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A privacy‑preserving publicly 
verifiable quantum random number 
generator
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James A. Grieve 1,2, Rodrigo Piera 2 & Alexander Ling 1,3

Verifying the quality of a random number generator involves performing computationally intensive 
statistical tests on large data sets commonly in the range of gigabytes. Limitations on computing 
power can restrict an end-user’s ability to perform such verification. There are also random number-
based applications where an honest user needs to publicly demonstrate that the random bits they are 
using pass the statistical tests without the bits being revealed. Here, we report the implementation of 
an entanglement-based protocol that allows a third party to publicly perform statistical tests without 
compromising the privacy of the random bits.

Generating random numbers that are private, secure, and have the statistical properties expected of a uniform 
randomness distribution is a crucial step for many computational tasks. For example, scientific simulations1, 
self-testing quantum systems2, randomized algorithms3,4, machine learning5, cryptography6,7, lottery, gambling, 
public tenders, computer games, utilize random numbers during initialization of the systems or during operation. 
Pseudo-random number generators (PRNG) based on algorithms can have good statistical properties resembling 
a uniform source, but strong long-range correlations exist in the output that may undermine the applications 8, 
or introduce security loopholes. This is because the seed to the PRNG is the only entropy in the system, and 
entropy cannot be increased by deterministic computation. Quantum random number generators (QRNG) 9,10 
have been proposed as an alternative where entropy is extracted from a quantum mechanical process.

All random number generators, however, face two common problems. First, the user may lack sufficient 
computational capacity to perform the statistical tests11–13 needed to certify the quality of the randomness. Sec-
ond, in public-facing applications, such as lottery or public tenders, the owner of the QRNG device may have to 
prove the statistical quality of the bits to public stakeholders before the bits are used. These problems require a 
solution which allows a user to publicly test their random bits without revealing them.

We propose that a publicly testable random number generator14 can be constructed if the device could gener-
ate correlated streams of random bits. A public tester performs arbitrary statistical tests on one of the bit streams 
to certify its randomness properties. By construction, this extends certification to the other output streams that 
are not shared with the verifier. Here, we only consider an honest user who wants to test the statistical quality 
of the generated random bits using external testing facilities. If the external testing facility acts as a certification 
authority then it allows the random bits from the user to be certified for public facing applications.

In this manuscript, we report the implementation of a QRNG using only a polarization-entangled photon 
pair source, and linear optics. This implementation satisfies the conditions of secrecy and public testability.

Constructing a publicly verifiable QRNG
A publicly verifiable QRNG should have the following properties.

•	 Property 1: The source of the entropy is of quantum origin.
•	 Property 2: The quality of the QRNG output is publicly verifiable without compromising the secrecy of the 

final output bits.

In the following sections, we describe the steps for demonstrating a publicly verifiable QRNG.
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A protocol for publicly verifiable quantum random number generator
Property 1 is satisfied when an entanglement-based QRNG demonstrates that the source is producing a stream 
of entangled states and the random output is generated from the outcome of projective measurements on these 
entangled qubits. Here, the entanglement can be verified using Bell inequalities15. In our implementation below 
we use the CHSH inequality to ensure that Property 1 is satisfied.

A QRNG that produces a single stream of bits cannot be publicly verified without completely losing its 
secrecy. One needs a solution with at least two streams of bits, denoted XA and XB , that are correlated in a way 
that publicly verifying the randomness of stream XA ensures the quality of the stream XB . However, the protocol 
must ensure that their mutual information I(XA,XB) = 0 . Once achieved, the bit stream XB can serve as securely 
validated private randomness for public use. When this is achieved, the bit stream XB can be securely used as a 
publicly verified private randomness.

In our protocol, the QRNG produces three streams of random bits that are correlated. One of the bit streams 
is subjected to public randomness testing. As the streams are correlated this public randomness test verifies the 
quality of randomness in the other two unrevealed bit streams. This satisfies Property 2.

To achieve Property 1 and 2, we prepare a tripartite entangled state,

This state exhibits the interesting property that performing a projective measurement in the computational basis 
on any one of the qubits projects the combined state of the other two qubits to either of two Bell states. As an 
example, if we measure qubit A in the computational basis the BC system is projected onto either Bell states, 
|�−

BC� or |�−
BC�,

Qubits prepared in a Bell state produce random outcomes when measured individually. The monogamy of 
entanglement16 ensures that this measurement outcome is not correlated to any outside system. Therefore, the 
outcome of the system BC cannot be predicted even if one has access to the outcome of A.

Consider a single copy of the state (1). We perform a projective measurement in the computational basis on 
the three subsystems of the state. Let xA, xB and xC denote the outcomes of projective measurement of the three 
subsystems, A, B and C in the computational basis. They can be considered as bit valued random variables taking 
their values with probabilities from Table 1.

By construction of the state |�ABC� the outcomes always satisfy,

where ⊕ is the addition modulo 2 operator.
Table 1 shows that the marginal probability distribution for xA is, p(xA = 1) = p(xA = 0) = 1/2 . Also, xB 

and xC have similar marginal distribution. Therefore, if we consider each of the three bits individually then they 
have maximal Shannon entropy,

From Table 1 we see that in the absence of knowledge of any one bit, the two other bits become completely 
uncorrelated with each other. That is, their marginal distribution can be factorized. Therefore, their mutual 
information is 0,

For random number generation, n copies of the state |�ABC� is prepared as in (1) and each of the three parts 
of the state is measured in the computational basis. The outcomes are recorded in bit strings XA,XB and XC of 
lengths n. From our discussion so far, we see that each of the bit strings valued random variable XA,XB and XC 
takes the value from strings in {0, 1}n uniformly at random.
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(4)xA ⊕ xB ⊕ xC = 0

(5)H(xA) = H(xB) = H(xC) = 1.

(6)I(xA, xB) = I(xB, xC) = I(xC , xA) = 0.
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Protocol: (PV-QRNG) Publicly verifiable QRNG
Input: n copies of the state |�ABC〉 prepared as in (1).
Output: Publicly verified private random bits and QBER, or Fail.

1: procedure GENERATE() {Performed by the user}

2: Measure each part of the state |�ABC〉 in computational basis and store the outcome of system A in xA, B in xB and C in

xC.
3: Repeat step 2 for n times to construct bit strings XA,XB and XC.
4: Assign, L= {i : s.t. XA[i]⊕XB[i]⊕XC[i] �= 0}, the set of indices where the XOR condition of (4) fails.

5: Assign, � = |L|
n . This quantifies the QBER.

6: Create X ′
A,X ′

B and X ′
C from XA,XB and XC respectively by removing elements with indices i ∈ L.

7: Send X ′
A to public verifier.

8: end procedure

9: procedure VERIFY() {Performed by the public verifier}

10: Run randomness tests on X ′
A. If the test fails output ‘Fail’, else output ‘Pass’.

11: end procedure

12: procedure OUTPUT() {Performed by the user}

13: Receive output from public verifier.

14: If the verifier output is ‘Fail’ then ouptut ‘Fail’ and abort protocol, else, output X ′
B and � , and securely store or delete X ′

C.
15: end procedure

Protocol (PV-QRNG) Publicly verifiable QRNG
From the preparation, each copy of the state (1) is independent. Therefore, the condition (6) ensures that the 

random variables XA,XB and XC are pairwise mutually independent. That is,

The string XA is provided to a public verifier that validates the string via statistical tests. If XA passes the ran-
domness test, condition (5) ensures the quality of randomness of XB and XC . As the verifier only has access to 
XA , the condition (7) ensures that no information is leaked about XB or XC . However, following (4), knowledge 
of any two bit strings would allow recovery of the third string. Therefore to satisfy Property 2, either XB or XC 
should remain inaccessible.

Imperfections in any practical implementation will lead to (4) not being always satisfied. Counting the number 
of events that do not meet the XOR condition (4) provides the quantum bit error rate (QBER). Removing the 
erroneous triplet of outcomes from XA,XB and XC gives X ′

A,X
′
B and X ′

C each of length m that satisfy,

where ⊕ denotes bit-wise addition modulo-2 operation.
At this point the user sends X ′

A to the public verifier for statistical randomness testing. If the verification fails 
then the user will discard the data and start over. If the verification succeeds then the user uses X ′

B as private 
randomness and securely stores or deletes X ′

C . The presence of positive QBER (protocol output δ ) indicates infor-
mation leakage to the environment. The user may use the QBER information to perform further randomness 
extraction to amplify the privacy (similar to privacy amplification17 in quantum key distribution).

The workflow of the protocol is depicted in Fig. 1 and the detailed steps are listed in Protocol PV-QRNG.

The experimental setup
A source of non-degenerate entangled photon pairs, following the design demonstrated in [18], produces photon 
pairs in the Bell state |φ−� = 1√

2
(|HH� − |VV�) . Here |H� denotes horizontal polarization and |V� stands for 

vertical polarization. The photon pairs, coupled to a single mode fiber (SMF) are guided to the detection setup 
(see Fig. 2) where the signal photons ( � = 780nm ) are separated from the idler photons ( � = 842nm ) with the 
help of a dichroic mirror (DM). Stacks of quarter-half-quarter waveplates correct for the change in polarization 
state caused by birefringence in the SMF. The signal photons are directed to a polarizing beam splitter (PBS3) 
which performs a projection measurement in the H/V basis (horizontally polarized photons are transmitted, 
vertically polarized photons are reflected). The output ports of PBS3 define the bit xC . If the photon is detected 
at D5, xC = 0 , and if it is detected at D6, xC = 1 . The idler photons encounter a non-polarizing beam splitter 
(BS). The photons are either transmitted or reflected at the BS with equal probability. This choice of path defines 
the bit xA . Each output port of the BS consists of polarizing beam splitters (PBS1 and PBS2) and detectors. Acting 
similarly as PBS3, PBS1 and PBS2 are used to define the bit xB . To illustrate, if the photon is transmitted at the 
BS and detected at D1, then xA = 0 and xB = 0 . If it had been detected at D2, in that case, xA = 0 and xB = 1 . 
However, if the photon was reflected at the BS and detected at D3, then xA = 1 and xB = 1 . Similarly for a detec-
tion in D4, xA = 1 and xB = 0 . Note here that the outcome labels for PBS2 have been flipped, which is akin to a 
local rotation of π/2 on the reflected path of the BS.

Due to polarization entanglement between the signal and idler photons, coincidence events are only expected 
to occur between the following detector pairs with equal probability: D1 and D5, D2 and D6, D3 and D5, D4 
and D6. Together with xA determined from the choice of output port of BS, and flipping of the outcome labels 
of PBS2, the state in Eq. (1) can be realized. If the idler photons are transmitted at the BS, the photon pairs exist 
in state |φ−

BC� , while if they are reflected at the BS, the local π/2 rotation implemented by flipping the outcome 
labels of PBS2, projects the photon pairs into state |ψ−

BC�.

(7)I(XA,XB) = I(XB,XC) = I(XC ,XA) = 0.

(8)X ′
A ⊕ X ′

B ⊕ X ′
C = 0,
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Figure 1.   The QRNG outputs three correlated streams of random bits XA,XB and XC . Using them the quantum 
bit error rate (QBER), δ is estimated and the error triplet of bits are removed to generate X ′

A
,X ′

B
 and X ′

C
 . After 

this, X ′
A

 is sent to public verifier. X ′
C

 is stored securely or deleted. Verifier runs randomness tests on X ′
A

 . If the 
test fails the protocol is aborted, else user outputs X ′

B
 and δ . In this flowchart only the grey box is performed by 

the verifier, all other steps are performed by the user.

Table 1.   Probability p(xA, xB, xC) , of measurement outcomes xA , xB and xC when each of the qubits A, B 
and C are subjected to projective measurement in the computational basis. If any one of the output columns 
is removed the remaining two columns show uniform distribution of two bits, indicating they are mutually 
independent. Outcomes that are not presented in the table have probability 0.

p(xA, xB, xC) xA xB xC

1/4 0 0 0

1/4 0 1 1

1/4 1 0 1

1/4 1 1 0

Figure 2.   The detection setup. The boldfaced numbers represent the bit values encoded by the path of photons 
and define the bit streams XA , XB and XC . Entangled photons are launched from a single mode fiber (SMF) and 
separated according to wavelengths by dichroic mirror (DM). The polarization state of the photons in both paths 
are corrected by a stack of waveplates (Compensation plates). The output of the beam splitter (BS) generates XA . 
Polarizing beam splitters PBS1 and PBS2 generate XB . XC is generated by PBS3.
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Proof of entanglement
Generating a high fidelity Bell state is crucial to prepare the state (1) which preserves the secrecy of XB and XC . 
Any QBER observed in the measurement outcome indicates the leakage of information to the environment and 
has to be taken care of in the privacy amplification step. (See, Section Privacy Analysis)

In the experimental setup (Fig. 2, halfwave plates were placed before BS and PBS3 to measure the visibility 
curves (Fig. 3) from which the CHSH15 values can be computed18. The detailed experimental setup for CHSH test 
and all the visibility curves are given in the supplementary information. The CHSH value for the state measured 
by systems (D1,D2) and (D5,D6) was 2.70± 0.04 , while the value for the state measured by systems (D3,D4) 
and (D5,D6) was 2.72± 0.04.

Randomness testing results
We perform the statistical randomness test suite ‘dieharder’19 on random numbers generated using our implemen-
tation of Protocol PV-QRNG. This is to verify that the system is indeed generating good quality randomness. 
In dieharder, hundreds of hypothesis tests are performed on the input data set. If the input is random then the p 
values of these tests remain within the range [0.01, 0.99]. Although a thorough verification of randomness would 
require larger size of data and significantly more computational resource, our limited test shows that the data is 
very close to an ideal randomness source. The system is compatible for running extensive tests by any third party 
certification process. Using the computed p values Kolmogorov–Smirnov (KS) test20 is performed. Figure 4 shows 

Figure 3.   (a) Coincidences between (D1,D2) and D5, with visibilities of 0.988± 0.006 , 0.971± 0.009 , 
0.967± 0.009 , 0.96± 0.01 for the H, D, V and A bases respectively. (b) Coincidences between (D3,D4) and 
D5, with visibilities of 0.989± 0.005 , 0.969± 0.005 , 0.976± 0.008 , 0.96± 0.01 for the H, D, V and A bases 
respectively. The visibilities for the coincidences between D1-4 and D6 (shown in supplementary material) are 
lower but are all above 0.93.

Figure 4.   Result of the KS-test20. In this qualitative test p values obtained from the results of the dieharder test 
suite are sorted and plotted (blue line) against uniformly distributed values over the interval [0,1] (black dashed 
line). The orange line depicts the result from the tests run on an equal size of data obtained from QRNG1 21 of 
S-Fifteen Instruments. The curves imply that our QRNG exhibits close to ideal expected performance.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11337  | https://doi.org/10.1038/s41598-024-61552-y

www.nature.com/scientificreports/

a result for KS test that is performed on 1 MB of generated random bits. We run the same test on 1 MB of data 
from quantum random number generators by S-Fifteen Instruments21 and show it in the figure for comparison.

Privacy analysis
In a practical setup, instead of getting the ideal state |�ABC� from (1), one might get a mixed state ρABC such that,

where, F is the fidelity, and ε > 0.
This deviation from the ideal state will cause the the post measurement states to deviate from the ideal Bell 

states and show up as violation of the XOR condition (4). To be more precise, If we perform projective measure-
ments on system A in the computational basis and keep the system BC untouched. The measurement operators 
can be defined as,

for outcomes x ∈ {0, 1} . And the post measurement states for system BC, would be

We analyze the privacy of the state ρ0
BC and the argument for ρ1

BC follows by symmetry.
The state ρ0

BC can be written as,

where with probability p instead of getting the maximally entangled state |�−
BC� we get a maximally mixed state.

Now, if we measure systems B and C of ρ0
BC in computational basis then with probability p/2 the outcome 

would not match the expected outcome from |�−
BC� . Therefore, QBER = p/2 . We can estimate p from the experi-

mental measurements.
A non-zero QBER can be interpreted as information leakage out of the BC system. We can purify the state 

ρ0
BC with environment E to get the purified state, |φBCE� , where

From Protocol PV-QRNG we see that the output private bits are generated from system B. Thus, to estimate 
the number of private random bits that can be extracted from this system we can use the privacy analysis of an 
entanglement based quantum key distribution system between system B and C. With the exception, that the 
error correction step is perform by the user who has access to both B and C systems’ outcomes. Therefore, there 
is no leakage due to error correction. Moreover, the user can compute the population mean using the whole data 
set and does not have to reveal any public subset. All we need to estimate is the information leakage into the the 
environment E that reduces the privacy of the local outcomes of system B and C. Applying tight finite key analy-
sis 22 in this scenario, we get that, from an output of length n of the Protocol PV-QRNG, at least n(1− h(QBER)) 
private random bits can be extracted, where h is the binary entropy function. This matches the asymptotic limit 
because for large n (for example, n ≈ 106 ) the finite size effect is negligible.

Discussion and future direction
We have presented a QRNG source where the source stream can be subjected to public statistical randomness 
testing without compromising the secrecy of the final output bits. Any change in detector efficiencies can be 
locally checked before sending out for public randomness testing. This allows the user to remove statistical bias 
in the bit strings to avoid information leakage. Along with robust miniaturized polarization entangled photon-
pair sources, this setup can be built into a publicly verifiable QRNG source as a commercial off-the-shelf (COTS) 
product. Additionally, our entanglement based design can be extended to operate as a source device-independent9 
publicly verifiable and auditable QRNG.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the corresponding author upon reasonable request. The supplementary information file contains additional 
analysis of the data.
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