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Identification of Mycobacterium 
abscessus using the peaks 
of ribosomal protein L29, L30 
and hemophore‑related protein 
by MALDI‑MS proteotyping
Satomi Takei 1,2, Kanae Teramoto 2,3, Yuji Sekiguchi 4, Hiroaki Ihara 2,5, Mari Tohya 6, 
Shinichi Iwamoto 7, Koichi Tanaka 7, Abdullah Khasawneh 1, Yuki Horiuchi 1, Shigeki Misawa 2,8, 
Toshio Naito 2,9, Teruo Kirikae 2,10, Tatsuya Tada 6* & Yoko Tabe 1,2

Mycobacteroides (Mycobacterium) abscessus, which causes a variety of infectious diseases in humans, 
is becoming detected more frequently in clinical specimens as cases are spreading worldwide. 
Taxonomically, M. abscessus is composed of three subspecies of M. abscessus subsp. abscessus, 
M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense, with different susceptibilities to 
macrolides. In order to identify rapidly these three subspecies, we determined useful biomarker 
proteins, including ribosomal protein L29, L30, and hemophore‑related protein, for distinguishing the 
subspecies of M. abscessus using the matrix‑assisted laser desorption/ionization mass spectrometry 
(MALDI‑MS) profiles. Thirty‑three clinical strains of M. abscessus were correctly identified at the 
subspecies‑level by the three biomarker protein peaks. This study ultimately demonstrates the 
potential of routine MALDI‑MS‑based laboratory methods for early identification and treatment for M. 
abscessus infections.

Members of the Mycobacteroides (Mycobacterium) abscessus cause various infectious diseases in humans that 
are spreading worldwide, including infections of the lungs, lymph nodes, skin, soft tissue, and  bone1–3. However, 
treatment for M. abscessus infections are difficult due to their natural multidrug  resistance4. The American Tho-
racic Society (ATS) and Infectious Disease Society of America (IDSA) recommended multidrug therapy based 
on macrolide in their 2007  guidelines5–7. Notably, the 2020 guideline from ATS, European Respiratory Society 
(ERS), European Society of Clinical Microbiology and Infectious Disease (ESCMID), and IDSA recommended 
the choice of antibiotics depending on the presence of the 23S rRNA methylase encoding gene, erm (41), and 
mutations in the 23S rRNA (rrl)  gene8,9.

M. abscessus has been taxonomically reclassified many times and is now composed of three subspecies groups: 
M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense10,11. Members of 
the M. abscessus subsp. abscessus and M. abscessus subsp. bolletii are known to be mostly resistant to macrolide 
because these subspecies produce the 23S rRNA methylase Erm (41). On the other hand, M. abscessus subsp. 
massiliense is known to be relatively susceptible to macrolide because susceptible strains have a frameshift 
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mutation in the 23S rRNA methylase Erm (41)12. Therefore, it is important to distinguish M. abscessus strains at 
the subspecies-level in  treatment13,14.

In general, M. abscessus can be characterized at the subspecies-level by sequencing genes relevant to phylogeny 
and antibiotic resistance, such as 16S rRNA, erm (41), hsp65, and rpoB15,16. However, sequencing such genes is 
complicated and time-consuming. To solve these problems, GenoType NTM DR (Bruker Daltonik, Germany) 
was developed in  201617. The GenoType NTM DR is a PCR-based test capable of identifying M. abscessus sub-
species and detecting clarithromycin or amikacin resistance without sequencing 5  h18.

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can rapidly measure the mass 
of intact microbial constituents, such as proteins, with minimal sample pretreatment and can be used for the 
identification of microorganisms in the clinical laboratory on a routine  basis19. The MALDI-MS-based method is 
considered rapid and highly accurate for the identification of species including rapidly growing mycobacterium 
(RGM) in clinical  laboratories20. On the other hand, commercially available MALDI-MS microbial identifica-
tion systems, such as Biotyper (Bruker Daltonik) and VITEK-MS (bioMerieux, France), have been exclusively 
designed for the identification of strains at the genus or species level, but it is difficult to distinguish the subspecies 
using these systems. Previous studies report that the three subspecies of M. abscessus can be distinguished by 
subspecies-specific MS peaks using the principal component analysis and machine learning of MALDI-MS20,21, 
but the biomarker peaks for some isolates of M. abscessus subsp. abscessus and M. abscessus subsp. massiliense 
are too similar and therefore hard to distinguish at the subspecies-level22–26.

In this study, we developed new criteria for the MALDI-MS proteotyping of M. abscessus, allowing for 
subspecies-level discrimination. Potential biomarker mass peaks were carefully selected in MALDI-MS meas-
urements using cultures including all M. abscessus subspecies. Corresponding protein sequences of these peaks 
were inferred from the masses of the proteins theoretically encoded in the genome of each type strain. We 
newly detected some strong mass peaks that characterize the strains of M. abscessus at the subspecies-level. 
The detection of these peaks was then used as criteria for characterizing 33 clinical M. abscessus isolates at the 
subspecies-level. The present study contributes to the exact subspecies identification of M. abscessus strains in 
routine microbiological examinations and paves the way for early determination of treatment strategies.

Results
Clinical features and drug‑resistant genes of M. abscessus
The 33 clinical strains of M. abscessus were isolated from 2013 to 2019 at Juntendo University Hospital. The 
whole-genomes of the 33 M. abscessus were sequenced using MiSeq. According to the latest method for distin-
guishing between different M. abscessus subspecies using average nucleotide identity (ANI), 16S rRNA, rpoB, 
hsp65, and erm  genes15,27, we obtained clinical isolates of 22 M. abscessus subsp. massiliense and 11 M. abscessus 
subsp. abscessus. There were no clinical isolates of M. abscessus subsp. bolletii in this study. The detailed infor-
mation of ANI, 16S rRNA, rpoB, hsp65, and erm genes are shown in Table S1. The results indicate that the M. 
abscessus subspecies cannot be distinguished using ANI or sequence of each gene.

The susceptibilities of these isolates to various antibiotics were tested using the microdilution method as 
described by the guidelines of the Clinical and Laboratory Standards  Institute28. MICs of clarithromycin were 
determined at an early reading time (ERT) and a late reading time (LRT) for detecting the inducible macrolide 
resistance. Among the 11 M. abscessus subsp. abscessus isolates, one isolate was resistant to clarithromycin at the 
ERT, 8 were resistant to clarithromycin at the LRT, 3 were resistant to imipenem, and all 11 were susceptible to 
amikacin. The 9 clarithromycin-resistant isolates at the ERT and/or LRT had T28 erm (41) sequevar, whereas the 
remaining 2 clarithromycin-susceptible isolates had C28 erm (41) sequevar (Supplementary S2).

Among the 22 M. abscessus subsp. massiliense isolates, 2 isolates were resistant to clarithromycin at both the 
ERT and LRT, 8 were resistant to imipenem, and all 22 were susceptible to amikacin (Table 1). The 2 clarithro-
mycin-resistant isolates at the ERT and/or LRT had a point mutation in rrl gene with an A2058C substitution in 
its 23S rRNA (Supplementary Table S2).

Our study revealed that 72.7% of M. abscessus subsp. abscessus isolates were resistant to clarithromycin 
whereas 9.1% of M. abscessus subsp. massiliense isolates were resistant to clarithromycin.

Table 1.  Drug susceptibility profiles in clinical isolates of Mycobacterium abscessus (N = 33). Breakpoints for 
antimicrobial resistance were determined according to CLSI guidelines. *ERT: early reading time (reading on 
the 5th day). **LRT: late reading time (reading on the 14th day).

Subspecies Antibiotics reagent
Breakpoint for resistance 
(μg/ml) No. of resistant isolates (%)

MIC (μg/ml)

Range MIC50 MIC90

M. abscessus subsp. abscessus 
(N = 11)

Clarithromycin ERT*  ≥ 8 9.1 0.0625–128 0.25 1

Clarithromycin LRT**  ≥ 8 72.7 0.0625–128 128  > 128

Amikacin  ≥ 64 0 4–16 8 16

Imipenem  ≥ 16 27.3 4–16 8 16

M. abscessus subsp. massiliense 
(N = 22)

Clarithromycin ERT*  ≥ 8 9.1 0.0625–128 0.0625 0.0625

Clarithromycin LRT**  ≥ 8 9.1 0.0625–128 0.0625 0.25

Amikacin  ≥ 64 0 0.125–16 8 16

Imipenem  ≥ 16 36.4 0.0625–16 8 16
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MALDI‑MS from type strains of M. abscessus
The observed peaks of the three M. abscessus subspecies using MALDI-MS are shown in Fig. 1. Table 2 sum-
marizes the assigned proteins by MALDI-MS, together with the calculated and observed masses. Nineteen 
detected peaks were assigned with annotated proteins and reproducibility (Fig. 1; Table 2). Of these 19 anno-
tated proteins, 14 proteins were ribosomal subunit proteins. The three biomarkers, including L29, L30 and 
hemophore-related protein, are able to distinguish the three subspecies of M. abscessus from the 19 annotated 
proteins. The peaks of M. abscessus subsp. abscessus and M. abscessus subsp. bolletii isolates were detected at m/z 
8780.9 as ribosomal protein L29, whereas M. abscessus subsp. massiliense isolates were detected at m/z 8766.9. 
Moreover, the peaks of M. abscessus subsp. abscessus and M. abscessus subsp. massiliense isolates were detected 
at m/z 6795.9 as ribosomal protein L30, whereas M. abscessus subsp. bolletii isolates were detected at m/z 6765.9. 
Finally, the peaks of M. abscessus subsp. abscessus and M. abscessus subsp. bolletii isolates were detected at m/z 
9473.8 as hemophore-related protein, whereas M. abscessus subsp. massiliense isolates were detected at m/z 
9500.3 (Fig. 2). Analysis by MALDI-8020 and Microflex LT/SH revealed that the peaks of ribosomal protein 
L29, L30, and hemophore-related protein from the three subspecies cultured in 5% sheep blood agar (Becton, 
Dickinson-Diagnostic Systems, Sparks, MD, USA) were identical to those cultured in Middlebrook 7H11 Agar 
plates (Becton, Dickinson-Diagnostic Systems) (Supplementary Tables S3 and S4).

When compared with the amino acid sequences of these three proteins in M. abscessus subsp. abscessus, 
an amino acid substitution was observed at position 5 of L29 from Ile to Val (Ile5Val) in M. abscessus subsp. 
massiliense, at position 12 of L30 from Thr to Ala (Thr12Ala) in M. abscessus subsp. bolletii, and at position 90 
of hemophore-related protein from Lys to Arg (Lys90Arg) in M. abscessus subsp. massiliense (Fig. 3). The amino 
acid substitutions of Ile5Val, Thr12Ala, and Lys90Arg were unique in M. abscessus subsp. massiliense, M. absces-
sus subsp. bolletii, and M. abscessus subsp. massiliense, respectively.

These results indicate that L29, L30, and hemophore-related protein can be biomarkers to distinguish the 
three subspecies of M. abscessus.

The peaks of L29, L30, and hemophore‑related protein in clinical isolates
The evaluation of L29, L30, and hemophore-related protein using 33 clinical strains of M. abscessus shows the 
peaks of 11 M. abscessus subsp. abscessus isolates at m/z 8780.9 as L29 and at m/z 9473.8 as hemophore-related 
protein, and the peaks of 20 M. abscessus subsp. massiliense isolates were detected at m/z 8766.9 as L29 and at m/z 
9500.3 as hemophore-related protein. The remaining 2 isolates of M. abscessus subsp. massiliense were detected at 
m/z 8766.9 as L29 and at m/z 9473.8 as hemophore-related protein (Table 3). The condition of these evaluations 
was conducted in Middlebrook 7H11 Agar plates by MALDI-8020.
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Figure 1.  Representative mass spectra of M. abscessus. Red, green, and blue spectra are M. abscessus subsp. 
abscessus (ATCC  19977T), M. abscessus subsp. bolletii (JCM  15297T) and M. abscessus subsp. massiliense (JCM 
 15300T), respectively. Mass spectra and observed proteins from m/z 4000 to 12,000 were merged. The peaks 
marked with asterisks indicate the assigned peaks based on calculated masses within the tolerance at 500 ppm.
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Phylogenetic analysis and cluster analysis
A genome-based phylogenetic tree was classified into the three groups of M. abscessus subsp. abscessus, M. 
abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Furthermore, 2 isolates with peaks at m/z 9473.8 
as hemophore-related protein shown in Table 3 were subclassified in the M. abscessus subsp. massiliense group 
(Fig. 4A).

A cluster analysis using the MALDI-MS data reveals that M. abscessus subsp. abscessus, M. abscessus subsp. 
bolletii, and M. abscessus subsp. massiliense are classified into the three groups (Fig. 4B). The phylogenic trees 
based on whole-genome and cluster analysis are identical.

Discussion
MALDI-MS proteotyping is useful for accurate and rapid identification of M. abscessus subspecies, compared to 
sequencing using ANI, 16S rRNA, rpoB, hsp65, and erm genes or GenoType NTM-DR. While GenoType NTM-
DR was developed for identifying M. abscessus subspecies and for determining resistance against clarithromycin 
and amikacin in  201618, this method does not seem to be prevalent in clinical laboratories.

The prediction of the theoretical protein masses based on genomes of M. abscessus is useful for detecting 
the biomarker peaks using MALDI-MS. The theoretical protein mass database will accurately identify bacterial 
strains at the species to subspecies levels based in which correct identification for > 90% of measured spectra 
using MALDI-MS29. This approach can easily predict MALDI-MS spectra based on genome sequences from 
cultured and uncultured strains rather than experimentally acquired spectra. In this study, 19 detected peaks 
could be assigned with annotated proteins and 3 of 19 biomarker peaks, including ribosomal L29, L30 and 
hemophore-related protein, were screened as biomarkers for detecting subspecies of M. abscessus. Although 
we need to validate the identification for the other Mycobacterium in future, the closely related Mycobacterium 
species will not affect the identification of M. abscessus subspecies, because the amino acids of L29, L30 and 
hemophore-related protein are different.

Ribosomal protein L29, L30, and hemophore-related protein will be useful candidates as biomarkers for 
detecting subspecies of M. abscessus. Many of the peaks of MALDI- MS are derived from the ribosomal proteins, 
but it is difficult to extract and detect the protein fragments that require additional sample preparation for some 
microorganisms such as Mycobacterium spp.30. In the previous reports, the specific peaks of M. abscessus are 
distinct due to differences in sample preparation, mediums, and the instruments  used25. In this study, all samples 
were crushed by a high-speed homogenizer and frozen according to the recommended methods in previous 
 reports22,25. It has been reported that freezing the samples prior to MALDI-MS analysis effectively damages the 

Table 2.  Annotated peaks of type strains of Mycobacterium abscessus.  *Not assigned.

Biomarker 
proteins

Subspecies

Mycobacterium abscessus subsp. abscessus ATCC 
 19977T

Mycobacterium abscessus subsp. bolletii JCM 
 15297T

Mycobacterium abscessus subsp. massiliense JCM 
 15300T

Calculated 
masses (m/z) Average SE

Peak numbers 
(n = 5)

Calculated 
masses (m/z) Average SE

Peak numbers 
(n = 5)

Calculated 
masses (m/z) Average SE

Peak numbers 
(n = 5)

L36 4371.3 4372.0 0.18 5 4371.3 4369.8 0.37 5 4371.3 4373.0 0.36 5

L34 5460.4 5461.0 0.36 3 5460.4 5460.6 0.44 5 5460.4 5462.2 0.37 4

L33 2 6310.2 6310.8 0.24 5 6310.2 6310.7 0.43 5 6310.2 6311.1 0.40 5

L32 6423.5 6423.7 0.23 5 6423.5 6423.7 0.44 5 6423.5 6424.7 0.37 5

L28 6729.7 6729.6 0.16 5 6729.7 6730.6 0.39 5 6729.7 6731.2 0.42 5

L30 6795.9 6796.5 0.18 5 6765.9 6767.4 0.43 5 6795.9 6797.3 0.38 5

S14 type Z 6781.1 6782.3 0.17 5 6781.1 6782.3 0.40 5 6781.1 6782.9 0.25 5

Pup 6852.2 6853.6 0.24 5 6824.1 6825.8 0.38 5 6852.2 6854.9 0.33 5

L35 7092.2 7092.1 0.39 2 7092.2 7093.2 0.44 5 7092.2 7092.9 0.57 5

Probable cold 
shock protein A 7199.9 7201.0 0.17 5 7199.9 7201.8 0.42 5 7199.9 7202.1 0.33 5

L31 8123.2 8122.3 0.29 5 8123.2 8125.3 0.37 5 8123.2 8122.1 0.64 3

Translation 
initiation factor 
IF-1

8358.7 8358.4 0.28 5 8358.7 8361.9 0.48 5 8358.7 8359.0 0.86 2

L29 8780.9 8781.0 0.21 5 8780.9 8784.5 0.43 5 8766.9 8768.1 0.24 5

L27 8838.0 8838.7 NA* 1 8838.0 8842.6 0.77 5 8838.0 8840.1 0.48 5

S18 2 9153.7 9152.6 0.19 5 9153.7 9152.8 0.43 5 9153.7 NA NA 0

S20 9348.8 9348.9 0.08 5 9348.8 9353.0 0.52 5 9348.8 9350.7 0.28 1

Hemophore-
related protein 9473.8 9473.2 0.22 5 9473.8 9477.3 0.44 5 9500.3 9502.4 0.35 5

S15 10,279.0 NA NA 0 10,279.0 10,283.9 0.58 5 10,279.0 10,281.2 0.47 5

10 kDa chap-
eronin 10,559.9 10,561.3 0.29 5 10,559.9 NA NA 5 10,559.9 10,564.6 0.31 5
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bacterial cells for detecting MS  peaks31. The peaks of L29, L30, and hemophore-related protein can be detected 
regardless of the mediums and the instruments.

In previous reports, four to seven peaks were used for distinguishing M. abscessus  subspecies20,22–26, but we 
recommend a combination of three peaks: L29, L30, and hemophore-related protein. The three candidate pro-
teins were screened by genome annotations and theoretical-protein-mass predictions. Suzuki et al.25 reported 
the peaks of m/z 8780.9 and m/z 9473.8 of M. abscessus subsp. abscessus and M. abscessus subsp. bolletii and the 
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Figure 2.  The peaks of ribosomal protein L27, L28, L29, L30, and hemophore-related protein are indicated in 
red for M. abscessus subsp. abscessus (ATCC  19977T), green for M. abscessus subsp. bolletii (JCM  15297T), and 
blue for M. abscessus subsp. massiliense (JCM  15300T). (a) The peaks of m/z 8766.9, m/z 8780.9, and m/z 8780.9 
are represented as ribosomal protein L29 of M. abscessus subsp. massiliense (JCM  15300T) (blue), M. abscessus 
subsp. abscessus (ATCC  19977T) (red), and M. abscessus subsp. bolletii (JCM  15297T) (green), respectively. (b) 
The peaks m/z 6765.9, and m/z 6795.9 are represented as ribosomal protein L30 of M. abscessus subsp. bolletii 
(JCM  15297T) (green), M. abscessus subsp. abscessus (ATCC  19977T) (red), and M. abscessus subsp. massiliense 
(JCM  15300T) (blue), respectively. (c) The peaks m/z 9500.3, m/z 9473.8, and m/z 9473.8 are represented as 
hemophore-related protein of M. abscessus subsp. massiliense (JCM  15300T) (blue), M. abscessus subsp. abscessus 
(ATCC  19977T) (red), and M. abscessus subsp. bolletii (JCM  15297T) (green), respectively.
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peaks of m/z 8766.9 and m/z 9500.3 of M. abscessus subsp. massiliense. The report also describes the peaks of m/z 
4391.24 and m/z 4385.05, which are the divalent ion of the peaks of m/z 8780.9 and m/z 8766.9, respectively, for 
detecting M. abscessus. We newly developed the target peaks of L30, m/z 6765.9 and m/z 6795.9, for detecting 
M. abscessus subsp. bolletii.

Hemophore-related protein will be essential as a target peak. Previously, it has been reported that some iso-
lates of M. abscessus subsp. massiliense has peaks of m/z 9473.8225 and m/z 9473.3124, which are similar to our 
finding for hemophore-related protein in M. abscessus subsp. abscessus. Using hemophore-related protein as a 
biomarker peak for distinguishing the subspecies will prevent misidentification.

For the early determination of effective therapy, it is necessary to distinguish the three M.abscessus subspe-
cies’ susceptibilities to macrolides in routine testing. However, several isolates of clarithromycin-sensitive M. 
abscessus subsp. abscessus and clarithromycin-resistant M. abscessus subsp. massiliense with specific gene muta-
tions were detected in a previous  study32 as well as this study. Thus, the bacterial identification tests including 
MALDI-MS have a limitation in that they cannot accurately estimate drug susceptibility. On the other hand, 
drug susceptibility testing is not enough for the classification of strains harboring resistant genes. Therefore, the 
combination of MALDI-MS and drug susceptibility testing is important for the identification of M. abscessus 
subspecies in clinical laboratories.

This study has several limitations: first, this is a single-center study with a small number of samples. Second, 
the data from the clinical isolates of M. abscessus subsp. bolletii is missed in this study. It is necessary to confirm 
that the three biomarkers, including L29, L30 and hemophore-related protein, are useful for the identification of 
M. abscessus subspecies using more isolates obtained in the other hospital laboratories from different countries 
in future. Third, although the amino acid sequences of L29, L30 and hemophore-related protein were unique 
in M. abscessus subspecies, it is necessary to confirm the spectra of the other RGMs with different amino acid 
sequences and the same theoretical protein mass.

In conclusion, the detection of the peaks of L29, L30, and hemophore-related protein by MALDI-MS pro-
teotyping will be useful for accurate and rapid identification of M. abscessus, compared to traditional methods 
of sequencing. The identification of M. abscessus by MALDI-MS combined with drug susceptibility testing will 
be the best way for an early decision on a course of treatment.

Materials and methods
Bacterial strains
The type strains of each subspecies were used to select biomarker candidates to distinguish the three subspecies 
of M. abscessus using MALDI-MS. The type strain of M. abscessus subsp. abscessus GTC  15115T (= ATCC  19977T) 
was obtained from Gifu University Center for Conservation of Microbial Genetic Resource and the type strains 
of M. abscessus subsp. bolletii JCM  15297T and M. abscessus subsp. massiliense JCM  15300T were both obtained 
from the RIKEN BRC (Tsukuba, Ibaraki, Japan). Thirty-three clinical isolates of M. abscessus were obtained 
between June 2013 and October 2019 from 33 patients treated at Juntendo University Hospital in Japan. The 
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Figure 3.  Amino acid sequence alignment of ribosomal protein L29, L30, and hemophore-related protein of M. 
abscessus, M. chelonae, M. franklinii, and M. salmoniphilum. Amino acid substitutions are shaded in black. The 
arrows indicate the start of amino acid residues after post-transcriptional modifications.
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isolates were cultured in Middlebrook 7H11 Agar plates (Becton, Dickinson-Diagnostic Systems) or 5% sheep 
blood agar (Becton, Dickinson-Diagnostic Systems) under aerobic conditions at 35 °C for 3 days.

Drug susceptibility testing
Drug susceptibility was tested as described by the Clinical and Laboratory Standard Institute (CLSI)  guidelines28. 
The antibiotic concentrations of clarithromycin, amikacin, and imipenem ranged from 0.063 to 128 μg/mL. The 
minimum inhibitory concentrations (MICs) of each antimicrobial agent were determined by broth microdilu-
tion methods using Muller Hinton broth and 96-well microtiter plates (Kohjin Bio, Co., Ltd. Saitama, Japan). 
The MICs of clarithromycin, amikacin, and imipenem were determined on the 5th day at an early reading time 
(ERT) and on the 14th day at a delayed reading time (LRT).

Whole‑genome sequencing
Genomic DNA of the 33 clinical M. abscessus isolates were extracted using DNeasy blood and tissue kits (Qiagen, 
Tokyo, Japan) and DNA libraries were prepared using Nextera XT DNA Library Prep Kit (Illumina, San Diego, 
CA). Their genomes were sequenced by Illumina MiSeq platform using v3 chemistry (600 cycles) and the sum-
mary of the assembly is shown in Supplementary Table S5. Raw reads of each isolate were trimmed and assembled 
using CLC Genomic Workbench version 10.0.1 using quality control and assembly tools with default settings 
(CLC bio, Aarhus, Denmark). Species identities of these isolates were determined using an ANI  calculator33 

Table 3.  The peaks of biokarker proteins in clinical isolates of Mycobacterium abscessus.  *The theoretical 
masses of L29 and hemophore-related protein are m/z 8780.9 and m/z 9473.8. **The theoretical masses of L29 
and hemophore-related protein are m/z 8766.9 and m/z 9500.3.

Subspecies Strains Average of L29 SE Average of hemophore-related protein SE

M. abscessus subsp. abscessus*

type strain 8781.0 0.21 9473.2 0.22

M3 8780.9 0.16 9472.8 0.11

M4 8780.2 0.19 9472.6 0.28

M7 8781.2 0.23 9473.2 0.26

M10 8780.8 0.33 9472.8 0.34

M14 8780.3 0.30 9472.5 0.33

M16 8780.9 0.28 9472.9 0.36

M19 8780.7 0.37 9473.0 0.31

M20 8780.3 0.25 9472.1 0.36

M23 8780.6 0.28 9472.9 0.28

M33 8779.5 0.22 9471.9 0.30

M34 8780.5 0.20 9472.9 0.37

M. abscessus subsp. massiliense**

Type strain 8768.1 0.24 9502.4 0.35

M5 8766.1 0.31 9500.2 0.30

M6 8766.8 0.26 9501.3 0.39

M8 8766.1 0.15 9500.3 0.09

M11 8765.6 0.35 9500.3 0.35

M13 8765.9 0.15 9500.2 0.12

M15 8766.1 0.31 9500.3 0.33

M26 8765.7 0.25 9499.7 0.04

M27 8766.7 0.34 9501.5 0.27

M28 8766.5 0.23 9500.8 0.37

M29 8765.6 0.34 9500.3 0.37

M30 8766.0 0.36 9500.3 0.34

M32 8765.6 0.13 9499.8 0.23

M36 8766.1 0.23 9500.4 0.20

M37 8765.6 0.39 9499.8 0.30

M38 8766.2 0.34 9500.4 0.35

M39 8765.9 0.38 9500.2 0.26

M40 8766.1 0.28 9500.4 0.40

M43 8767.0 0.19 9501.4 0.31

M44 8765.4 0.25 9499.7 0.29

M45 8767.0 0.38 9501.2 0.37

M41 8766.1 0.20 9472.6 0.21

M42 8766.2 0.10 9472.8 0.08

M. abscessus subsp. bolletii* Type strain 8784.5 0.43 9477.3 0.44
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and the sequences of 16S rRNA, rpoB, hsp65, and erm  genes12,15. The ANI values and sequence identities of 16S 
rRNA, rpoB, hsp65, and erm genes were calculated and adopt the closest of the reference genomes of M. absces-
sus subsp. abscessus (ATCC  19977T, genome accession number GCF_000069185.1), M. abscessus subsp. bolletii 
(JCM  15297T, GCF_003609715.1), and M. abscessus subsp. massiliense (JCM  15300T, GCF_000497265.2)27. The 
mutations of erm and rrl genes were detected in silico using CLC Genomics  Workbench34.

Phylogenetic analysis
The genome completeness and contamination were assessed using CheckM2 v1.0.1 with lineage wf and default 
 settings35. Phylogenetic trees were constructed based on concatenated single-copy marker protein sequences 
predicted from genomes using GTDB-Tk v2.2.6  software36 and visualized using iTol ver.6 (https:// itol. embl. de/). 
The type strains of M. abscessus subsp. abscessus (ATCC  19977T, genome accession number GCF_000069185.1), 
M. abscessus subsp. bolletii (JCM  15297T, GCF_003609715.1), and M. abscessus subsp. massiliense (JCM  15300T, 
GCF_000497265.2) were used as the reference strains.

Accession numbers
The whole-genome sequences of all 33 isolates have been deposited in the GenBank as accession number 
PRJDB15290.

Calculation of the theoretical mass of M. abscessus
Theoretical masses of proteins encoded in genomes of M. abscessus were calculated for the following genomes as 
part of the development of a genomically predicted protein mass database of Bacteria and Archaea: M. abscessus 
subsp. abscessus (ATCC  19977T, GCF_000069185.1), M. abscessus subsp. bolletii (JCM  15297T, GCF_003609715.1), 
and M. abscessus subsp. massiliense (JCM  15300T, GCF_000497265.2)29. The genome sequences were obtained 
from the NCBI database (https:// www. ncbi. nlm. nih. gov/). Gene prediction from the genomes was performed 
using Prodigal v2.6.337. The calculation of the theoretical mass of individual gene products was performed by 
python scripts with consideration of the average [M +  H]+ of all the gene products. For all amino-acid sequences, 
methionine loss was considered if the first amino acid at the N-terminal was “M” and the second amino acid 
was either “G”, “A”, “S”, “P”, “V”, “T”, or “C”29. Mature protein sequences were inferred using SignalP v5.038 with 
command line flags “-org gram + ” for genomes.

Bacterial sample preparation for MALDI‑MS
Alpha-cyano-4-hydroxycinnamic acid (CHCA) was used as a matrix. To prepare this matrix solution, 10 mg 
of 4-CHCA was dissolved in 1 mL of the solvent consisting of 1% (v/v) trifluoroacetic acid, 35% (v/v) ethanol, 
15% (v/v) acetonitrile, and milliQ water. A full loop of bacterial cells was dispersed in 200 μL of distilled water 
in a microtube and mixed with 800 μL of ethanol with zirconia beads. The suspensions were vortexed briefly 
and centrifuged at 15,000 g for 2 min. The pellets were then dried for 5 min. After freezing the tubes at − 80 °C at 
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Figure 4.  Phylogenetic tree of 33 clinical isolates of M. abscessus and three type strains of M. abscessus, 
including M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. (A) The 
tree was constructed based on concatenated single-copy marker protein sequences predicted from genomes. (B) 
The tree was constructed by Strain Solution based on the biomarker proteins from the MALDI-MS data.
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least 1 h, the pellets were resuspended in MilliQ water, crushed using a Fast Prep 24 apparatus (Funakoshi Co., 
Ltd.) for a total of 3 min (9 times for 20 s), and centrifuged at 15,000 g for 2 min. Supernatants were analyzed by 
MALDI-MS according to the manufacturer’s instruction.

MALDI‑MS measurement
MALDI-MS measurements were performed in positive linear mode using MALDI-8020 RUO (Shimadzu Cor-
poration, Japan) and Microflex LT/SH (Bruker Daltonik) equipped with a 200 Hz Nd: YAG laser (355 nm) and 
60 Hz nitrogen laser (337 nm), respectively.

Before the sample analysis, the MALDI-MS instrument was mass-calibrated externally using 6 peaks with 
m/z 4365.4, 5381.4, 6411.6, 7274.0, 8369.8, and 10,300.1 from Escherichia coli DH5α. More than five individual 
mass spectra were acquired for each bacterial extract in the range of m/z 2000–20,000 and self-calibrated using 
three ribosomal protein peaks with m/z 4371.3, 6310.2, and 9348.8, which were commonly detected from cor-
responding type strains of the three subspecies of M. abscessus. Peak assignment was carried out using eMSTAT 
Solution™ software (Shimadzu Corp.). The peaks were assigned using a comparison with the calculated masses 
of genome sequenced type strains of M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus 
subsp. massiliense.

Cluster analysis
For biomarker validation, 36 M. abscessus isolates including three subspecies were analyzed by MALDI-MS. 
Four mass spectra were acquired for each strain, and peak lists were extracted from those mass spectra, consid-
ering the peak intensity and reproducibility. Biomarker analysis software Strain Solution™ was used to prepare 
a binary matrix.

Ethical statement
This study was approved by the Ethical Committee of Juntendo University (approval number: E21-0232).

Data availability
All data generated or analyzed during this study are included in this published article. The sequence data gener-
ated in this study have been submitted to the DDBJ database (http:// geten try. ddbj. nig. ac. jp/) under the accession 
numbers PRJDB15290.
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