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Exploring the geometry 
of the bifurcation sets in parameter 
space
Roberto Barrio 1*, Santiago Ibáñez 2 & Lucía Pérez 2

By studying a nonlinear model by inspecting a p-dimensional parameter space through (p− 1)

-dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds 
that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be 
understood within the framework of the theory of singularities for differentiable mappings and, 
in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric 
bifurcations are illustrated in two models of neuron activity: the Hindmarsh–Rose and the FitzHugh–
Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of 
a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this 
distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams 
in the context of nonlinear phenomena.

Given a family of dynamical systems, the term bifurcation is used to refer to any qualitative change in the dynam-
ics under variation of parameters. The stratification B of the parameter space by bifurcation points is said the 
bifurcation set. On the other hand, when one explores a q-dimensional parameter space with (q− s)-parametric 
families of s-dimensional manifolds Sε , where s < q and ε ∈ R

q−s , the geometry of B itself can lead to changes in 
the sets Bε = B ∩ Sε . We are interested in these changes, that we call geometric bifurcations. As might be expected, 
the study of geometric bifurcations is closely related to the Theory of Singularities.

In this article we use as test examples two classical mathematical neuron models: the Hindmarsh–Rose and 
the FitzHugh–Nagumo systems. The main reason is that these models, as examples of fast-slow systems, have 
distinguished parameters that dictate a specific way of exploring the parameter space. Furthermore, in multiscale 
systems there are bifurcation sets in the parameter space where different structures are exponentially close to 
each other1,2, so there are more types of geometric bifurcations, as will be described later. But we emphasize 
that they can be present in any parametric exploration of a system regardless of whether it is fast-slow or not.

The Hindmarsh–Rose3 (HR) system was introduced as a reduction of the Hodgkin-Huxley equations4 for the 
propagation of nerve impulses in axons. The HR model is described by three coupled nonlinear ODEs:

where x is the membrane potential, y the fast and z the slow gating variables for ionic current. Typically, b, I and 
ε are considered as free parameters, whereas the remaining ones are set as follow: a = 1 , c = 1 , d = 5 , s = 4 , 
x0 = −1.6.

The FitzHugh–Nagumo system5,6 is another simplified version of the Hodgkin-Huxley model4, and the 
reduced ODE system can be written in the form7:
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To illustrate the main aim of this article, the spike-counting (SC) technique8,9 is used in Fig. 1 to show regions 
of periodic tonic spiking, chaotic bursting, and regular bursting with different number of spikes for the classi-
cal Hindmarsh–Rose neuron model (more details will be provided later). The SC sweeping method calculates 
for each set of parameter values and initial conditions the number of loops (spikes) of the stable limit cycle 
(when it exists), and this number is color-coded according to the number of spikes (vertical bar). Specifically, 
the dark blue regions correspond to stable spikings. The strips of a spike-adding cascade, ranging from blue to 
green, are related to10 fold/Hopf and fold/hom bursting, which becomes chaotic11 in a chain of onion-like bulbs 
depicted in brown. Additionally, several bifurcation lines are superimposed, such as the black one for homoclinic 
bifurcations and the red curves for period-doublings of periodic orbits. It is worth noting that the bifurcation 
curves of periodic orbits arise from homoclinic bifurcation points of codimension two, namely, the HR model 
exhibits1 orbit-flips (OF), inclination-flips (IF) and Belyakov bifurcations. Furthermore, we highlight how the 
structure of the parameter plane (b, I) changes as the small parameter ε increases, moving away the system from 
the singular limit at ε = 0 . An example would be the disappearance of some color bands and several bifurcation 
points of codimension two (e.g., the green and pink points) while, on the contrary, connections appear between 
bifurcation curves of periodic orbits (in red). Finally, we also look at how the Z-shape of the homoclinic curve 
(in black) evolves and disappears. Regarding these phenomena, the question that naturally arises is what is the 
mechanism underlying all these changes. As we will see later, the answer is that the bifurcation set goes through 
several geometric bifurcations as ε varies.

The relevance of geometric bifurcations has already been pointed out in the literature, although the terminol-
ogy we are using in this paper is new. Geometric bifurcations explain the creation of isolas of homoclinic and 
heteroclinic bifurcations. Namely, Algaba et al.12 study Chua’s equation and show how exploring the 3-param-
eter space with planar slices, a pair of codimension-two bifurcation points (T-points) collapse and disappear. 
When the collision occurs, the intersection between the slice and the codimension-two bifurcation curve is 
non-transversal. Through this process, spirals of codimension-one bifurcations approach together, giving rise to 
isolas. The same authors provide13 a theoretical model explaining the behavior. They also study14 the distribution 
of homoclinic bifurcation curves in the Lorenz system, and illustrate again how the evolution of a bifurcation 
set depends on the way in which the parameter space is explored. Wieczorek and Krauskopf15,16 study a three-
parameter family of three-dimensional vector fields that models an optically injected laser. Planar slices provide 
images of the bifurcation set where codimension-two bifurcation points collapse together, and codimension-one 
bifurcation curves contact each other. Among other phenomena, isolas of homoclinic bifurcations are exhibited. 
The systems considered in the papers we have just mentioned12–16 and the neuron models we will consider later 
give an idea of the types of scenario in which geometric bifurcations can occur. In general, they can be useful in 
any model that depends on three (or more) parameters when the parameter space is explored using 2-dimen-
sional slices. Therefore, the notion of geometric bifurcation should be of interest to anyone studying bifurcation 
diagrams in the context of nonlinear phenomena.

In this paper, we provide a minimal theoretical framework regarding geometric bifurcations by appealing to 
the theory of singularities on differentiable manifolds, and particularly, to Morse Theory17,18. More importantly, 
it is shown how all the bifurcations that we introduce are observed in rather common neuron models. As already 
mentioned, we provide illustrations for the Hindmarsh–Rose3 and FitzHugh-Nagumo systems5,6. Both are fast-
slow systems obtained as simplifications of the Hodgkin–Huxley model4 for the propagation of nerve impulses 
in axons. In both cases there are very rich bifurcation sets that, for instance, include homoclinic bifurcations of 
codimension one and two. In addition, we will see how geometric bifurcations arise when the parameter space 
is explored with slices corresponding to fixed values of a distinguished parameter ε , namely, the parameter that 
controls the time scale of the slow variable. These models illustrate a key fact, the study of geometric bifurca-
tions only makes sense when working with families where there are distinguished parameters that determine a 
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Figure 1.   Spike-counting sweeping technique of the Hindmarsh–Rose system (1) in the parameter plane 
(b, I), with ǫ = 0.018 (subplot (a)), 0.03 (b) and 0.08 (c). The color indicates the number of spikes per period, 
increasing from blue (0 spikes) to brown (the maximum value associated with chaotic behavior). Bifurcations: 
Homoclinic and period-doubling codimension-1 curves; orbit-flip (OF), inclination-flip (IF) and Belyakov 
codimension-2 points.
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specific way of inspecting the parameter space; otherwise, either a reparametrization may remove singular points 
or tangencies can be avoided by choosing a different direction for sweepings.

Golubitsky and Schaeffer19 also use the term “distinguished parameter” to refer to a specific parameter whose 
variation can be seen as typical or natural in a given model. They work with scalar equations of the form

for a single unknown x and with α ∈ R and β = (β1, . . . ,βq−1) ∈ R
q−1 . Typically, (3) stands for the steady-state 

equation of a certain dynamical problem. In this setting, they refer to α as a distinguished parameter and say that 
β1, . . . ,βq−1 are unfolding parameters. Golubitsky and Schaeffer wonder about how the sets

change as β varies. In this context, they characterize and classify the bifurcation points (x0,α0,β0) —singularities 
in their terminology— where a change occurs. The notion of geometric bifurcation is also close to this theory of 
singularities. We consider families of dynamical systems depending on q parameters (�, ε) ∈ R

q−s × R
s , with 

s < q and explore the parameter space taking (q− s)-dimensional manifolds with ε fixed. We wonder about 
how the intersection between these manifolds and the bifurcation set changes as ε varies. In our setting, there is 
no state variable and ε represents the distinguished parameter (or parameters in case that s > 1 ). For the slow-
fast models that we consider in this paper, the choice of distinguished parameter is indeed a “natural” one: the 
small parameter ε that controls the behavior of the slow variable. Note that the theory of singularities19 allows to 
understand, for instance, the appearance of isola of equilibria in bifurcation diagrams20.

The notion of geometric bifurcation incorporates a rather particular concept of codimension, which we bor-
row from Wieczorek and Krauskopf15,16. Thus, bearing in mind a three-dimensional parameter space, we can 
find only three types of geometric bifurcations regarding codimension: 

1.	 Codimension one-plus-one geometric bifurcations: Those that occur on a surface of codimension-one bifur-
cations when the parameter space is explored with one-parametric families of two-dimensional manifolds.

2.	 Codimension two-plus-one geometric bifurcations: Those that occur on a curve of codimension-two bifurca-
tions when the parameter space is explored with one-parametric families of two-dimensional manifolds.

3.	 Codimension one-plus-two geometric bifurcations: Those that occur on a surface of codimension-one bifur-
cations when the parameter space is explored with two-parametric families of one-dimensional manifolds.

The structure of the paper is as follows. First, simple pictures that allow one to illustrate the notion of geometric 
bifurcation are provided. They help to understand the particular way in which the codimension of a geometric 
bifurcation is specified. The existence of a codimension two-plus-one geometric bifurcation has subsidiary 
consequences on the codimension-one bifurcation sets that emerge from it, and these effects are also discussed. 
Later, we formalize some notions and provide a minimal theoretical support for dealing with geometric bifurca-
tions. Specifically, codimension one-plus-one and two-plus-one bifurcations are discussed. After that, we show 
how geometric bifurcations arise in the aforementioned neural models. The provided preliminary illustrations 
and subsequent theoretical schemes should be useful to understand many of the phenomena exhibited in the 
neuron models. Finally, some conclusions are provided.

Geometric bifurcations: illustrative examples
Let X�1,�2,ε be a three-parameter family of vector fields, and assume that a bifurcation surface 
M = {(�1, �2, ε) : ε + �

2
1 + �

2
2 = 0} exists. When we explore the parameter space taking horizontal planes 

with ε fixed, we observe that, for ε < 0 , there is a bifurcation curve, the circle �21 + �
2
2 = −ε (see top panel 

in Fig. 2). In the absence of additional bifurcations, there is one equivalence class for values of the param-
eters inside the circle and one outside. When ε = 0 , the interior class disappears because the circle collapses 
to a point. Thus, when ε > 0 , bifurcations are no longer observed. If the bifurcation surface is given by 
M = {(�1, �2, ε) : ε − �

2
1 + �

2
2 = 0} , we observe a different behavior (see bottom panel in Fig. 2). For ε < 0 , 

there are two bifurcation curves, (the two branches of the hyperboloid ε = �
2
1 − �

2
2 ). In the absence of additional 

bifurcations, there exist two equivalence classes. When ε = 0 , the bifurcation set is given by �21 − �
2
2 = 0 , two 

straight lines, and there is a singular point at (0, 0). For ε > 0 , we find two curves again, but placed on differ-
ent sectors. Note that in the passage through ε = 0 , the class which corresponds to the neighborhood of (0, 0) 
changes. In both cases, we say that there is a one-plus-one geometric bifurcation at ε = 0 . Note that intersections 
between the horizontal planes and the surface M are all transverse except for ε = 0.

In the previous examples, a geometric bifurcation appears because the three-parameter space is explored 
with planes and there is one which is tangent to a bifurcation surface. If there exists a codimension-two bifurca-
tion curve exhibiting a point of tangency with one of planes, we say that there is a codimension–two-plus-one 
geometric bifurcation. Both panels in Fig. 3 show a codimension-two bifurcation curve (blue) C. When the 
parameter space is explored with horizontal planes (fixed values of ε ), there is a value of ε for which the plane has 
a quadratic tangency with C at a point p. Two codimension-two bifurcation points are exhibited for lower values 
of ε and no one for bigger values. We say that there is a codimension–two-plus-one bifurcation at p.

More important, another interesting question is to wonder about the changes that occur in the bifurcation 
strata that arise from other strata of lower codimension. Both panels in Fig. 3 show a surface M (grey color) of 
codimension-one bifurcation points with a boundary given by the curve C. In the left panel, where the point p 
is a saddle point on the surface, we can see how, as ε increases, the horizontal slides show two curves (red color) 
that join together at p to form a unique curve. On the other hand, looking at right panel we see that the point p is 

(3)G(x,α,β) = 0

(4)Sβ = {(x,α) ∈ R
2 : G(x,α,β) = 0}
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Figure 2.   One-plus-one geometric bifurcations exhibited in three-parameter spaces. Top: The bifurcation 
surface M reaches a maximum value at ε = 0 . Exploring the surface with horizontal planes, an equivalence 
class (cyan) disappears because the limiting bifurcation curve (red circle) collapses to a point when ε = 0 (top 
right panel). Bottom: The bifurcation surface has a saddle point. Passing through ε = 0 , the bifurcation curves 
(red branches of a hyperbola) change their position with respect to the asymptotes. As a consequence, the 
equivalence class around the central point switches (bottom right panel).

Figure 3.   Two-plus-one geometric bifurcations exhibited in three-parameter spaces and subsidiary effects. In 
both cases C is a codimension-two bifurcation curve and M is a codimension-one bifurcation surface with a 
boundary along C. Left: Taking ε-slices two bifurcation curves (red) join in a unique one. Right: A bifurcation 
curve disappears after it collapses at the geometric bifurcation point.
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a maximum on the bifurcation surface. In this case, as ε increases, the horizontal slides show a unique curve (red 
color) that collapses at p and disappears. The changes on the red curve are a subsidiary effect of the codimension 
two-plus-one geometric bifurcation. Note that in both cases, the bifurcation curves that are shown in each slide 
emerge from the codimension-two point with a well-defined tangent and we can observe how, “generically”, they 
reconnect with each other or simply disappear, when the codimension-two points are no longer present. The 
former case is the one exhibited by the red curves in Fig. 1. The coupled laser model studied by Blackbeard21 also 
provides similar reconnections (see Figures 4.6 and 4.7 in his thesis). The case of spirals of bifurcations emerging 
at codimension-two bifurcation points has also been studied12,13,15,16

New scenarios arise if we reduce the dimension of the slices. Let X�1,ε1,ε2 be a three-parameter family of vector 
fields and assume that M = {(�1, ε1, ε2) : �

3
1 + �1ε2 + ε1 = 0} is a bifurcation surface. Surface M is shown in 

Fig. 4a together with a horizontal projection plane (green colors), that is, a plane corresponding to parameters 
(ε1, ε2) . On this two-dimensional parameter plane, we describe the unfolding of the geometric bifurcation. Each 
time we fix a pair (ε1, ε2) , we can consider a vertical line that will meet M at either, one, two or three points. All the 
possible behaviors are shown in Fig. 4b, although lines are depicted horizontal. If (ε1, ε2) belongs to the interior 
of region 3, i.e., the dark-green region bounded by the curve 27ε21 + 4ε32 = 0 (in red), we find three bifurcation 
points a, a′ and a′′ (Fig. 4b—line 3). When parameters (ε1, ε2) cross line 2 (Fig. 4b), a and a′ collapse at a codi-
mension–one-plus-one bifurcation displayed in the two-parameter space we obtain by fixing ε2 (see point b). The 
same occurs along line 2′ , but the collision is between a′ and a′′ instead (see point c′ ). When parameters (ε1, ε2) 
are in region 1 (Fig. 4b—line 1), we find only one bifurcation point at d, points b and c′ disappear when param-
eters cross lines 2 and 2′ , respectively. We say that there is a codimension–one-plus-two geometric bifurcation 
at (ε1, ε2) = (0, 0) . Note that Fig. 4b also shows the case corresponding to that bifurcation point itself (the pink 
point). The Z-shape, exhibited by the bifurcation curves given by the intersection between M and the vertical 
planes with ε2 < 0 fixed, should be compared with the evolution of the black curves in Fig. 1.

Remark 1  In principle, any dynamical behavior can disappear when traversing a geometric bifurcation. Consider, 
for instance, Figure 2 (top), where the dynamics within the light blue region may correspond to the presence 
of a specific attractor, potentially within a framework of multistability. However, this dynamic stops happening 
for slices where ε > 0.

Geometric bifurcations and Morse theory
Recall that a codimension-k bifurcation is generic in the set of families of vector fields dependent on a number 
of parameters larger than or equal to k, but it can be avoided in families dependent on fewer parameters. A 
codimension-k bifurcation is characterized by a set of k degeneracy conditions independent of each other and 
a set of non-degeneracy (open) conditions. Any family satisfying these conditions is said to be a generic family 
or a generic unfolding.

Let X�,ε : R
l → R

l be a C∞ family of vector fields with (�, ε) ∈ R
q × R . Assume that the family is a generic 

unfolding of a codimension-k bifurcation at (�, ε) = (0, 0) , with k ≤ q . Let M be the (q+ 1− k)-dimensional 
smooth manifold through (0, 0) where such bifurcation is exhibited.

(a) codimension (1+2) point
(b)

Figure 4.   (a) A one-plus-two geometric bifurcation. From the point (ε1, ε2) = (0, 0) two one-plus-one 
geometric bifurcation curves (red) emerge. They split the parameter space into two regions corresponding to 
non-equivalent bifurcation diagrams. (b) Vertical one-dimensional “slices”, obtained by fixing ε1 and ε2 , are used 
to explore the bifurcation diagram exhibited in the panel (a), that is, we consider the three-parameter space as a 
two-parameter family of bifurcation diagrams in a one-parameter space.
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Definition 2  We say that the bifurcation point (0, 0) in the smooth manifold M is geometrically generic with 
respect to ε if the hyperplane ε = 0 is transversal to M at (0, 0). Otherwise, we say that the bifurcation point is 
geometrically degenerate with respect to ε.

Let us recall the notion of Morse function22.

Definition 3  Given a smooth manifold M and a smooth function f : M → R , we say that a critical point p0 
of f is nondegenerate if its Hessian is nondegenerate. We say that f is a Morse function if all critical points are 
nondegenerate.

Note that if (0, 0) is geometrically degenerate with respect to ε , then (0, 0) is a critical point of the height 
function Pε : M → R defined by Pε(�, ε) = ε for each (�, ε) ∈ M.

Definition 4  We say that the geometrically degenerate bifurcation at (0, 0) has geometric codimension-one 
with respect to ε if the height function is locally a Morse function.

The condition for geometric degeneracy is the fact that (0, 0) is a critical point of the height function Pε . 
Imposing that Pε is a Morse function, we are setting a generic geometric condition. Following Wieczorek and 
Krauskopf15,16, we introduce the notion below.

Definition 5  We say that a bifurcation point has codimension n-plus-1 if it corresponds to a bifurcation of 
codimension-n from a dynamical point of view, but the same point has codimension-1 from a geometrical point 
of view.

Remark 6  To provide a theoretical framework for geometric bifurcations with codimension m, with m > 1 , one 
needs to consider m distinguished parameters (ε1, . . . , εm) . In that context, the notion of codimension n-plus-m 
bifurcation would make sense. Nevertheless, in this paper, we do not enter into this formalization. However, note 
that in the previous section we have illustrated the case of a codimension-one-plus-two geometric bifurcation.

Remark 7  For generalisations, one should go a step further with respect to classical Morse Theory and refer to 
Cerf Theory23,24 on families of real-valued functions. However, since we want this notion of geometric bifurca-
tion to reach a wide and heterogeneous audience, a deeper investigation at the theoretical level is out of the 
scope of this paper.

In the sequel we assume that q = 2 . Suppose first that there exists a codimension 1+1 bifurcation point at 
(0, 0) ∈ R

2 × R . Since the height function is a Morse function locally around (0, 0), it follows from the Morse 
Lemma that using convenient coordinates � = (�1, �2) , one can write either ε = �

2
1 + �

2
2 or ε = −�

2
1 − �

2
2 or 

ε = �
2
1 − �

2
2. In the first two cases, the level curves are circles (isolas) for ε > 0 (resp. ε < 0 ) and empty sets for 

ε < 0 (resp. ε > 0 ) (see Fig. 2(top)). We say isola-type to refer to this bifurcation. In the latter case the level 
curves correspond to a saddle case (see Fig. 2(bottom)) and we say simply saddle-type bifurcation. These two 
cases are also discussed by Wieczorek and Krauskopf15,16. The isola-type and saddle-type geometric bifurcations 
correspond to the codimension-one singularities named isola-center and simple bifurcation, respectively, by 
Golubitsky and Schaeffer19. Nevertheless, as we already mention in the introduction, there exist singularities 
which do not match any geometric bifurcation, the hysteresis point19, a codimension-one singularity, is one 
example. Any two isola-type geometric bifurcations are equivalent in the sense that, using appropriate coordi-
nates, their respective height functions can be written in a unique canonical form, either with a maximum or 
a minimum. The same can be said for saddle-type geometric bifurcations. Of course, we are assuming that the 
underlying dynamical bifurcation is the same.

Regarding codimension–two-plus-one bifurcations in three-parameter spaces, in principle, we only distin-
guish one type. Indeed, given a curve C corresponding to a codimension-two bifurcation with a folding point, 
we can apply again the Morse Lemma and choose a convenient coordinate µ along M such that ε = ±µ2 . There-
fore, the level sets are given by two points that collapse and disappear (compare with the illustration provided 
in Fig. 3). However, when we consider the bifurcation surfaces of codimension one that may emerge from C , 
different types can appear (see again Fig. 3). Note that the typology can include two cases or more, since there 
can be two or more bifurcation surfaces emerging from C , even an infinite number.

Another relevant point is to study how the different geometric bifurcations can appear in the bifurcation 
diagram of a given family of dynamical systems. We need to understand how a bifurcation surface exhibiting 
geometric bifurcations can look like. Figure 5 shows a scheme of different scenarios. A key point is the topology 
of the bifurcation surface, having one or several tubular structures or even maxima. We classify the different 2D 
manifolds using the Morse theory18,22. In all cases the value of a parameter ε on the surface is our Morse function.

The different possibilities for Morse manifolds shown in Fig. 5 are illustrated in next section, namely, the 
Hindmarsh–Rose (resp. Fitzhugh-Nagumo) model exhibits Cases I to III (resp. Case IIb). —Case I— surface is 
topologically equivalent to a cylinder, that is, a two-holes sphere. All values of ε are regular and hence the struc-
ture of the surface is the same, a single circle, for all level sets. —Case II— surface, a three-holes sphere, is called 
a “pair of pants” surface in the context of topology. In this case the Morse function given by the value of ε has a 
saddle point (the red point in the middle plot of Fig. 5). This point is a codimension–one-plus-one geometric 
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bifurcation point. In this case, the passage through the saddle corresponds to a connecting transition: two isolas 
collide in the saddle point and give rise to a unique isola. In the case shown in—Case III—, the pair of pants 
structure is broken, giving rise to two independent surfaces that disappear finally at a maximum of the surface 
when ε grows (see the blue points). This case is a two discs shape (two one-hole spheres). Again the points of 
maxima are codimension–one-plus-one bifurcation points. Finally,—Case IIb—, that we call “duck-foot surface”, 
is obtained from the combination of a “pair of pants” and a “disc” (two Morse surfaces that meet along a curve). 
Note that this case requires the existence of a codimension-two bifurcation curve (magenta color) that acts as 
a limit of the tubular structures and enables the continuation in a disc surface. Therefore a cut on a transversal 
plane gives us the picture of two isolas connected with a curve. More combinations of Morse surfaces are pos-
sible, but we only discuss the one detected in the Fitzhugh-Nagumo system.

Bifurcation surfaces include codimension-two bifurcation curves (black and blue lines) and codimension-
three bifurcation points (black points). The value of ε along the curves of codimension-two bifurcation plays a 
crucial role in the understanding of the global picture. Therefore, this parameter has a relevant “physical” meaning 
as it is assumed to be the parameter that can be changed in the system giving different phase space dynamics. All 
points along a curve of codimension-two bifurcation where ε reaches an extremum (white and green points) are 
codimension–two-plus-one geometric bifurcations.
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Figure 5.   Theoretical scheme of the different topologies (Morse classification) of the bifurcation surfaces and 
the possible geometric and dynamic bifurcations on them.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10900  | https://doi.org/10.1038/s41598-024-61574-6

www.nature.com/scientificreports/

The tubular structures exhibited by the Morse surfaces allow us to distinguish between two different types of 
bifurcation curves of codimension two: those that appear in pairs, on opposite sides of the cylinder; and those that 
appear as single curves with a fold point where they cross from one side of the cylinder to the other. All curves 
shown in Case I and those in blue color that we observed in the pair of pants of cases II and IIb are of the first 
type. The second type corresponds to the bifurcation curves in black color shown in Case II and all the curves 
in Case III. An independent case is the bifurcation curve (blue color) which is contained in the disk component 
of the Morse surface in Case IIb. In all cases, the points on the curves where ε reaches a maximum on the curves 
are codimension–two-plus-one geometric bifurcations. White points are folds with both branches contained in 
a unique side of the cylinder (or inside the disk for the Case IIb). Green points are folds where the two branches 
belong to different sides of the cylinder.

Remark 8  It is important to point out that along the red curve the-duck foot is not a regular surface. In par-
ticular, Definition 4 does not apply to the red-white point shown in the figure. However, as already mentioned, 
the duck-foot surface must be understood as two Morse surfaces glued together along a curve. Looking at the 
pair of pants, the point corresponds to a codimension–one–plus–one saddle-type geometric bifurcation (which 
explains the red color). But if one thinks in the disk, or better in the red curve, the point corresponds to a codi-
mension–two–plus–one geometric bifurcation (which explains the white color).

Let d be the distance between both sides of a tubular structure, as depicted in Fig. 5. If d is small enough, the 
two branches arising from green folds are indistinguishable and the folding point may be wrongly perceived as 
an end point. This situation happens in the fast-slow examples provided in the next section, where d is expo-
nentially small. To distinguish these “false” end points, green points are said to be “invisible folds”, in contrast 
with white points that are said to be “visible folds” (note that this situation is for d ≪ 1 ). In the next section, we 
do not include models with d big, but they would not provide any other noteworthy behavior either. Note that 
the appearance of invisible folds is linked to the formation of the “pants” or the splitting of a Morse surface in 
different components. This allows two disconnected isolas of a codimension-two bifurcation curve to meet and 
create a unique isola.

Also, note that there are infinite options to create different geometric surfaces (not regular surfaces) mix-
ing different Morse surfaces and codimension-two bifurcation curves. For example, in Fig. 6 we show some 
additional possibilities. In case (a) we illustrate the case where the bifurcation surface is broken due to different 
codimension-two curves (this situation can occur, for example, in Hopf bifurcation surfaces broken by Bogdanov-
Takens bifurcation lines). Case (b) presents the “pair of pants” ended in two maxima. Case (c) shows two “discs” 
connected by a cylinder glued together by codimension-two curves. Case (d) is built by adding more and more 
“pair of pants” with different configurations. Note that all the structures can be repeated as many times as we 
want. The final example (e) shows the case of having a codimension-2 curve that gives rise to a countable pencil 
of secondary bifurcations that split from the bifurcation line “as pages of a book” (for example, in orbit-flip or 
inclination-flip bifurcations of type C25 where countable pencils of period-doubling and fold bifurcations of 
periodic orbits occur). In all these combinations geometric bifurcations of those described above may appear.

Some models exhibiting geometric bifurcations
In this section we will consider two models that exhibit geometric bifurcations, namely, the Hindmarsh–Rose 
model and the FitzHugh-Nagumo system, showing how geometric bifurcations permit visualizing the global 
parameter space.

As discussed in the introduction, the main reason for using these models is that fast-slow systems naturally 
have distinguished parameters that dictate a specific way of exploring the parameter space, and there are sets of 
bifurcations in the parameter space where different structures are exponentially close, but note that geometric 
bifurcations may be present in a parametric exploration of any dynamical system.

The Hindmarsh–Rose model
The Hindmarsh–Rose model (1) has been deeply studied in recent years1,2,8–11,26–28 using different techniques. 
The system is particularly useful to understand the bursting phenomena and, in particular, the mechanisms of 
spike-adding. Behind these dynamics there are homoclinic bifurcations8,9,11,27,28. The global homoclinic structure 

(a) (b) (c) (d) (e)

codimension-two bifurcation  curve

Figure 6.   Some extra possibilities of mixing different Morse surfaces and codimension-two bifurcation curves.
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and also part of the tangle of bifurcations of periodic orbits that emerge from the homoclinic skeleton have been 
unveiled1,26, and this allows to explain the spike-adding processes1,10.

In most of fast-slow systems with explicit small parameters, these parameters play a significant role and under 
their variation drastic changes in the global phase space are exhibited. The HR model is a paradigmatic example 
of this fact. As the small parameter ε increases, numerous changes occur. In what follows, we show how the HR 
model exhibits geometric bifurcations with respect to ε that, linked with dynamic bifurcations, explain these 
changes. Therefore, the HR model shows how geometric bifurcations help us visualize the global bifurcation 
diagram in the parameter space.

From previous analysis1, it follows that there exist many codimension-one homoclinic bifurcation surfaces 
which are exponentially close to each other and its number grows to infinity when the small parameter tends 
to zero. Moreover, since these homoclinic surfaces are tubular, the intersection of each surface with horizontal 
planes produce isolas (closed curves). These isolas exhibit a pair of extremely sharp folds and their width is also 
exponentially small (compare with the scheme given in Fig. 5 with d ≪ 1 ). Folding points determine two differ-
ent sides in the isola and also in the bifurcation surface. Typically, for parameter values on one of the “sides” of 
the homoclinic bifurcation isola, the homoclinic orbit exhibits n spikes and, for parameter values on the another 
face, n+ 1 . This explains the notation hom(n,n+1) to refer the different isolas and surfaces. In Fig. 7 we show 
three-parameter plots showing some codimension-one homoclinic bifurcation surfaces and codimension-two 
homoclinic bifurcation curves computed using the continuation AUTO software29,30. To construct the surfaces, 
a collection of codimension-one homoclinic bifurcation curves are computed for different values of ε . In plots 
(a), (b) and (c) the hom(1,2) , hom(2,3) and hom(11,12) surfaces are given, respectively, which include Belyakov and 
Inclination-Flip codimension-two bifurcation curves. This partial bifurcation diagram illustrate, respectively, 
Cases I, II and III shown in the theoretical scheme provided in Fig. 5.

Looking for codimension–one-plus-one geometric bifurcations, we pay attention to the bifurcation surfaces 
themselves. In Fig. 7c we see how hom(11,12) splits into two disconnected components and each of them has a 
maximum (with respect to ε ). These two points are isola-type codimension–one-plus-one geometric bifurcations 
with respect to ε . Also, as shown in plot (b) for the surface hom(2,3) , a saddle-type codimension–one-plus-one 
geometric bifurcation is detected on the bifurcation surface. Most likely, isola-type codimension–one-plus-one 
geometric bifurcations are present in all homoclinic surfaces if the small parameter ε grows enough and it is no 
longer “small”. This fact explains why, as the small parameter grows, fewer bands of color appear in the 2D plots 
of Fig. 1 for the largest value of ε , indicating that the bursting orbits have fewer spikes.

On the other hand, codimension–two-plus-one geometric bifurcations correspond to folds, with respect 
to ε , that appear along curves of codimension-two homoclinic bifurcations and, as explained in the previous 
section, we distinguish between “visible” and “invisible” folds. Recall that in all two-dimensional manifolds of 
codimension-one homoclinic bifurcations we distinguish two leaves which are exponentially close (in fact the two 
leaves that form the isolas) and therefore they are indistinguishable in our visualization of the numerical results. 

hom(a)

cod-3 point

(c)(b)

b
I b I b I

homoclinic bifurcation curve

codimension (2+1) - “visible fold”     
codimension (2+1) - “invisible fold”  

codimension-three bifurcation point       
codimension (1+1) - “saddle-type”

codimension (1+1) -” isola-type”

Belyakov bifurcation curve
Inclination-Flip bifurcation curve

(1,2) hom(2,3) hom(11,12)

invisible folding curve

isola of Belyakov bifurcations

Figure 7.   Three-parameter plot showing codimension-one homoclinic bifurcation surfaces. In plots (a), (b) 
and (c) it is presented one homoclinic bifurcation surface with different number of spikes, hom(1,2) , hom(2,3) and 
hom(11,12) , respectively. Some codimension-two homoclinic bifurcation curves are shown over the surfaces and 
some geometric bifurcations are pointed.
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They glue together along curves of sharp folding marked with a red line in Fig. 7. When a curve of codimension-
two homoclinic bifurcation folds inside one of the leaves, we get a codimension–two-plus-one visible fold, but, if 
the fold is along one of the curves of folding of the whole surface (that is, going from one leaf to the another), 
and hence it is hidden for visualization, we have a codimension–two-plus-one invisible fold. Note that visible folds 
appear in pairs, one on each leaf, but invisible folds are unique points. On the surface hom(1,2) , both the Belyakov 
and the Inclination-Flip bifurcation curves show “visible” folds. On the surface hom(2,3) , the Belyakov bifurcation 
curve also undergoes a “visible” fold, but the Inclination-Flip curve presents now an “invisible” fold. And on the 
surface hom(11,12) , both curves exhibit “invisible” folds.

The phenomenon of the “invisible” folds is a direct consequence of the existence of very thin tubular structures 
(and therefore isolas when a two-parameter section is considered) where the two leaves are infinitesimally close 
each other. Thus, if a codimension-two homoclinic bifurcation curve reaches the homoclinic surface folding 
curve, then it continues to the other side because the conditions in the phase space that are required to have the 
codimension-two bifurcation are still satisfied on the other side.

In the Introduction, we show in Fig. 1 how some codimension-two points disappear, and later we also 
explain that a subsidiary effect is the fact that different curves of periodic bifurcations may connect together, as 
illustrated in Fig. 1c. Now we can connect all these phenomena with some geometric bifurcations. In Fig. 8 we 
show some codimension–two-plus-one bifurcations in the HR model increasing the parameter ε . We illustrate 
schematically the global structure before and after the codimension–two-plus-one bifurcations and how the 
size of the homoclinic isolas determines the type: “visible” or “invisible” fold. As ε increases, the first geometric 
bifurcation in Fig. 1 is a codimension–two-plus-one bifurcation that occurs on the Inclination-Flip (IF) homo-
clinic bifurcation curve. For the hom(1,2) case, as the homoclinic surface is big enough, there is a maximum of 
each of the IF curves (one on each leaf of the tubular surface), and so we have a “visible” fold and we observe the 
geometric “collision” of two pairs of IF points, one pair on each of the leaves of the homoclinic surface (the white 
points on the Figs. 5 and 7). On the contrary, for the rest of homoclinic surfaces, the IF bifurcation curves have 
“invisible” folds, as they are smaller and the surfaces are composed of isolas disconnected for small values of the 
parameter. Moreover, when n grows enough hom(n,n+1) has only one branch of the IF curve, that is, IF points are 
only present on one of the two disconnected components of the isolas for a small value of ε . In these cases, the 
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Figure 8.   Schematic processes of some codimension–two-plus-one bifurcations in the HR model increasing 
the parameter ε . On the top, SC pictures with some bifurcations illustrate the global panorama at several values 
of ε . On the bottom pictures some numerical bifurcation curves provide an outline of different ways, through 
“visible” vs. “invisible” folds, to arrive to similar global situations. Note that ε increases from left to right.
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IF point seems to disappear on the limit of a homoclinic curve, and what really happens is that it geometrically 
“collides” with the corresponding point of the another leaf of the surface that we cannot see (the green points on 
the Figs. 5 and 7). The evolution of the Belyakov curve is similar but for higher values of the small parameter ε.

Figure 8 also illustrates how codimension-one bifurcation curves arising from codimension-two bifurcation 
points are affected by the presence of a geometric bifurcation. For instance, following the surface hom(1,2) , first a 
collision of two IF points is observed (a codimension-two-plus-one geometric bifurcation) which is accompanied 
by the reconnection of two branches of period doubling bifurcation curves.

Finally, to complete the panorama of geometric bifurcations, we show in Fig. 9 how the HR model exhibits 
a codimension–one-plus-two geometric bifurcation point (compare with Fig. 4, where the ε parameter of HR 
is the parameter ε2 ). Recall that, in spite of the notion of geometric codimension two has not been formally 
introduced, we have linked that concept to conceiving the parameter space as a two-parameter family of one-
parameter bifurcation diagrams. So, when we describe this codimension–one-plus-two geometric bifurcation 
point, geometric bifurcations must be understood as tangencies or degenerated tangencies between straight lines 
in the parameter space (where the value of two parameters is fixed) and a bifurcation surface. In Fig. 9a we show 
the projection of the hom(1,2) bifurcation curve for different values of ε on the (b, I) parameter plane. The loca-
tion of the codimension–one-plus-one bifurcation points (“visible folds”) on this projection plane is given and 
we see how they form a pair of geometric bifurcation curves. These curves have a cusp-type contact giving rise 
to a codimension–one-plus-two geometric bifurcation point. A scheme of the geometry of the hom(1,2) bifurca-
tion surface is given in the two plots shown in Fig. 9b presenting a cusp catastrophe geometry giving rise to this 
codimension–one-plus-two bifurcation point (compare with the illustration provided in Fig. 4). Note that as 
the curves of homoclinic bifurcation finish cutting this codimension–one-plus-one curve, the cusp catastrophe 
surface is incomplete in some parametric regions giving just one fold point (“C” shape vs. “Z” shape). Plots in 
Fig. 9(c) show SC pictures with the hom(1,2) bifurcation curves for three values of ε to see more clearly the process, 
and illustrating the changes in the geometry of the homoclinic curves.

The FitzHugh‑Nagumo system
The FitzHugh–Nagumo system (2) has been extensively studied in the literature7,31–35. Taking s and p as bifurca-
tion parameters, it was shown7 the existence of C-shaped curves of homoclinic bifurcations (travelling waves 
in the original PDE FitzHugh-Nagumo system correspond to homoclinic orbits in system (2)). In fact it was 
observed that these C-shaped curves were isolas, that authors called “homoclinic bananas”, of an exponentially 
small wide d, that is, exhibiting sharp turning points and being d ≪ 1 (see also the explanations regarding 

Figure 9.   One-plus-one and one-plus-two homoclinic geometric bifurcations in the HR model. (a) (b, I) 
projections of the hom(1,2) bifurcation curve for different values of ε . The location of the codimension–one-
plus-one bifurcation points (“visible folds”) and the codimension–one-plus-two bifurcation point are given. (b) 
Schematic picture of the geometry of the hom(1,2) bifurcation surface presenting a cusp catastrophe geometry 
giving rise to the codimension–one-plus-two bifurcation point. (c) SC plots with the hom(1,2) bifurcation curves 
for three values of ε showing the change of their geometry.
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invisible folds in Fig. 5). They also showed how “bananas” could split due to the existence of codimension-two 
bifurcation points on the homoclinic curve that played the role of terminal points for the branches following 
after the sharp turning points. That is, a “banana split” consists of two isolas joined by a curve. Geometrical 
explanations for the sharp turns has been provided31,33,34 and the transition has been analytically described using 
geometric singular perturbation theory and blow-up techniques32.

We will show that the bifurcation diagram of system (2) with respect to parameters (α, s, ε) exhibits geometric 
bifurcations which are related with the split of the homoclinic banana.

In Fig. 10 we present a three-parameter plot of the codimension-one homoclinic hom(1,2) bifurcation surfaces 
for the system (2) with p, γ = 0 , � = 1 , and considering α , s and ε as bifurcation parameters. Plot (a) shows the 
theoretical homoclinic structure that corresponds to —Case IIb—, “duck-foot surface”, which is obtained from 
the combination of a “pair of pants” and a “disc” (see Fig. 5). In this case a codimension-two Belyakov bifurcation 
curve acts as the limit bound of the tubular structures with a secondary homoclinic (after obtaining an extra 
spike) that returns to the Belyakov points and enables the continuation in a disc surface. That is, a transversal cut 
of the structure gives an isola for large values of ε ; for an intermediate value of ε , it gives a point of generation of 
two coupled isolas that coincides with the geometric maxima of the Belyakov curve (a codimension-two-plus-
one bifurcation); and for small values of ε , it gives a set of two connected isolas, the “homoclinic banana split” 
that is described in the homoclinic literature (see also the description provided in Remark 8). Plots (b) and (c) 
provide numerical results obtained using the continuation software AUTO, and they show the homoclinic bifur-
cation curves for several values of the small parameter ε and the codimension-two Belyakov bifurcation curve. 
Plot (b) is given in the three-parameter space (α, s, ε) and apparently we only observe just one curve for each ε , 
and no loop at all, but this is due to the very small distance between the sides of the isolas ( d ≪ 1 ). In order to 
observe the isolas and the connected isolas, we have to use the AUTO L2-norm as it is shown in plot (c) using 
the parameters (α, ε) and the L2-norm.

L2-norm

Belyakov bifurcation
(”invisible” fold line)
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s

<1<d

(a) (b) (c)
codimension--two-plus-one - “saddle-type”+ “visible fold” 
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Figure 10.   Three-parameter plot showing codimension-one homoclinic hom(1,2) bifurcation surfaces for 
the FitzHugh-Nagumo system. In plot (a) it is shown the theoretical structure of the homoclinic bifurcation 
surfaces, in this case it corresponds to the “duck-foot shape” case IIb of Fig. 5. Plots (b) and (c) show the 
homoclinic bifurcation curves for several values of the small parameter ε and the codimension-two Belyakov 
bifurcation curve obtained using the continuation software AUTO. Plot (b) is given in the three-parameter space 
(α, s, ε) while plot (c) is represented by using the parameters (α, ε) and the AUTO L2-norm.
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Discussion
In this paper, partially bringing together previous studies, we introduce the concept of geometric bifurcation 
and illustrate how it appears in the prominent context of neural models. Of course, the Hindmarsh–Rose and 
FitzHugh–Nagumo systems are not unique examples. Geometric bifurcations are also expected to appear in other 
neural models and also in models coming from contexts other than Neuroscience (see examples in the already 
mentioned references12–16). As we have already mentioned, the contexts in which one can expect the appearance 
of geometric bifurcations are diverse. In the case of 3-parametric spaces explored with 2-dimensional slides (a 
scenario ubiquitous in the literature), we could find geometric bifurcations of codimension 1+1 and 2+1.

In this paper, geometric bifurcations are introduced in a very general way. The notions are given in a unified 
manner, for arbitrary families of vector fields, and the most basic concepts and results are formally introduced 
at the level of geometric bifurcations of codimension one. The two neuron models we consider are of great rel-
evance and for this reason they have been analysed in numerous papers. However, no discussion is available in 
the literature about geometric bifurcations that appear in these models when a three-parameter space is explored. 
We provide a description of these occurrences.

It should be noted that the study of geometric bifurcations may be of special interest in the framework of 
fast-slow systems, but we remark that they can be present in a parametric exploration of a dynamical system 
regardless of whether it is fast-slow or not. In this case, those parameters that modulate the slow dynamics are 
distinguished parameters. These parameters are the ones which one should fix to get 2D slices. Therefore, they 
specify a very concrete way of exploring the parameter space. In fact, it is possible to observe variations in the 
bifurcation diagrams when the distinguished parameters change, that is, signs of the presence of geometric 
bifurcations. In summary, if a multi-parameter space needs to be explored, there is no other option than to 
work with k-parameter slices with k = 1, 2 or, at most, k = 3 , and the different phenomena that we explain in 
this article could surely be present.

We formally introduce the notion of geometric bifurcation. In particular, we utilize a terminology (codi-
mension n-plus-m) that emphasizes the distinction between bifurcations in families of dynamical systems and 
in “families of families”. Moreover, we studied the geometric bifurcations of codimension–one-plus-one and 
two-plus-one in three-parameter spaces. Additionally, we described a codimension–one-plus-two geometric 
bifurcation. We were able to explain the appearance of different geometric bifurcations by the combined use of 
the Morse classification of 2D manifolds and bifurcation theory.

Finally, we conclude that this approach provides a nice tool to explain the different changes observed in the 
phase plane when changing a parameter (like in real systems) as a mixture of dynamic and geometric bifurcations.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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