence, Bδ corresponds to the 
set of constraints added for reviewing the consistency of the knowledge base, and C is the set of constraints to 
continue analyzing if the current B is consistent. Algorithms 1 and  2 show the pseudo-code of the functions of 
QuickXPlain.

Figure 4.  Automated analysis of feature models (AAFM)  process21.
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Algorithm 1.  QuickXPlain(C, B) : CS.

Algorithm 2.  QX(C = {c1..cm},B,Bδ) : CS.
QuickXPlain permits determining one MCS per computation. Felfernig et al.23 indicate that we need to 

update adequately or delete one of the constraints of an MCS to solve it and, if the model is non-consistent yet, 
to apply QuickXPlain and repeat the process. When the resulting model is consistent, the updated constraints 
represent a diagnosis or solution for the model. A relevant step of function QX of QuickXPlain is step 1 to check 
for the inconsistency of set B, a task performed by an external tool like an SAT or CSP solver.

Assuming a splitting k = ⌊m
2
⌋ of C = {c1..cm} , the worst-case time complexity of QuickXPlain in terms of 

the number of consistency checks needed for calculating one minimal conflict is 2k × log2(
m
k )+ 2k where k 

is the minimal conflict set size and m represents the underlying number of  constraints35. We should optimize 
the computing performance of consistency checks because they are the most time-consuming part of conflict 
detection.

Table 3 summarizes the results of the QuickXPlain performance analysis to identify a preferred minimal 
conflict of product configurations. Each entry represents the average runtime in msec for all knowledge bases 
with a preferred conflict set of cardinality n (1–16). We can appreciate that the time increases when more conflicts 
exist in the analyzed product configurations. For the mentioned issue that QuickXPlain identifies only one 
conflict that, after solving it, a new execution is necessary to determine the remaining one.
Minimal diagnosis detection
Identifying and solving conflicts one by one is necessary to obtain a conflict-free model: we need to identify a 
conflict first, adapt (update or eliminate) constraints of that conflict for its solution, and repeat this process until 
no more conflict exists, that is, until reaching a consistent model. The set of all the adapted constraints for getting 
a conflict-free model represents a diagnosis. Definition 2 formally defines the term  diagnosis23,48.

Definition 2 A set AC = {c1, c2, ..., cn} represents the set of all constraints in the problem for diagnosis; that is, AC 
is the union of the consistent base knowledge B and the set of constraints subject of the conflict search C: AC = 
B ∪ C. Then, a diagnosis is a set of constraints � ⊆ C such that (B ∪ C − �) results in a consistent or conflict-free 
set. � is minimal if ¬∃ �′ such that �′ ⊂ � . A minimal diagnosis is of minimal cardinality if there does not exist 
a minimal diagnosis �′ such as |�′| < |�|.

A minimal diagnosis for the FM configuration of Fig. 3 has to consider solutions for each conflict. Hence, this 
example contains two diagnosis options. To get a conflict-free model, the user has to solve each diagnosis. Cases 
with multiple diagnosis instances exist, and determining all the diagnoses can be computationally expensive. 
Model constraints can be relevant for obtaining a preferred diagnosis. Obtaining all the diagnoses to look for the 
preferred one is a time-demanding and lost time activity since solving one diagnosis is enough for a conflict-free 
model. The next lines describe the FastDiag algorithm to determine a minimal preferred diagnosis.

FastDiag algorithm permits determining a preferred or leading diagnosis concerning a previously defined 
relevance order of constraints in the knowledge base. FastDiag follows the algorithmic structure and reasoning 
of QuickXPlain for a different purpose: diagnosis detection without calculating MCS instances. Hence, 
FastDiag is based on conflict-independent search  strategies49. Algorithms 3 and  4 give the pseudo-code of 
FastDiag functions.
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Algorithm 3.  FastDiag(C, AC) :  diagnosis �.

Algorithm 4.  FD(D,C = {c1..cq},AC) : diagnosis �.
Assuming that conflicts to diagnosis exist, If the conflict set C is non-empty, and AC without C is consistent, 

algorithm FastDiag calls and waits for the results of the recursive algorithm FD. FD first reviews the consistency 
of AC as a source of diagnosis. Because always AC contains C and does not contain D, S is the constraint set with 
conflicts, and D is empty; when D is not empty, and AC is consistent, D is the source of conflict. When that base 
case is not accomplished, either because D is empty (such as at the beginning) or AC is consistent (this is only 
possible after removing elements from AC − D represents the last removed elements from AC), then AC is still 
in conflict, and C is a source of conflict. Then, FD reviews the size of C since if it were minimal (size 1), then C is 
the diagnosis. If C is not of minimal size, FD proceeds to partition C in the sets C1 and C2 , of which the last one 
corresponds to the most preferred partition. Afterward, FD calls FD over C2 , C1 , and AC − C2 to review if C2 is 
the diagnosis source and, if not so, to continue reviewing C1 with that goal.

Assuming a splitting d = ⌊ n
2
⌋ of S = {s1..sn} , the worst-case time complexity of FD in terms of the number of 

consistency checks needed for calculating one minimal diagnosis is 2d × log2(
n
d )+ 2d where d is the minimal 

diagnosis set size and n represents the underlying number of  constraints49. The runtime performance of the 
underlying algorithms must be optimized because consistency checks are the most time-consuming part of 
diagnosis detection.

Table 4 summarizes the results of the FastDiag performance analysis to identify a preferred minimal 
diagnosis of product configurations. Each entry represents the average runtime in msec for all knowledge 
bases with a preferred diagnosis set of cardinality n (1–16). We can appreciate a surprising time execution 
difference between the conflict and diagnosis detection; that is, algorithm FastDiag results more efficient than 
QuickXPlain even though they pursue different tasks. We can appreciate in Table 4 that the time increases 

Table 3.  Avg. runtime (in ms) of QX when determining minimal conflicts.  Each cell follows a heat map 
coloring: the darker, the slower. In bold, the cells have a faster time for a given conflict cardinality. With lmax=5, 
performance deteriorates due to the limitations in terms of available cores.
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when more conflicts exist in the product configurations because FastDiag requires identifying diagnosis of 
more cardinality.

In summary, existing product configuration solutions QuickXPlain and FastDiag are algorithms for 
identifying MCS and minimal diagnosis. Even though they are efficient sequential-computing solutions, such 
as Vidal et al.15 highlight, they are inadequate for large-scale FMs. The following section reviews the computing 
performance of those solutions. The QuickXPlain, FlexDiag, and data for experiments are available in https:// 
github. com/ cvida lmsu/A- Python- QX- imple menta tion, and https:// github. com/ cvida lmsu/A- Python- FD- imple 
menta tion, respectively.

Speculative programming solutions
We can appreciate that QuickXPlain and FastDiag share a similar algorithm structure and behavior as the 
next lines describe.

• Both solutions start reviewing if a problem exists; that is, (i) if consistency exists in the base set plus the set 
of constraints to add to it, or (ii) if the base set minus the set of constraints to remove from it is inconsistent, 
to immediately return if some of them hold. The QuickXPlain algorithm appreciates as a second base case 
if the set of constraints to add to the base set is empty; that means, the base set is inconsistent, to return the 
empty set. The FastDiag algorithm considers that option in the first base case: if the set of constraints to 
remove from the base set is empty, then return the empty set.

• If none of the base cases is true in both solutions, they proceed with their main functions: (i) QuickXPlain 
receives the set of constraints to look for adding to the base set, the base set, and the set of constraints 
previously added to the base set (empty in the first call), whereas (ii) FastDiag receives the set of constraints 
already removed from the base set, the set of constraints to look for removing from the base set, and the base 
set.

The base set of QuickXPlain represents the primary structural model without additional constraints, like a 
feature model without options selection. On the other hand, the base set of FastDiag is the primary structural 
model, plus additional constraints. Hence, the primary function of QuickXPlain looks to find inconsistencies 
by adding elements to the base set. In contrast, the primary function of FastDiag looks to find consistency 
by removing elements from the base set. In summary, QuickXPlain and FastDiag work on a set of base 
constraints, a set of constraints to add to or quit from the base set, and the last set added to or quit from that 
set, respectively.

The following lines describe the main elements we considered to design and implement speculative parallel 
versions of QuickXPlain and FastDiag solutions.

Looking for QuickXPlain and FastDiag optimizations
Consisteny checking
The consistency checking task is a high-cost, recurrent, and sometimes repetitive operation in QuickXPlain and 
FastDiag. Then, we look to avoid that operation repetition by storing the consistency checking in a hash table 
to check for its existence first and get that value, or, otherwise, to apply the consistency checking operation and 
store it (memorization process). This improvement could also be used to improve the computing performance 
of the QuickXPlain and FastDiag solutions. Algorithms 5 and 6 illustrate the inconsistency and consistency 
checking for QuickXPlain and FastDiag, respectively.

Table 4.  Avg. runtime (in ms) of FD (lmax = 1) for determining preferred diagnosis. lmax = 1 is equivalent to 
sequential FastDiag. Each cell follows a heat map coloring: the darker, the slower. In bold, the cells with faster 
time for a given conflict cardinality.

https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-QX-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
https://github.com/cvidalmsu/A-Python-FD-implementation
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Algorithm 5.  Inconsistent(C,B,Bδ):Boolean.

Algorithm 6.  Consistent(D, C, AC):Boolean.

Speculative paths
Algorithms 2 and  4 follow a divide-and-conquer approach and behave similarly concerning their specific 
goals: minimal conflict and diagnosis detection, respectively. In addition to avoiding the recalculation of 
consistency or inconsistency checking previously checked, a general speculative approach should perform that 
checking process asynchronously. Then, both solutions must consider that case before speculating regarding 
the true or false checking value because QuickXPlain and FastDiag, after the respective consistency and 
inconsistency checking, the analyzed set minimality is reviewed. Algorithm 7 details the general steps of 
ParallelQuickXPlain50 and ParallelFastDiag15,51 solutions (Gen for QXGen and FDGen).

A relevant element to consider is the speculation level reached for parallelism capacity. Hence, before 
evaluating the previously described steps, a first base case is needed to check that situation. |f(X)| denotes 
the number of constraints ci in X. The AddCC function triggers an asynchronous task that is in charge of 
adding consistency checks (parameter of AddCC) to a LookUp table and issuing the corresponding solver calls 
(memorization process). lmax is a global parameter that defines the maximum search depth of one activation. 
Each Gen recursive call is executed in parallel (a new parallel task is created to execute that function). Thus, 
by each Gen execution, two new Gen tasks could be executed. Hence, parallel hardware capacity is crucial in 
speculating eventual execution flows.

Concerning the consistency checking step of original QuickXPlain and FastDiag, our solution proposal 
does not parallelize the nature of that task; we applied speculative computing for the execution of each consistency 
checking step of QuickXPlain and FastDiag, not in the steps of the consistency checking process itself.
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Algorithm 7.  Gen(Sa , Sb , Sc , δ , l).
The following subsections describe the specialization of Algorithm 7 for ParallelQuickXPlain and 

ParallelFastDiag and application results on a case study.

Parallel QuickXplain
Because the consistency verification represents a high-cost computing task, our speculative computing approach 
looks to parallelize the consistency checks in QX by substituting the direct solver call Inconsistent(B) in 
QX with the activation of a lookahead function (QXGen) in which consistency checks are not only triggered 
to provide feedback to QX requests directly. Moreover, our speculative approach provides fast answers for 
consistently checking potentially relevant in upcoming states of a QX instance. We follow the principles of 
speculative  programming52: we start calculating consistency checks that could be useful in the future to anticipate 
resource-intensive reasoning tasks for reaching more efficient computing results. The drawback is that we use 
some computation resources that will be wasted if the pre-calculation is finally not used. Therefore, the challenge 
in this kind of technique is to find algorithms that can anticipate as many reusable calculations as possible while 
reducing calculation tasks that are not reusable.

As Vidal et al.50 describes, the QXGen function is based on the idea of issuing recursive calls and adapting the 
parameters of the calls depending on the two possible situations (1) consistent(Bδ ∪ B ) and (2) inconsistent(Bδ ∪ B
).

The experimentation was conducted based on a Python3 implementation of the QuickXPlain algorithm 
and the parallelized QuickXPlain (QX) version presented in this research. For the implementation, we used 
the multiprocessing Python package for running parallel tasks. For representing our test knowledge bases and 
conducting the corresponding consistency checks, we used  Sat4J53 as it is one of the most used solvers integrated 
in many software (product line) engineering tools such as  FeatureIDE54,  FAMA55,  FAMILIAR56 among  others57–59. 
Python was used for its parallelization capabilities while Sat4J was one of the most used solvers in the SPL 
community. Nevertheless, any other technologies could have been used.

Table 5 summarizes the results of our QXGen performance analysis. Compared to Table 3, on average, the 
runtime needed by standard QuickXPlain ( lmax = 1 ) to identify a preferred minimal conflict of cardinality 16 
is 1.82× higher compared to a parallelized solution based on QXGen ( lmax = 4 ). In Table 5, each entry represents 
the average runtime in msec for all knowledge bases with a preferred conflict set of cardinality n, where the same 
set of knowledge bases has been evaluated for lmax sizes 2–5. Although speculative computing and memorization 
allow for improving the execution speed of conflict detection solutions, that is not a computing efficiency at all 
for the required memorization that can be critical for larger models and deeper speculation levels. Nonetheless, 
solution speed is more relevant for interactive scenarios, and ParallelQuickXPlain allows improving the 
QuickXPlain ones.

It can be observed that with an increasing lmax, the performance of QX increases. However, with lmax = 5 , a 
performance deterioration can be observed, which can be explained by the number of pre-generated consistency 
checks starting to exceed the number of physically available processors. In the line of our algorithm analysis, the 
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number of relevant consistency checks that can be performed with lmax = 5 is between 5 and 3. Considering 
the overheads for managing the parallelized consistency checks, the results support our theoretical analysis of 
QXGen. Figure 5 depicts the same results.

Parallel FastDiag
Such as Felfernig et al.23 argue that consistency checking CC is an expensive computing step. Similar to the 
Parallel QuicXplain solution, our speculative computing approach to parallelizing the CC in FD substitutes the 
direct solver call consistent(AC) with the activation of a lookahead function (FDGen) in which consistency 
checks are not only triggered to provide feedback to FD requests directly, but also to be able to provide fast 
answers for consistency checks potentially relevant in upcoming states of a FD instance. We again follow the 
speculative programming  principles52: we start calculating consistency checks that could be useful in the future. 
The advantage is that we can anticipate resource-intensive reasoning tasks. The drawback is that we use some 
computation resources that will be wasted if some pre-calculation is finally not used. Therefore, the challenge in 
this kind of technique is finding algorithms that can anticipate as many reusable calculations as possible while 
reducing the calculation tasks that are not reusable.

As Vidal et al.15 and Le et al.51 remark, in the proposed parallelized variant of ParallelFastDiag, CC is 
activated by FD with Consistent(D, S, AC). This also activates FDGen that starts to generate and trigger (in a 
parallelized fashion) further CC instances that might be relevant in upcoming FD phases. For describing FDGen, 
we employ a two-level ordered set notation which requires to embed the FD D into {D} , S into {S} , and AC into 
{AC} . In FDGen, D, S, and AC are interpreted as ordered sets.

Table 5.  Avg. runtime (in ms) of parallelized QX when determining minimal conflicts. Each cell follows a heat 
map coloring: the darker, the slower. In bold, the cells have a faster time for a given conflict cardinality. With 
lmax=5, performance deteriorates due to the limitations in terms of available cores.

Figure 5.  Performance of QuickXPlain vs ParallelQuickXPlain with 2 to 5 threads.
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We experimented based on the implementation in Python3 of FastDiag and ParallelFastDiag. We used 
the multiprocessing Python package for running parallel tasks. We used  Sat4J53 for representing our test knowledge 
bases and conducting the corresponding consistency checks since it is one of the most used solvers integrated in 
many software (product line) engineering tools such as  FeatureIDE54, FAMA  framework55,  FAMILIAR56 among 
 others57–59. Nonetheless, we could use any other technology for writing and reasoning on AAFM solutions.

Table 6 summarizes the performance and analysis results of FastDiag and FDGen. On average, the runtime 
needed by standard FastDiag ( lmax = 1 in Table 4) to identify a preferred minimal diagnosis for conflict of 
cardinality 16 is 23, 54% slower compared to a parallelized solution for the same purpose based on FDGen 
( lmax = 5 ). In Table 6, each entry represents the average runtime in msec for all knowledge bases with a 
conflict set of cardinality n, where the same set of knowledge bases has been evaluated for lmax sizes 2–5. As 
in the ParallelQuickXPlain and QuickXPlain results comparison, although speculative computing and 
memorization allow for improving the execution speed of conflict detection solutions, that is not a computing 
efficiency at all for the required memorization that can be critical for larger models and deeper speculation 
levels. Nonetheless, solution speed is more relevant for interactive scenarios, and ParallelFastDiag allows 
improving the FastDiag ones.

We can observe that with an increasing lmax, the performance improvement of FD increases with a few 
exceptions: the solution for four threads is the best for models with eight conflicts, and the solution for three 
threads is the best for models with sixteen conflicts. A deterioration can exist with lmax = 4 and lmax = 5 
because the number of pre-generated consistency checks starts to exceed the number of physically available 
processors. The obtained results support our theoretical analysis of FDGen, taking into account the overheads 
for managing the consistency checks in parallel. Figure 6 illustrates the performance results of Table 6. The 
performance improvement of ParallelFastDiag presents a scalability tendency even though it is not as 
notorious as for ParallelQuickXPlain. After reviewing the results, some conflicts are solvable by updating 
only one or a few constraints. Then, finding a conflict set with various conflicts can require more computation.

Discussion
Execution environment
All experiments reported were conducted using an AMD EPYC 7571 machine with a CPU with eight cores and 
2.60 GHz. Each core maintained up to two threads, which means that 16 cores could be simulated using hyper-
threading. It had 64 GB of RAM.

For evaluation purposes, the experiments of this study did not involve human participants or related data. We 
generated configuration knowledge bases (feature models) from the publicly available Betty tool  suite45, which 
allows for systematic testing of different consistency checking and conflict detection approaches for knowledge 
bases. The knowledge base instances that were selected for our evaluation had around 1.000 binary variables 
(derived from the 1.000 features used) and also varied in terms of the number of included constraints depending 
on the different feature relationships and the total of derived clauses (around 1600 SAT clauses in the generated 
CNF files). Based on these knowledge bases, we randomly generated requirements ( ci ∈ C ) that covered 10% 
of the variables included in the knowledge base. These requirements have been generated to analyze conflict 
sets of different cardinalities. We also shuffled the background set to get different orders because this can affect 
the number of consistency checks needed. In this research work, all methods and experiments were carried out 
as part of the research team, taking into account their previous research work and studies. No regulation was 
required since we did not involve humans and their data.

This article highlights the usability of speculative programming for optimizing the diagnosis and other conflict 
detection operations such as  MergeXplain60. Vidal et al.61 showed the usability and efficiency of applying diagnosis 
solutions such as FastDiag for product completion.

One issue of speculative programming is the generation of non-effective speculations, that is, computations 
with non-usable results. Thus, applying speculative programming demands computing effective speculations 
as much as possible, speculations with a high grade of effectiveness. That requires a deep study of the current 
solutions to define and compute speculation strategies that can guarantee their effectiveness. To show the 
functionality and evaluate the performance of our solutions, we implemented them using Python and  FAMA33.

Table 6.  Avg. runtime (in msec) of FD (lmax=1) and parallelized FD ( lmax > 1 ) for determining preferred 
diagnosis.. Each cell follows a heat map coloring: the darker, the slower. In bold, the cells with faster time for a 
given conflict cardinality.
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Threats to validity
This work presents the application of speculative programming to get better computing results with relevant 
operations for the Automated Analysis of Product Configuration of Feature Models in parallel regarding their 
sequential version. We can appreciate parallelism in solutions with dependent steps. Nonetheless, it is necessary 
to discuss the following practical issues:

• We implemented our solutions to run in Python and  FAMA33. For executing QuickXPlain and FastDiag, 
Python and FAMA should be in the computer. That seems not to be a problem because Python in 2023 is 
one of the most used programming environments, and FAMA is freely accessible online.

• We worked with generated FMs by the use of Betty. Product configuration solutions can be more precise in 
inaccurate models and configuration cases. Nonetheless, the generated models are adequate for the simulation 
goal.

• The effects of speculative computing strongly depend on the hardware; that is, on the number of cores and, 
in our solution, probably also on the available memory due to the need to fit several SAT solvers. Thus, 
computing results of our solutions ParallelQuickXPlain and ParallelFastDiag, and of their base 
solutions QuickXPlain and FastDiag depends on the execution hardware configuration.

• We defined adequate computing solutions for conflict detection and diagnosis in the product configuration 
of large-scale feature models, ParallelQuickXPlain and ParallelFastDiag, respectively.

Conclusion
This article describes the speculative programming application to parallelize two classical and sequentially 
efficient AAFM solutions to enable them for the automated analysis of large-scale feature models. The obtained 
results demonstrate the parallelism computing scalable improvements. This article reviewed the functionality, 
computing performance, and main details of QuickXPlain and ParallelQuickXPlain for conflict detection 
and FastDiag and ParallelFastDiag for diagnosing the product configuration of small-scale and large-scale 
products.

We provided the base and highlighted the speculative programming approach as an algorithmic optimization 
technique applicable for optimizing sequential solutions to work on the product configuration of large-scale 
products. With more detail, 

1. We recognized that conflict detection is a base step for solving configuration issues. We found that 
QuickXPlain represents an efficient solution for detecting minimal preferred conflict. Although 
QuickXPlain uses an efficient divide-and-conquer algorithmic approach, analyzing large-scale FM 
and configurations takes a long time. Moreover, for its sequential nature, QuickXPlain cannot use 
computing resources, such as multiple cores for parallel computing. This article parallelized QuickXPlain 

Figure 6.  Performance of FastDiag vs ParallelFastDiag with 2 to 5 threads.
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to develop a more efficient solution for detecting conflicts in large-scale configuration scenarios. Our 
analysis found a costly operation step that uses data from the previous executions in the QuickXPlain 
functioning. We pre-calculate that operation by applying speculative computation to look for 
improvements. Thus, ParallelQuickXPlain was born. The obtained results validated the improvements 
of ParallelQuickXPlain regarding traditional QuickXPlain for analyzing large-scale FM and 
configurations.

2. We found that FastDiag represents an efficient solution for detecting minimal preferred diagnosis using 
an efficient divide-and-conquer algorithmic approach. However, FastDiag takes a long time to analyze 
large-scale FM and configurations, and it cannot use computing resources, such as multiple cores for parallel 
computing, for its sequential nature. Hence, we parallelized FastDiag for getting a solution for diagnosis 
in large-scale configuration scenarios as our second research goal. Like in the analysis of QuickXPlain, 
our analysis found a costly operation step that uses data from the previous executions in the FastDiag 
functioning. We pre-calculate that operation by applying speculative computation to look for improvements. 
Thus, ParallelFastDiag was born. The obtained results validated the efficiency of ParallelFastDiag 
regarding traditional FastDiag for analyzing large-scale FM and configurations.

Data availability
https:// github. com/ cvida lmsu/A- Python- QX- imple menta tion and https:// github. com/ cvida lmsu/A- Python- 
FD- imple menta tion.

Code availability
https:// github. com/ cvida lmsu/A- Python- QX- imple menta tion and https:// github. com/ cvida lmsu/A- Python- 
FD- imple menta tion.
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