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Fuzzy analytic hierarchy process 
based generation management 
for interconnected power system
T. Varshney 1, A. V. Waghmare 2, V. P. Singh 2, V. P. Meena 3, R Anand 3 & Baseem Khan 4*

Decision makers consistently face the challenge of simultaneously assessing numerous attributes, 
determining their respective importance, and selecting an appropriate method for calculating their 
weights. This article addresses the problem of automatic generation control (AGC) in a two area power 
system (2-APS) by proposing fuzzy analytic hierarchy process (FAHP), an multi-attribute decision-
making (MADM) technique, to determine weights for sub-objective functions. The integral-time-
absolute-errors (ITAE) of tie-line power fluctuation, frequency deviations and area control errors, 
are defined as the sub-objectives. Each of these is given a weight by the FAHP method, which then 
combines them into an single final objective function. This objective function is then used to design a 
PID controller. To improve the optimization of the objective function, the Jaya optimization algorithm 
(JOA) is used in conjunction with other optimization techniques such as sine cosine algorithm (SCA), 
Luus–Jaakola algorithm (LJA), Nelder–Mead simplex algorithm (NMSA), symbiotic organism search 
algorithm (SOSA) and elephant herding optimization algorithm (EHOA). Six distinct experimental 
cases are conducted to evaluate the controller’s performance under various load conditions, with 
data plotted to show responses corresponding to fluctuations in frequency and tie-line exchange. 
Furthermore, statistical analysis is performed to gain a better understanding of the effectiveness 
of the JOA-based PID controller. For non-parametric evaluation, Friedman rank test is also used to 
validate the performance of the proposed JOA-based controller.
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Decision making is inherently complex and frequently requires the simultaneous consideration of multiple 
factors as well as expert  judgment1. Because of this, the strategic identification of key factors becomes imperative. 
Analytic hierarchy process (AHP) has become a popular method for handling multi-attribute decision-making 
(MADM) scenarios. The reasons for the widespread use of AHP are:

• Its ease of use.
• Flexibility in incorporating a wide range of variables with quantitative and qualitative characteristics.
• Wide application in different fields.
• Accessibility of auxiliary software.

Parekh et al. demonstrated use of AHP to determine the relative importance of each performance indicator for 
solid waste management (SWM)  in2. A land susceptibility model is developed  in3 using AHP where relative 
weights of all landslip instability factors are determined with the help of AHP. AHP technique, along with 
GIS-based ranking were used  in4 for finding the best locations in Kayseri, Turkey for solar photovoltaic (PV) 
power plant construction. Similar to this, Hammami et al.  in5 also applied AHP technique along with GIS 
based multi-criteria decision analysis in flood susceptibility mapping at Tunisia.  In6, based on AHP, the expert 
evaluation matrix is optimised using the accelerating genetic algorithm to determine the subjective weights. 
Nyimbili integrated AHP with TOPSIS and GIS techniques  in7 for analyzing earthquake hazards.  In8, weights 
of groundwater indicators, which are used for groundwater quality evaluation, were determined using AHP.
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In spite of all the advantages of the AHP technique, the realization that traditional AHP has trouble in 
adequately addressing  uncertainty9, especially when decision-makers are limited to a predetermined rating 
system from 1 to 9. This led to the adoption of fuzzy AHP (FAHP). FAHP is a derivative of AHP that has gained 
popularity recently and combines AHP with fuzzy set theory. Decision-makers have more freedom to have more 
flexible scales that use fuzzy membership functions and linguistic variables rather than deterministic or precise 
values in order to effectively capture uncertainty.

Many researchers have opted FAHP methods for decision making. Ertuğrul et al.  in10 used FAHP technique for 
weight determination in facility location selection process.  In11, FAHP is used in determining weights of machine 
tool alternatives for multiple attributes. Shaygan,  in12, illustrated an actual implementation of FAHP method for 
identifying, ranking, and choosing enhancement projects for a hospital’s under performing appointment system. 
 In13, FAHP method is implemented to fully structured decision-making problems involving alternatives, sub-
criteria, and criteria for evaluating water management plans in a section of Brazil’s Paraguacu river basin.  In14, 
three potential landfill locations for Istanbul are assessed using FAHP in addition to expert opinion. Similarly, 
Karasan et al.  in15 implemented novel pythagorean FAHP method landfill site selection problem.

MADM techniques like rank sum weight, AHP and rank exponent are implemented for AGC problem of 
2-APS in the  literature16–19. AGC ensures maintaining the overall power balance of the system that is dependent 
on critical factors such as frequency deviation, area control errors, and tie-line power  deviation20,21. The 
controllers used in AGC play an important role in correcting system  imbalances22–24. It is critical to optimize 
the parameters of these controllers to ensure a consistent and efficient flow of power. When designing controllers, 
choosing an appropriate objective function is necessary for improving and  optimizing25,26 parameter changes. 
This objective function typically includes sub-objective functions that represent error indices for frequency 
deviation, area control errors, and tie-line power deviation. Prioritizing sub-objective functions and assigning 
appropriate ranks and weights are critical in attaining an optimal outcome for the objective function. As a result, 
once the weights are properly determined, additional step involving  optimization27–30 of the objective function 
is required.

In this paper, FAHP technique is implemented for AGC problem of 2-APS. This technique is used to provide 
weights corresponding to sub-objective functions, which are further utilized to tune PID controller. For sub-
objective functions, the ITAE evaluations of the frequency deviations, control errors, and lie-line power deviation 
for the AGC problem of 2-APS are taken into account. The PID controller design utilizes each of these sub-
objective functions. Subsequently all weighted sub-objectives are combined to create the objective function 
and further Jaya optimization algorithm (JOA)31–33 is used to minimize the same. Six different experimental 
cases are used to evaluate the FAHP’s effectiveness. Additionally, sine cosine algorithm (SCA), Luus–Jaakola 
algorithm (LJA), Nelder-Mead simplex algorithm (NMSA), symbiotic organism search algorithm (SOSA) and 
elephant herding optimization algorithm (EHOA) are used in optimization to demonstrate the effectiveness 
of the JOA algorithm-based controller. The results are compared for each of the six load variations, and both 
tabular and graphical comparisons are displayed. Comparisons are made on the basis of specifications such as 
peak overshoots, settling times, decision parameters, and values of the objective function. A statistical analysis 
is performed by evaluating mean, minimum, maximum, and standard deviation values of the objective function 
obtained from JOA, SCA, LJA, NMSA, SOSA, and EHOA. Friedman rank test is used to further elucidate the 
effectiveness and accuracy of the results obtained. By assigning a mean rank to each of the six algorithms and 
calculating an overall Q value and p value, this test offers a non-parametric analysis.

The key objectives of this article are as follows:

• FAHP technique is investigated to determine weights of sub-objective functions for AGC problem of 2-APS.
• ITAEs of frequency deviations, tie-line deviations and control errors are considered as sub-objective 

functions.
• PID controller is designed on the basis of single objective function formed by merging all the weighted sub-

objective functions.
• Minimization of objective function is performed using JOA.
• The results obtained from JOA are compared with those obtained from SCA, LJA, NMSA, SOSA and EHOA, 

by performing statistical analysis and Friedman rank test.

The architecture of this study is structured as follows. Section “Fuzzy analytic hierarchy process” ellaborates 
the FAHP method in detail. The considerated 2-APS is introduced in Sect. “Considerated system”. The 
implementation of FAHP method to 2-APS is provided in Sect. “Implementation of FAHP method for AGC 
problem”. In Sect. “Jaya optimization algorithm”, Jaya optimization algorithm is explained. In Sect. “Results and 
discussions”, the results obtained are discussed in detail. Finally the derived conclusion is presented in Sect. 
“Conclusion”.

Fuzzy analytic hierarchy process
Fuzzy analytic hierarchy process (FAHP) is a multi attribute decision making (MADM) technique used to 
determine weights using fuzzy  rules34. On the basis of these fuzzy rules, a decision matrix is formed whose 
elements denote the performance measure of one decision making problem with respect to other decision making 
problem. These performance measures are dependant on fuzzy membership function. For defining fuzzy rules, 
triangular fuzzy membership (TFM)35 function with real numbers are utilized. Let Fφ be TFM function consisting 
of triangular fuzzy rules, which is defined in (1).
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In (1), L, M and U denotes the lower, middle and upper range values of TFM function element. For each fuzzy 
element of a TFM function, a fuzzy performance index is defined according to its significance level, as given in 
Table 1.

The detailed procedure involved in determining weights using FAHP is discussed below:
Step 1: Identification of criteria and their relative siginifances
In FAHP, criteria are needed to be defined for decision making, which are termed are alternatives and 

attributes. Let there be N alternatives and M attributes. The weights corresponding to attributes are denoted as 
Om , where m = 1, 2, · · · ,M , and those corresponding to alternatives are denoted as On , where n = 1, 2, · · · ,N.

Step 2: Pair-wise decision matrix formulation
After defining the alternatives and attributes, a pair wise decision matrix is formed using TFM function. The 

elements of matrix are fuzzy element taken from Table 1 and are denoted by Pmn and their significance level is 
decided on the basis of mth attribute’s relation with nth alternative. For example, if mth attribute is at “Highest” 
significance level with respect to nth alternative, then Pm,n will be “(8,9,10)” which is considered from Table 1. 
And if there is no difference in the significance level of mth attribute and nth alternative, then then Pmn will be 
considered as ’Identical’ i.e. “(1,1,1)”. The representation of decision matrix is given in (2). 

Fuzzy element Pm,n i.e. TFM function is defined such that Pm,n = P−1
m,n when m  = n and Pm,n = 1 when m = n.

Step 3: Evaluation of geometric mean
The interval arithmetic for TFM function is utilized to evaluate geometric mean ( GMm ) of the mth alternative 

which is calculated using (3).

where, GMm is geometric mean and it shows radical root of mth alternative’s in decision matrix.
Step 4: Calculation of fuzzy weights
For respective attributes, relative fuzzy weights (FOm) are calculated as

Step 5: Calculation of best non-fuzzy performance value as weights
The calculation of best non-fuzzy performance (BNFP) value as weights is done as

(1)Fφ =
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(3)GMm =

[ N
∏

n=1

Pm,n

]1\N

(4)FOm =
GMm

∑M
m=1 GMm

Table 1.  Performance indices with TFM function and their relative significance.

Fuzzy Fuzzy element as a Significance

Performance index TFM function Level

10 (9,10,11) Absolute

9 (8,9,10) Highest

8 (7,8,9) Higher

7 (6,7,8) High

6 (5,6,7) Above average

5 (4,5,6) Average

4 (3,4,5) Low

3 (2,3,4) Lower

2 (1,2,3) Least

1 (1,1,1) Identical
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where FO(L)m , FO(M)m and FO(U)m represent the lower, middle and upper fuzzy values, respectively, to 
calculate BNFP value based on fuzzy membership function.

Considerated system
A schematic representation of two area power system (2-APS), inspired  from36, is provided in Fig. 1. With 
two thermal power plants contributing 1000 MW each to the overall load, the system configuration includes a 
combined capacity of 2000 MW. This configuration simulates an actual networked power system. The parameters 
of 2-APS for area 1, area 2 and tie-line region are described in Table 2, Table 3 and Table 4. The mathematical 
models of components of 2-APS for area 1 and area 2, in form of transfer functions, are presented in Table 5.

(5)Om =
[FO(L)m + FO(M)m + FO(U)m]

3

Figure 1.  2-APS.

Table 2.  2-APS parameters (Area 1).

2-APS parameters (Area 1)

Parameter Variable Value (unit)

 Frequency f 60Hz

Frequency deviation �fI –

Area control error ACEI –

Bias factor βI 0.05pu MW/Hz

Control input µI –

Governer’s speed regulation constant RI 2.4Hz/pu

Governer’s time constant τGI 0.08sec.

Turbine’s time constant τTI 0.3sec

System’s gain constant KI 120Hz/pu MW

System’s time constant τI 20sec.

Governer power deviation �PGI –

Turbine power deviation �PTI –

System’s load change �PLI –
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PID controller
PID controllers are extensively used by numerous industries, especially in process industries. Their extensive 
use is because of their dependability and ease for handling. For the majority of systems, they offer strong and 
dependable performance as long as the PID parameters are chosen or adjusted to guarantee an acceptable closed-
loop performance. PID controller operates on the basis that each of the three terms i.e. proportional, integral, and 
derivative are supposed to be “tuned” appropriately. An input is subjected to a correction factor i.e. error, which is 
computed based on the variation between these values. A basic PID controller is mathematically expressed in (6).

In (6), Y(s) is output signal; ŴP , ŴI and ŴD are proportional, integral, and derivative terms, respectively; and E(s) 
is error signal. To lessen the effect of noise, the PID controller used in this study integrates a filter F with the 
derivative gain. The generated outputs are control inputs, µI and µII , and area control errors ACEI and ACEII 
are controller inputs. The expressions for µI and µII are presented in (7) and (8).

ACEI and ACEII from (7) and (8) can be further elaborated as follows:

(6)Y(s) = ŴP ∗ E(s)+
ŴI

s
∗ E(s)+ ŴDs ∗ E(s)

(7)µI (s) =ŴP ∗ ACEI (s)+
ŴI

s
∗ ACEI (s)+ ŴDs

1

1
s +

1
F

∗ ACEI (s)

(8)µII (s) =ŴP ∗ ACEII (s)+
ŴII

s
∗ ACEII (s)+ ŴDs

1

1
s +

1
F

∗ ACEII (s)

Table 3.  2-APS parameters (Area 2).

2-APS parameters (Area 2)

Parameter Variable Value (unit)

Frequency f 60Hz

 Frequency deviation �fII –

Area control error ACEII –

Bias factor βII 0.05pu MW/Hz

Control input µII –

Governer’s speed regulation constant RII 2.4Hz/pu

Governer’s time constant τGII 0.08sec.

Turbine’s time constant τTII 0.3sec

System’s gain constant KII 120Hz/pu MW

System’s time constant τII 20sec.

Governer power deviation �PGII –

Turbine power deviation �PTII –

System’s load change �PLII –

Table 4.  2-APS parameters (Tie line).

2-APS parameters (tie line)

Parameter Variable Value (unit)

Torque coefficient Ttie−line 0.545 pu

Tie-line ratio Atie−line -1

Tie-line power deviation �Ztie−line -

Table 5.  2-APS transfer functions.

2-APS transfer functions

Component Area 1 Area 2

Turbine TFTI =
1

1+sτTI
TFTII =

1
1+sτTII

Generator TFGI =
1

1+sτGI
TFGII =

1
1+sτGII

System dynamics TFI =
KI

1+sτI
TFII =

KII
1+sτII
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Objective function formulation
Maintaining area control errors to minimum values, maintaining tie-line powers, and upholding the frequencies 
of area 1 and area 2 are essential in ensuring a balanced power flow. Sub-objective functions are developed by 
taking these three factors into account, which are further clubbed into a single objective function. For this study, 
ITAEs of aforementioned factors are, respectively, evaluated to determine the sub-objective functions, which are 
mathematically presented in (11), (12) and (13).

where,
OFI : ITAEs of frequency deviations;
OFII : ITAEs of area control errors;
OFIII : ITAE of tie-line power deviation;
Tst : Total simulation time.
These sub-objectives are provided weights depending on their importance and a single objective function is 

developed combining all three weighted sub-objectives. The structure of developed objective function is given as

where, O1 , O2 and O3 are weights of OFI , OFII and OFIII , respectively.

Implementation of FAHP method for AGC problem
In this contribution, for determining the weights associated with sub-objective functions, FAHP method is 
implemented, following the steps priorly discussed in Sect. “Fuzzy analytic hierarchy process”. The sub-
objectives (11), (12) and (13) are signified with highest, higher and above average significance level, respectively. 
Corresponding to these significance levels, the weights are calculated using FAHP method discussed in Sect. 
“Fuzzy analytic hierarchy process”. Here, the sub-objectives OFI , OFII and OFIII are considered as attributes as 
well as alternatives. Therefore, the value of M and N will be same, i.e 3, for this problem. The significance level 
of one sub-objective with respect to other, is assigned as follows: (Table 6)

• OFI is at “Highest” significance level with respect to OFIII.
• OFI is at “Higher” significance level with respect to OFII.
• OFII is at “Above average” significance level with respect to OFIII.

Considering these significance levels, Table 1 is further transformed to Table 7. Corresponding to the fuzzy 
elements presented in Table 7 and referring to (2), (15) is generated.

(9)ACEI (s) =�Ztie−line(s)+ βI .�fI (s)

(10)ACEII (s) =− Atie−line .�Ztie−line(s)+ βII .�fII (s)

(11)OFI =

∫ Tst

0

�fI tdt +

∫ Tst

0

�fII tdt

(12)OFII =

∫ Tst

0

ACEI tdt +

∫ Tst

0

ACEII tdt

(13)OFIII =

∫ Tst

0

�Ztie−linetdt

(14)OF = (O1)(OFI )+ (O2)(OFII )+ (O3)(OFIII )

(15)A =

OF1
OF2
OF3

OF1 OF2 OF3




(1, 1, 1) (7, 8, 9) (8, 9, 10)

( 1
7
, 1
8
, 1
9
) (1, 1, 1) (5, 6, 7)

( 1
8
, 1
9
, 1
10
) ( 1

5
, 1
6
, 1
7
) (1, 1, 1)





Table 6.  2-APS parameters (constraints).

2-APS parameters (constraints)

Parameter Max value Min value

Proportional gain Ŵmax
P = 3 Ŵmin

P = 0

Integral gain Ŵmax
I = 3 Ŵmin

I = 0

Derivative gain Ŵmax
D = 3 Ŵmin

D = 0

Filter Fmax = 500 Fmin = 0
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By exploiting (3), geometric means ( GMi ) are calculated using as

The cumulative geometric mean is determined as

The fuzzy weights FOU1 , FOU2 and FOU3 , are calculated with the help of (4) by utilizing the values from (16) 
and (17) as

The values of fuzzy weights obtained in (18) are calculated by taking upper range values into consideration. 
Similarly lower and middle range values are calculated which are presented in (19) and (20), respectively.

The calculation of best non-fuzzy performance (BNFP) value as weight is done by utilizing (5) 

Substituting these weights in overall objective function, (14) can be updated as follows:

By putting values of OFI , OFII and OFIII from (11), (12) and (13), respectively, in (22), it is further modified to:

In order to optimize (23), it becomes necessary to define its boundary constraints. The subjected boundary 
constraints are defined as follows:

To optimize objective function (23), subjected to constraints shown in (24), Jaya algorithm is implemented, 
which is discussed further in Sect. “Jaya optimization algorithm”.

Jaya optimization algorithm
The Jaya optimization algorithm(JOA) is inspired by the Sanskrit word of “victory”, represented as “Jaya”. It was 
first developed to solve both constrained and unconstrained optimization  problems37,38. By eliminating less 
effective solutions, solutions within the Jaya population tend to converge towards the global optimum, mirroring 
the concept of “survival of the fittest” found in nature. Interestingly, this algorithm relies only on the total number 
of iterations and the size of the population. It does not require any particular controlling parameters.

The basic structure of working of JOA can be described in the below-mentioned five phases: 

1. Initialization The process is started by initializing a set of population comprising of candidate solutions. 
Usually, these solutions are shown as vectors in the optimization problem’s search space.

2. Determination Utilizing the optimization problem’s objective function, determine candidate solution. Each 
solution is assigned with a fitness value by the objective function. This fitness value evaluates performance 
of the candidate corresponding to problem.

(16)

GM1 = [1× 9× 10]1/3 = 4.4814

GM2 = [1/9× 1× 7]1/3 = 0.9196

GM3 = [1/10× 1/7× 1]1 = 0.2426

(17)
N
∑

i=1

GMi = 4.4814+ 0.9196+ 0.2426 = 5.6437

(18)
FOU1 = 0.7633

FOU2 = 0.1783

FOU3 = 0.0583

(19)
FOL1 = 0.7941

FOL2 = 0.1630

FOL3 = 0.0430

(20)
FOM1 = 0.7800

FOM2 = 0.1704

FOM3 = 0.0496

(21)
O1 = 0.7791

O2 = 0.1706

O3 = 0.0503

(22)OF = 0.7791(OFI )+ 0.1706(OFII )+ 0.0503(OFIII )

(23)

OF = 0.7791

(
∫ Tst

0

�fI tdt +

∫ Tst

0

�fII tdt

)

+ 0.1706

(
∫ Tst

0

ACEI tdt +

∫ Tst

0

ACEII tdt

)

+ 0.0503

(
∫ Tst

0

�Ztie−linetdt

)

(24)

Ŵmin
P < ŴP < Ŵmax

P
Ŵmin
I < ŴI < Ŵmax

I
Ŵmin
D < ŴD < Ŵmax

D
Fmin < F < Fmax
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3. Regeneration For each iteration, the candidate solution is regenerated such that it moves towards the best 
solution (solution having lowest fitness value), ignoring the worst solution (solution having highest fitness 
value).

4. Discontinuation Once the predetermined number of iterations is completed or termination criterion is 
satisfied, the process is discontinued.

5. Final solution The solution obtained just before discontinuing the process is termed as the final solution.

The flowchart for JOA is provided in Fig. 2. In JOA, the expression for updated solution is represented as follows:

where,

In (25), Oi
′

x,y and Oi
x,y are updated solution and current solution respectively, for xth candidate and yth decision 

parameter. While, Oi
best,y and Oi

worst,y in (26) denote best and worst solution,, respectively and α1 and α2 are 
random variables. An updated solution is produced after every iteration. If this revised solution performs better 
than the original, it will be considered for further iterations.

Results and discussions
This work is expanded on the framework developed by Ali and Abd-Elazim36 by analysing a 2-APS. Table 6 
outlines the constraints that control the controller parameters. However, (23) provides specifics on the overall 
objective function that is intended to be minimised. The boundary conditions for these controller parameters are 
expressed in (24). Table 8 details the step load disturbance assigned to each area in each of the six experimental 
cases that are investigated to thoroughly evaluate the effectiveness of the FAHP method-assisted PID controller.

The numerical data obtained after performing the simulations for experimental cases I to VI are provided 
in Tables 9, 10, 11, 12, 13 and 14, respectively, for analytical discussion. Each table provides the most fitted 
values of objective function (OF), sub-objective functions ( OFI , OFII and OFIII ), and controller parameters ( ŴP , 
ŴI , ŴD and F), obtained by implementing JOA, SCA, LJA, NMSA, SOSA and EHOA, for the corresponding 
experimental case. Along with these, the settling time and peak overshooot values of responses (Fig. 3– 20) 

(25)O
i
′

x,y = O
i
x,y +O1 +O2

(26)
O1 = α1(O

i
best,b −O

i
x,y)

O2 = −α2(O
i
worst,b −O

i
x,y)

}

Table 7.  Performance indices with TFM function and their relative significance.

Fuzzy Fuzzy element as a Significance

Performance index TFM function Level

9 (8,9,10) Highest

8 (7,8,9) Higher

6 (5,6,7) Above average

1 (1,1,1) Identical

Figure 2.  Jaya optimization.
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indicating frequency deviation in area 1 and area 2, and tie-line power deviation, for corresponding experimental 
cases, are also tabulated in each table.

The outcomes of experimental cases I and II are tabulated in Tables 9 and 10, respectively. The least value (i.e. 
optimum value) of OFI , OFII , OFIII and OF is achieved by JOA, followed by LJA, for both cases. For case I and 
case II, the responses for frequency deviation in area 1 is shown in Fig. 3 and 6, respectively, and the responses 
for frequency deviation in area 2 are shown in Fig. 4 and 7, respectively. It can been seen from the responses that, 
for both cases, the response shown by JOA settles faster than the other algorithms. Similar outcomes is seen for 
tie-line deviation of case I (Fig. 5) and case II (Fig. 8). The exact settling time values can be seen in Table 9 and 
Table 10. So, for case I and case II, JOA is proved most efficient among all the considered algorithms.

Tables 11 and 12 provide a summary of the outcomes of experimental cases III and IV, respectively. In both 
situations, JOA showcased lowest (i.e., optimal) values for OFI , OFII , OFIII , and OF, followed by LJ algorithm in 
case III and EHO algorithm in case IV. The frequency deviation responses for area 1 in cases III and IV are shown 
in Fig(s). 9 and 12, respectively, and those for area 2 are shown in Fig(s). 10 and 13. These responses clearly show 
that the JOA settles more quickly than other algorithms in both scenarios. The tie-line deviation responses for 
cases III (Fig. 11) and IV (Fig. 14) show a similar trend. Table 11 and Table 12 tabulated their specific settling time 
values. From the discussion, it is clear that JOA outperformed all the other algorithms for case III and case IV.

The results of experimental cases V and VI are outlined in Tables 13 and 14, respectively. The optimal values 
for OFI , OFII , OFIII , and OF are displayed by the JOA in both cases. In case V, the NMS algorithm came in 
second, and in case VI, the SOSA algorithm performed better after JOA. Fig(s). 15 and 18, respectively, display 
the frequency deviation responses for area 1 in cases V and VI, while Fig(s). 16 and 18 display the responses for 
area 2. These plots conclusively show that in both scenarios, the JOA settles earlier than alternative algorithms. An 
analogous pattern can be seen in the tie-line deviation responses for cases V (Fig. 17) and VI (Fig. 20). Tables 13 
and 14 tabulated the values of their respective settling times. Similar to all the above cases, even for these cases, 
JOA performed the best among all the algorithms.

A statistical analysis is provided in Table 15. This table tabulates mean ( OFMean ), minimum ( OFMin ), 
maximum ( OFMax ) and standard deviation ( OFSD ) values of objective function (OF) obtained from JOA, SCA, 
LJA, NMSA, SOSA and EHOA, for all six cases. From Table 15, it is observed that, JOA is providing the lowest 
values for OFMean , OFMin , OFMax and OFSD for all six cases. The outcome performance of other algorithms vary 
throughout all the six cases, while JOA is seen being consistent by maintaining the least OFMean , OFMin , OFMax 
and OFSD values for case I to case VI.

Table 8.  Step load deviations.

Step load deviations

Experimental cases Area 1 Area 2

I 0.032 0

II 0 0.032

III 0.032 0.032

IV 0.032 -0.032

V 0.032 0.064

VI 0.064 0.032

Table 9.  Results for case analysis I.

JOA SCA LJA NMSA SOSA EHOA

Fitness

OF 0.01770 0.03335 0.02262 0.04087 0.02609 0.02641

OFI 0.02044 0.03879 0.02605 0.04716 0.03027 0.03066

OFII 0.00536 0.00942 0.00762 0.01296 0.00799 0.00803

OFIII 0.00879 0.01561 0.01139 0.02035 0.01231 0.01244

Decision parameters

ŴP 1.88711 1.76927 2.87765 2.13089 2.15094 2.22966

ŴI 2.98252 2.49641 2.87080 2.00521 2.67468 2.72156

ŴD 0.52462 1.15719 1.14092 1.24554 1.12535 1.20696

F 356.830 433.202 273.225 177.700 347.199 349.361

Settling time (s)

�fI 2.21656 4.16017 2.25456 2.99855 3.51192 3.63688

�fII 3.23523 5.00380 4.36233 4.89006 3.46292 3.48560

�Ztie−line 3.14423 5.41283 4.49587 4.99221 3.64359 3.65955

Peak overshoots (p.u.)

�fI 0.03119 0.02229 0.02180 0.02155 0.02238 0.02156

�fII 0.01626 0.00998 0.00900 0.00906 0.00973 0.00913

�Ztie−line 0.00541 0.00377 0.00314 0.00356 0.00351 0.00334
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Table 10.  Results for case analysis II.

JOA SCA LJA NMSA SOSA EHOA

Fitness

OF 0.01731 0.03335 0.02262 0.04086 0.02609 0.02641

OFI 0.01996 0.03879 0.02605 0.04715 0.03028 0.03066

OFII 0.00575 0.00942 0.00762 0.01296 0.00799 0.00803

OFIII 0.00858 0.01561 0.01139 0.02035 0.01231 0.01244

Decision parameters

ŴP 2.16060 1.76927 2.87765 2.13089 2.15094 2.22966

ŴI 2.99912 2.49641 2.87080 2.00521 2.67468 2.72156

ŴD 0.64784 1.15719 1.14092 1.24554 1.12535 1.20696

F 470.811 433.202 273.225 177.700 347.199 349.361

Settling time (s)

�fI 3.29438 5.00379 4.36268 4.88837 3.46291 3.48559

�fII 1.96761 4.15989 2.25635 2.99978 3.51762 3.64273

�Ztie−line 3.44820 5.41284 4.49579 4.99238 3.64359 3.65957

Peak overshoots (p.u.)

�fI 0.01402 0.00998 0.00900 0.00906 0.00973 0.00913

�fII 0.02841 0.02229 0.02180 0.02155 0.02238 0.02156

�Ztie−line 0.00471 0.00377 0.00314 0.00356 0.00351 0.00334

Table 11.  Results for case analysis III.

JOA SCA LJA NMSA SOSA EHOA

Fitness

OF 0.02541 0.06769 0.03822 0.05151 0.05128 0.04371

OFI 0.02984 0.07949 0.04488 0.06048 0.06022 0.05132

OFII 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

OFIII 0.01268 0.03378 0.01908 0.02571 0.02559 0.02181

Decision parameters

ŴP 2.16060 1.76927 2.87765 2.13089 2.15094 2.22966

ŴI 2.95342 2.77400 2.61036 2.29569 2.54692 2.89826

ŴD 0.52539 0.93834 0.78534 0.87023 1.24136 1.23978

F 260.322 275.477 351.305 228.395 365.123 490.703

Settling time (s)

�fI 2.17045 4.03241 2.35049 2.67387 3.26389 3.85170

�fII 2.17045 4.03241 2.35049 2.67387 3.26389 3.85170

�Ztie−line 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Peak overshoots (p.u.)

�fI 0.03532 0.02857 0.03006 0.02894 0.02296 0.02298

�fII 0.03532 0.02857 0.03006 0.02894 0.02296 0.02298

�Ztie−line 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 12.  Results for case analysis IV.

JOA SCA LJA NMSA SOSA EHOA

Fitness

OF 0.02403 0.03794 0.02752 0.03111 0.02888 0.02533

OFI 0.02609 0.03723 0.02890 0.03188 0.03016 0.02672

OFII 0.01302 0.02839 0.01627 0.02018 0.01783 0.01524

OFIII 0.01788 0.04398 0.02452 0.03079 0.02628 0.02192

Decision parameters

ŴP 2.46482 2.34051 2.54515 2.47623 2.32523 2.54709

ŴI 2.98858 1.94360 2.94214 2.52240 2.57513 2.835346

ŴD 1.00376 0.84323 1.57115 1.58464 1.28716 1.25174

F 398.739 467.817 379.625 205.922 369.009 469.840

Settling time (s)

�fI 3.51062 4.40854 3.95176 4.33906 4.01833 3.82893

�fII 3.51062 4.40854 3.95176 4.33906 4.01833 3.82893

�Ztie−line 3.70408 6.00784 5.49316 4.22087 4.00612 3.93501

Peak overshoots (p.u.)

�fI 0.02183 0.02357 0.01773 0.01791 0.01960 0.01971

�fII 0.02183 0.02357 0.01773 0.01791 0.01960 0.01971

�Ztie−line 0.00715 0.00819 0.00594 0.00617 0.00652 0.00621
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For further clarification of efficacy and accuracy of the outcomes obtained, Friedman rank test is carried out 
for JOA, SCA, LJA, NMSA, SOSA and EHOA. This test provides a non-parametric analysis, by allocating a mean 
rank to all of the six algorithms, and a overall Q value and p value. The outcomes are said to be verified when Q 
value is positive and p value is lesser than 5%. The algorithm attaining the mean rank 1 is considered to be the 
best among all the algorithms. Table 16 tabulates the results of Friedman rank test. The mean ranks for JOA, 
SCA, LJA, NMSA, SOSA and EHOA are 1, 4.83333, 3, 5, 3.33333 and 3.83333, respectively. This shows that JOA 
yeilds best performance, followed by LJA, SOSA, EHOA, SCA and NMSA. The Q value came out to be 18.28571, 
which is a positive value, and p value is 0.002609 which is significantly lesser than 5%. Hence these results also 
provide the clarity on the applicability and efficacy of Jaya algorithm.

Table 13.  Results for case analysis V.

JOA SCA LJA NMSA SOSA EHOA

Fitness

OF 0.03877 0.04128 0.06272 0.07654 0.05452 0.05560

OFI 0.04515 0.04797 0.07318 0.08939 0.06373 0.06498

OFII 0.00521 0.00532 0.00792 0.00878 0.00690 0.00697

OFIII 0.01951 0.02134 0.03110 0.03780 0.02649 0.02712

Decision parameters

ŴP 1.62401 1.59717 1.63668 2.67985 1.93025 2.06716

ŴI 2.92798 2.88402 2.32600 2.63987 2.68320 2.72282

ŴD 0.48128 0.43335 0.48760 1.32552 0.76239 0.82656

F 355.622 218.227 369.819 440.721 300.932 228.823

Settling time (s)

�fI 2.38233 2.45129 3.36826 3.97366 2.87172 3.01707

�fII 2.10890 2.16707 2.53177 3.18600 2.18507 2.23903

�Ztie−line 3.05619 3.18510 3.68247 4.47757 3.46559 3.58744

Peak overshoots (p.u.)

�fI 0.04554 0.04734 0.04591 0.02496 0.03652 0.03449

�fII 0.06934 0.07210 0.06923 0.04199 0.05680 0.05451

�Ztie−line 0.00587 0.00616 0.00592 0.00302 0.00453 0.00424

Table 14.  Results for case analysis VI.

JOA SCA LJA NMSA SOSA EHOA

Fitness

OF 0.04058 0.08797 0.08657 0.07043 0.08278 0.09451

OFI 0.04739 0.10230 0.10111 0.08229 0.09664 0.11049

OFII 0.00555 0.00996 0.00964 0.00846 0.00971 0.00957

OFIII 0.01980 0.04555 0.04285 0.03453 0.04107 0.04659

Decision parameters

ŴP 1.81290 2.02888 2.94046 1.97933 1.86144 2.79796

ŴI 2.90251 2.26469 2.60156 2.44598 2.17972 2.98638

ŴD 0.53182 0.33129 1.57187 0.91227 0.51777 2.14128

F 199.643 256.339 269.611 433.240 393.858 410.815

Settling time (s)

�fI 1.64124 3.88906 3.59934 2.55364 3.02945 5.43786

�fII 2.46416 4.49774 4.40004 3.28118 4.06844 6.06677

�Ztie−line 3.13768 5.30282 4.86206 3.85088 4.41652 6.56501

Peak overshoots (p.u.)

�fI 0.06616 0.07505 0.03835 0.05207 0.06662 0.03223

�fII 0.04276 0.04817 0.02229 0.03351 0.04349 0.02036

�Ztie−line 0.00546 0.00632 0.00284 0.00409 0.00556 0.00266
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Figure 3.  Case 1: Frequency fluctuations for area-1.

Figure 4.  Case 1: Frequency fluctuations for area-2.
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Conclusion
Assessing several attributes simultaneously, figuring out how important each factor is, and choosing a suitable 
method to compute the weights have always been a matter of concern for decision maker. MADM techniques 
have helped decision makers to deal with these concerns. One such MADM technique, i.e. FAHP technique is 
utilized in this contribution to determine weights corresponding to sub-objective functions. The ITAE evaluations 
of frequency deviations, control errors, and lie-line power deviation for AGC problem of 2-APS are taken into 
consideration for sub-objective functions. These sub-objective functions are employed for the design of PID 
controller. The objective function, constructed by combining all weighted sub-objectives, is then minimized 
using the JOA. The JOA’s efficacy is assessed across six distinct load scenarios. Optimization is also carried 
out using SCA, LJA, NMSA, SOSA, and EHOA to show the efficacy of the JOA-based controller. For each of 
the six load variations, their results are compared, and the comparisons are shown in tabular and graphical 
form. Specifications like peak overshoots, settling time, decision parameters, and objective function values 
are compared. The outcomes showed that for all load variations taken into consideration, the JOA consistently 
performs better than the other algorithms. Furthermore, Friedman rank test and statistical analysis support the 
superiority of the JOA-based PID controller over alternative controllers.

Figure 5.  Case 1: Tie-line power fluctuation.
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Figure 6.  Case 2: Frequency fluctuations for area-1.

Figure 7.  Case 2: Frequency fluctuations for area-2.
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Figure 8.  Case 2: Tie-line power fluctuation.
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Figure 9.  Case 3: Frequency fluctuations for area-1.

Figure 10.  Case 3: Frequency fluctuations for area-2.
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Figure 11.  Case 3: Tie-line power fluctuation.

Figure 12.  Case 4: Frequency fluctuations for area-1.



18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11446  | https://doi.org/10.1038/s41598-024-61524-2

www.nature.com/scientificreports/

Figure 13.  Case 4: Frequency fluctuations for area-2.

Figure 14.  Case 4: Tie-line power fluctuation.
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Figure 15.  Case 5: Frequency fluctuations for area-1.

Figure 16.  Case 5: Frequency fluctuations for area-2.
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Figure 17.  Case 5: Tie-line power fluctuation.

Figure 18.  Case 6: Frequency fluctuations for area-1.
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Figure 19.  Case 6: Frequency fluctuations for area-2.

Figure 20.  Case 6: Tie-line power fluctuation.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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