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Identification of candidate 
biomarkers for GBM based 
on WGCNA
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Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a 
considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, 
the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to 
conventional treatments and a high recurrence rate. The primary goal of this study was to acquire 
molecular insights into GBM by constructing a gene co-expression network, aiming to identify and 
predict key genes and signaling pathways associated with this challenging condition. To investigate 
differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted 
Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able 
to identify modules with specific expression patterns in GBM. Next, genes from these modules were 
performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological 
processes associated with neuronal development and functioning and GBM. Conversely, the processes 
related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive 
correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. 
This study offers a comprehensive overview of the existing research landscape on GBM, underscoring 
the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.
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Glioblastoma multiforme (GBM), also known as grade IV astrocytoma with an extremely poor prognosis, is 
one of the most common primary malignant brain tumors in adults and one of the most malignant gliomas. 
GBM is characterized by strong invasiveness, a high recurrence rate, a low survival rate, and poor prognosis, 
with a median survival time of 12–15 months. The recurrence rate is faster after surgical resection because the 
resection fails to eradicate GBM cells completely. According to different research data, the 5-year survival rate 
of GBM is approximately 5–10%. Currently, the treatment methods for GBM mainly include surgical resection, 
radiotherapy, and chemotherapy. However, due to the high degree of invasiveness and drug resistance of GBM, 
these treatment methods are often difficult to completely cure patients. Therefore, researchers are working to 
find new treatment methods, such as targeted therapy and immunotherapy. The gene expression profile based 
on microarray has been applied to explore the pathogenesis of disease and proved to be a useful biomedical tool 
in the identification of biomarkers in many  aspects1,2. Weighted gene co-expression network (WGCNA) can be 
employed to identify highly correlated genes, which can then be grouped into the same module. Furthermore, 
these modules may be associated with specific external  traits3. As a statistical method used for studying gene 
co-expression networks WGCNA has already shown its advantage in screening hub genes in many  aspects4–6. A 
WGCNA analysis conducted on the TCGA dataset found core genes related to poor prognosis in GBM, providing 
new clues for understanding GBM prognosis and the immune  microenvironment7,8. Additionally, researchers 
have performed cell function experiments, in situ and subcutaneous xenograft tumor models to evaluate the 
impact and molecular mechanism of RPL22L1 on GBM. The results showed that RPL22L1 was significantly 
upregulated in GBM and was associated with poorer  prognosis9.

Differentially expressed genes (DEGs) were derived from the expression profiles across various grades of 
glioma. Through the construction of interaction networks for these genes, we investigated the functions of DEGs 
associated with each glioma grade, aiming to uncover shared and distinct mechanisms of action. This approach 
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facilitated the examination of common and grade-specific biological pathways, as well as molecular expression 
changes in different glioma grades. The study contributes to our understanding of the potential pathogenesis 
of glioma, offering a theoretical foundation for comprehending glioma at the molecular level and informing 
strategies for its prevention and control.

Results
Data processing
The expression matrix data for the series of 176 samples has been downloaded from NCBI. The four groups, 
namely normal, Grade 2, Grade 3, and Grade 4, comprise 23, 45, 31, and 77 samples, respectively. To comply 
with the input file requirements for WGCNA, separate expression and traits files were generated accordingly.

Construction of weighted gene co-expression network and identification of modules related 
to external traits
The determination of the adjacency matrix for a scale-free topology network involved opting for a soft threshold 
power of 6, a decision made with the assistance of the pickSoftThreshold function in WGCNA, as depicted in 
Fig. 1. This specific value significantly influences the creation of modules and the allocation of genes within 
those modules.

This value corresponded to the minimum point nearest to the scale-free network. In our investigation, we 
utilized the dynamic tree cutting approach to discern genes demonstrating similar expression patterns along 
with their correlated biological processes and pathways. Following this, the modules will be subjected to cluster-
ing based on representative correlation features. In this scenario, a cut height of 0.2 has been chosen to merge 
modules with comparable characteristics (Fig. 2A).

The dendrogram was created through hierarchical clustering, where each short vertical line represented a 
gene, and the branches denoted co-expressed genes (Fig. 2B). It illustrated the cluster dendrogram and the mod-
ule colors before and after merging. The upper part of the Fig. 2B with vertical black lines represents individual 
modules, with the height (tree cutting line) reflecting the degree of similarity between modules. The colored 
bars in the lower part of the Fig. 2B represent the colors assigned to each module, with the “Dynamic Tree Cut” 
row showing the initial module assignments and the “Merged dynamic” row showing the results after some 
modules have been merged.

Correlation between modules and clinic traits
Genes exhibiting similar expression patterns (co-expressed genes) were grouped into cohesive modules. Mod-
ules that showed a notable correlation with tumors and Grade 4 were specifically identified by evaluating the 

Figure 1.  Network topology for different soft-thresholding powers.
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correlation between Module Eigengenes (MEs) and external traits, as illustrated in Fig. 3. Modules colored in 
saddlebrown, black, purple, and greenyellow were acknowledged for their positive association with Grade 4.

Figure 2.  Modules identified by WGCNA. (A) Co-expression similarity of all modules based on hierarchical 
clustering of module eigengenes. The cut height of 0.2 is chosen to merge the similar modules. (B) The 
cluster dendrogram and color display of co-expression network modules for all genes. The short vertical line 
corresponded a gene and the branches corresponded the co-expressed genes.
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In particular, the black module has a p value of 4e−22. Darkgrey, grey60, turquoise and darkred modules 
were negatively associated with Grade4.

Functional enrichment analysis
The genes in modules including Saddlebrown, black ,purple, greenyellow, Darkgrey, grey60, truquoise and 
darkred modules were selected to perform the GO:BP and KEGG enrichment analysis using ClusterProfiler 
package respectively, which were shown in Fig. 4.

The black module exhibits a significantly positive correlation, where the enriched Gene Ontology (GO) 
terms are primarily associated with the cell cycle, as seen in Fig. 4A. Additionally, the enriched KEGG pathway 
within the black module includes the p53 signaling pathway (Fig. 5A). For the purple module, the enriched GO: 
Biological Processes (BP) and KEGG terms prominently include antigen processing and presentation (Figs. 4B 
and 5B). The saddlebrown module, as depicted in chart Fig. 5C, exhibits an enrichment in pathways including 
focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling pathway. Figure 5D represents the greenyel-
low module, highlighting infections such as Yersinia and Salmonella infections, and the SNARE interactions 
in vesicular transport pathway, with statistical significance denoted by varying color intensities. In the green 
module, Fig. 5E delineates neurological disease pathways, including Parkinson’s disease, Huntington’s disease, and 
Alzheimer’s disease, all of which have varying degrees of gene involvement and statistical significance. Lastly, the 
pink module detailed in Fig. 5F includes pathways such as the ribosome, Coronavirus disease—COVID-19, and 
RNA degradation, again represented by the count of genes and adjusted p-values, indicating their significance 
in the module’s correlation.

Among the modules negatively correlated with Grade4, the enriched GO terms in darkgrey module are mainly 
related to ensheathment of neurons, axon ensheathment , myelination, glial cell development and differentia-
tion. For grey60 module, the enriched GO:BP terms include gamma-aminobutyric acid secretion, transport and 
signaling pathway, neuron-glial cell signaling. The genes in turquoise module mainly participated in axonogenesis 
and regulation of neuron projection development. The enriched Go terms in green module are mainly related 
to cellular respiration such as respiratory electron transport chain.

Our functional enrichment analysis delineated significant biological processes and pathways associated with 
Grade 4 GBM. Specifically, modules identified in black and purple showed enrichment in cell cycle regulation 
and antigen processing and presentation pathways, highlighting their potential roles in tumor proliferation and 
immune response mechanisms. Notably, the saddlebrown module’s enrichment in glomerular development 
and ECM-receptor interaction pathways suggests a link to tumor microenvironmental dynamics and possi-
ble implications for cell adhesion processes. Moreover, modules depicted in darkgrey and grey60 underscore 
neuronal-related processes, such as myelination and GABAergic signaling, which may reflect the tumor’s impact 

Figure 3.  Correlation matrix of module eigengene values obtained from WGCNA. 17 modules were identified, 
and each module eigengene was tested for correlation with trait. Within each cell, upper values are correlation 
coefficients between module eigengene and the traits; lower values are the corresponding p-value.
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on neural function. The turquoise module’s association with axonogenesis underscores the aggressive nature of 
GBM, implicating alterations in neuronal development and signaling pathways.

Figure 4.  The enriched GO:BP terms of the genes for several modules. (A–L) Shows enriched GO:BP terms 
for black, purple, saddlebrown, greenyellow, darkgray, grey60, turquoise, darkred, brown, green, pink and 
darkturquoise modules respectively.
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PPI network construction and screening of hub genes
The higher the correlation between genes and specific external traits, the larger their kIM value. These genes 
are selected and imported into STRING to establish PPI network, which is then visualized in  cytoscape10,11. 
The cytohubba plugin is used to calculate degree of every gene in  PPI12. Some functionally related proteins in 
a protein network tend to form complexes, meaning that such neighbor component interact more easily than 
other proteins in the network. MCODE plugin is used to find the clusters in  PPI13.

Figure 5.  The enriched KEGG terms of the genes for several modules. (A–F) Shows enriched KEGG terms for 
black, purple, saddlebrown, greenyellow, green and pink modules respectively.
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Edge-weighted spring embedded layout of co-expression network is shown in Fig. 6A. The modules corre-
sponding to the relevant colors are marked on the figure. It is obvious that the genes of each module are relatively 
clustered in a specific region in the co-expression network. In order to clearly visualize this feature, we annotate it 
in Fig. 6B. The red arrow indicates the modules positively correlated with GBM, while the green arrow indicates 
a negative correlation. If a diameter is delimited, it can be found that the positively and negatively correlated 
modules are separated into two semicircles, and the cell cycle is evenly distributed throughout the co-expression 
network. The cytoHubba plugin was used to calculate degree of every gene in the network. High-scoring genes 
include CDC42, PECAM1, CALR, CANX and FLYN etc. (Fig. 6D). Hub genes belonging to relevant modules 
are shown in the Fig. 6C.

MCODE analysis demonstrated that the first two significant clusters contained the eight hub genes are shown 
in Fig. 6E,F.

The ROC analysis
We analyzed four hub genes including ANXA5, CALR, SYP, TYROBP for any chemotherapy in GBM patients. 
The ROC plotters of the genes with strong correlation to resistance especially chemotherapy (any) in all sam-
ples (n = 454) were shown in Fig. 7. We find that ANXA5 has relatively high AUC and low p-value (p = 9.5e−5, 
AUC = 0.599). In order to find the relation between ANXA5 expression and specific drugs, the ROC analysis 
was performed including carmustine (p = 1.1e−03, AUC = 0.644) and temozolomide (p = 1.7e−3, AUC = 0.593). 
It can be speculated that these genes may be the targets of any chemotherapy, especially ANXA5 may be the 
therapeutic target of anthracycline.

Figure 6.  Distribution of genes in modules identified by WGCNA in the spatial protein–protein interaction 
network. A map of network was generated in Cytoscape. (A) The protein–protein interaction network was 
constructed by connecting all the genes in our study. All the genes from 8 modules were colored in different 
colors as shown. (B) Different modules are marked with ellipses of the same color as the genes in this 
module. Red upward arrows indicate positive correlation with GBM, and green downward arrows indicate 
negative correlation with GBM. The modules negatively correlated with GBM are mainly related to neuronal 
development and function, and are located in the opposite position of positively correlated modules. (C) The 
distribution of hub genes in PPI network generated by cytohubba plugin. (D) The interaction of hub genes. (E,F) 
The distribution of hub genes in MCODE components.
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Discussion
GBM is a malignant tumor that originates in the central nervous system. By studying the molecular mechanisms, 
gene expression, and signaling pathways of GBM, we can discover new therapeutic targets, thereby developing 
more effective treatment strategies. This has significant implications for our understanding of the biological 
characteristics of this disease, improving patient outcomes and quality of life.

The main objective of this study was to gain molecular insights into GBM by constructing a gene co-expres-
sion network to identify and predict key genes and signaling pathways associated with GBM. Significantly altered 

Figure 7.  ROC curves and box-plots of hub genes in GBM.
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modules were correlated with different stages of the tumor. Genes within the same module were performed GO 
and KEGG enrichment analysis to obtain significantly altered physiological processes and signaling pathways. 
Finally, we constructed a protein–protein interaction network using Cytoscape to analyze the correlation between 
genes in different modules throughout the network.

The positively correlated modules—saddlebrown, black, and purple—manifest associations with the aggres-
sive nature of high-grade GBM. Particularly, the enrichment of cell cycle and immune response genes in these 
modules aligns with the canonical understanding of oncogenesis where dysregulated cell proliferation and eva-
sion of immune surveillance are pivotal. The statistical robustness of these correlations, as evidenced by the 
black module’s significant p-value, attests to the potential of these genes in driving the malignant phenotype.

Conversely, the negative correlation of modules such as darkgrey, grey60, turquoise, and darkred with high-
grade GBM invokes a different facet of the tumor biology—impairment of normal brain functions, such as 
neuronal development and myelination. The attenuated expression of these genes in higher-grade GBM could 
suggest a loss of the neuronal identity of glial cells as they acquire a more neoplastic character. These findings 
may expand our understanding of GBM pathophysiology beyond mere proliferation, encompassing the aber-
rations in normal brain cell function.

The modules including saddlebrown, black, purple, darkgrey, grey60 and turquoise modules changed signifi-
cantly at all brain tumor tissues. Several modules, including saddlebrown, black and purple, were significantly 
positively correlated with GBM. They mainly involved physiological processes such as cell cycle, glomerulus 
development, focal adhesion, antigen processing and presentation. As we all know, the cell cycle is at the heart 
of cancer. Once the regulatory process malfunctions, uncontrolled cell proliferation occurs. It can be seen that 
cell cycle changes occurred early in brain tumor. Some promising candidate drugs for treating GBM, such as 
benzimidazuoles, may inhibit tumor growth by regulating the cell cycle and epithelial–mesenchymal transition 
(EMT)14,15.

If we artificially divide the differential gene interaction network diagram into two semicircles, it will be obvi-
ous that the modules positively correlated with GBM are almost all distributed in the same semicircle (Fig. 6B), 
while the modules negatively correlated with GBM are almost all located in the opposite semicircle, which 
should not be a coincidence. We may discover some interesting patterns. Firstly, we can observe that there may 
be differences in node density between the two semicircles. In one semicircle, there may be more nodes clustered 
together, while in the other semicircle, nodes may be more dispersed. This difference may be due to different 
interaction strengths between different genes. Additionally, we divide the differential gene interaction network 
map into several different color regions to distinguish different modules. This visualization method can help us 
better understand the mutual relationships and direction of action between genes, and discover potential bio-
logical function modules. The negative modules include biological processes related to neuronal development 
and function including of neurons, axon ensheathment, myelination, glial cell development and differentiation 
axonogenesis, and regulation of neuron projection development. Recent studies suggest that improving myelin 
regeneration may be a promising therapeutic strategy for fatal glioblastoma. The findings are consistent with 
our  research15–17. This indicates that demyelination or myelin regeneration disorders play a crucial role in the 
occurrence and progression of glioblastoma multiforme.

There is limited research on the SYP gene, which may be responsible for encoding a structural protein that 
binds to cholesterol. This protein can organize other membrane components or guide vesicles to the plasma 
membrane. Its mutations may be related to cognitive impairment and may also involve the regulation of short-
term and long-term synaptic plasticity. We speculate that the SYP gene may be involved in the decreased myelin 
function that occurs in glioblastoma development. From the ROC analysis, it is likely to be a promising target 
for chemotherapy of glioblastoma.

Annexin A5 (ANXA5) also named as placental anticoagulant protein I, thromboplastin inhibitor V, endonexin 
II, calphobindin I and lipocortin V, is a calcium-dependent phospholipid-binding protein. Recent research find-
ings indicate that overexpressed ANXA5 can inhibit the proliferation and metastasis of cervical cancer cells, thus 
exerting its anti-cancer gene  function18,19. Anxa5 could be a diagnostic, prognostic and therapeutic significance 
in  cancer20. Studies on colorectal adenocarcinoma have shown that the expression of ANXA5 is associated with 
higher tumor  stage21. From the ROC results, it can be seen that ANXA5 is likely to be a promising target for 
chemotherapy of glioblastoma.

Several studies suggest that TYROBP (Transmembrane Immune Signaling Adaptor TYROBP) may be an 
ideal marker for various tumors. Moreover, the higher expression of TYROBP correlates with a poor prognosis 
in Kidney renal clear cell carcinoma  patients22. In our study, it is likely to be a promising target for chemotherapy 
of glioblastoma.

In summary, our study has identified several biological processes strongly linked to GBM when compared to 
both healthy brain tissue and other grades of brain tumors. Additionally, we conducted a screening of potential 
key genes and assessed their potential as chemotherapy targets, with the anticipation that they could serve as 
therapeutic markers for GBM in the future. This research establishes a crucial theoretical foundation for advanc-
ing our understanding of GBM’s occurrence and treatment.

Materials and methods
Data processing
In order to explore the important genes, physiological processes and signaling pathways related to GBM patho-
genesis, The dataset (GSE:4290) employed in this study was acquired from the NCBI Gene Expression Omnibus 
(GEO), comprising a total of 176 samples as documented by Sun et al.23. These samples were classified into four 
groups, specifically normal (non-tumor), Grade 2 (astrocytomas), Grade 3 (oligodendrogliomas), and Grade 4 
(glioblastomas).
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Construction of weighted gene co-expression network and identification of modules related 
to external traits
WGCNA is an unsupervised analysis method designed to group genes based on their expression  profiles24,25. 
In this study, we employed WGCNA to construct a gene co-expression network for GBM and to identify gene 
modules associated with various GBM grades. WGCNA is a gene clustering method based on the similarity of 
expression patterns, allowing us to capture and analyze the modular structure within complex gene expression 
data. Initially, using gene expression data from all samples, we constructed a weighted network and selected 
an appropriate soft threshold power by analyzing the network’s scale-free topology to ensure that the network 
maintained scale-free properties. Through dynamic tree cutting methods, we identified a series of gene modules 
and further analyzed the correlation between these modules and the clinical features of GBM. Functional enrich-
ment analysis was then performed on the genes within each module to identify those associated with specific 
biological processes and signaling pathways. Furthermore, we assessed the correlation between modules and 
clinical traits of GBM to identify potential biomarkers related to disease progression. The WGCNA package, 
available for free, is a valuable tool for identifying modules of highly correlated  genes3.

Correlation of WGCNA modules with clinical traits
In our approach to correlate the modules identified via Weighted Gene Co-expression Network Analysis 
(WGCNA) with clinical traits of glioblastoma multiforme (GBM), we analyzed the association between module 
eigengenes (MEs) and GBM grades. MEs are the first principal component of a module and capture the majority 
of variation within the module’s gene expression profiles. We correlated these MEs with external traits, such as 
tumor grades, using Pearson correlation to ascertain the statistical significance of their association with GBM 
severity. For modules showing notable correlations, such as those in saddlebrown, black, purple, and greenyel-
low, we observed a positive correlation with higher GBM grades, indicating their potential involvement in more 
aggressive tumor phenotypes. The black module, for example, showed a highly significant correlation (p-value 
of 4e−22) with Grade 4 GBM. Conversely, modules like darkgrey, grey60, turquoise, and darkred displayed 
negative associations with Grade 4 tumors. By assigning clinical relevance to these gene co-expression modules, 
we aim to pinpoint molecular signatures that could have implications for prognosis and therapy. This methodol-
ogy ensures that the connections drawn from gene expression patterns to clinical observations are statistically 
robust and biologically interpretable, providing a substantive foundation for subsequent analyses and potential 
clinical applications.

Functional enrichment analysis
The Clusterprofiler package is used to perform functional enrichment analyses for biological processes (GO:BP) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to obtain enrichment results for genes in each 
module identified by  WGCNA26. The cutoff value for p-value and q-value was set to 0.05 and 0.2 respectively 
in our analysis.

PPI network construction and hub gene identification
The identification of hub genes within the co-expression modules derived from WGCNA was based on their 
intramodular connectivity measure, known as the kIM value. A higher kIM value indicates a stronger connec-
tion or correlation of a gene with the particular traits of interest, such as the severity of GBM. These hub genes 
are pivotal within their respective modules, potentially exerting significant influence on the module’s biological 
function. For the construction of the PPI network, we imported these hub genes into the STRING database, an 
extensive resource for known and predicted protein–protein interactions. The resulting networks were visual-
ized in Cytoscape, which facilitates the analysis of biological pathways and networks on a graphical interface. 
The PPI network construction was intended to hypothesize how these hub genes might interact at the protein 
level, providing a proteomic perspective to the transcriptomic findings. To identify potential protein complexes 
within the PPI network, which may correspond to functional clusters in GBM, we utilized the MCODE plugin 
in Cytoscape. This tool helps to find densely connected regions, or clusters, within the PPI network by focus-
ing on the neighborhood density and assigning a score based on the connectivity of the network components.

Gene expression and therapy response correlation analysis
To investigate the correlation between gene expression and chemotherapy response, we performed a ROC analysis 
on genes identified as central within their respective co-expression modules from WGCNA. The hub genes were 
selected for their high intramodular connectivity and potential relevance to GBM pathogenesis. Using the ROC 
Plotter (https:// www. rocpl ot. org/)27, we quantitatively assessed each gene’s predictive power regarding the patient 
response to standard chemotherapeutic treatments. This method aimed to identify potential biomarkers for 
gauging treatment efficacy, with the ultimate goal of informing personalized therapy strategies for GBM patients.

Data availability
The data that support the findings of this study are openly available in GEO at https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE42 90, reference  number23.
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