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Synthetic CT generation based 
on CBCT using improved vision 
transformer CycleGAN
Yuxin Hu 1, Han Zhou 2,4, Ning Cao 1, Can Li 3* & Can Hu 1*

Cone-beam computed tomography (CBCT) is a crucial component of adaptive radiation therapy; 
however, it frequently encounters challenges such as artifacts and noise, significantly constraining 
its clinical utility. While CycleGAN is a widely employed method for CT image synthesis, it has 
notable limitations regarding the inadequate capture of global features. To tackle these challenges, 
we introduce a refined unsupervised learning model called improved vision transformer CycleGAN 
(IViT-CycleGAN). Firstly, we integrate a U-net framework that builds upon ViT. Next, we augment the 
feed-forward neural network by incorporating deep convolutional networks. Lastly, we enhance the 
stability of the model training process by introducing gradient penalty and integrating an additional 
loss term into the generator loss. The experiment demonstrates from multiple perspectives that our 
model-generated synthesizing CT(sCT) has significant advantages compared to other unsupervised 
learning models, thereby validating the clinical applicability and robustness of our model. In future 
clinical practice, our model has the potential to assist clinical practitioners in formulating precise 
radiotherapy plans.

Image-guided radiotherapy(IGRT) technology serves as the cornerstone of accurate radiation therapy, facilitat-
ing the real-time monitoring of imaging changes in tumors and normal organs before and during  treatment1,2. 
CBCT, as the primary imaging modality in IGRT, offers advantages such as lightweight and open architecture, 
along with reduced radiation  exposure3. Consequently, CBCT finds extensive application in image-guided patient 
positioning and image registration within the clinical oncology radiation therapy  workflows4,5. However, CBCT 
often suffers from noise and artifacts, making the process of segmentation more  challenging6,7. Furthermore, 
CBCT images are less reliable compared to computed tomography (CT) when it comes to providing accurate 
CT/ED  information8. These limitations hinder the clinical application of CBCT in adaptive radiotherapy. To 
overcome these shortcomings, we aim to enhance the quality of CBCT images and improve the accuracy of 
tumor treatment while ensuring better protection of organs at risk. This will be accomplished by generating 
synthetic CT (sCT) using the density from CT and the detailed anatomical information obtained from CBCT.

CT synthesis methods can be divided primarily into supervised and unsupervised approaches. Supervised 
learning relies on paired data and utilizes reconstruction loss to guide the network in generating sCT. The 
most representative techniques include fully convolutional networks (FCNs)9,10 and variations of the U-Net11–15. 
Dong et al.10 employed FCNs for the end-to-end nonlinear mapping from MRI to CT. Kida et al.14 applied a 
2D U-Net deep convolutional neural network to the pelvis to synthesize CT from CBCT. Similarly, Li et al.15 
utilized an enhanced U-Net structure with residual blocks to generate CT from CBCT in the head and neck 
region. Xie et al.16 presented a groundbreaking scatter artifact mitigation technique employing convolutional 
neural networks, complemented with a context-aware loss function, specifically designed to address artifact 
reduction in CBCT images. Liu et al.17 employed a U-Net architecture, trained on registered images, to generate 
intermediate CT representations from CBCT scans, with the objective of tackling artifact challenges and paving 
the way for subsequent unsupervised processing. Kihwan et al.18 introduced a self-supervised model, leveraging 
a blind input network to map partially obscured projections back to their original form, ultimately aiming to 
enhance the quality of CBCT denoised reconstructions. However, obtaining fully paired data in the clinical set-
ting is challenging due to factors such as setup errors and organ movement. Consequently, supervised methods 
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necessitate pre-processing to establish pairing prior to network training, as well as a high demand for precise 
image registration algorithms.

While unsupervised CycleGAN and its derivatives continue to hold relevance, alternative methods contribute 
significantly to image synthesis. Contrastive  learning19 has emerged as a powerful technique, harnessing existing 
data to supervise model training in image generation tasks. Wang et al.20 developed a contrast learning-based 
approach for CBCT scatter correction, which employs a low-pass filter to remove unnecessary image details, 
isolates scatter projections, and then subtracts scattering artifacts from the original projections to produce 
improved images, with the aim of enhancing CBCT image quality. Their  DCLGAN21 model further refines this 
concept by filtering strip artifacts, using inverse coordinate transformations to address ring artifacts, and gen-
erating corrected images by subtracting these artifacts from the original CT scans, striking a balance between 
artifact removal and detail preservation. Liu et al.22 introduced a weakly-supervised strategy that models the 
degradation between low-dose and normal-dose images in the latent space, focusing on generating high-quality 
low-dose images. Diffusion models, too, have garnered attention, with Li et al.23 frequency-guided diffusion 
model (FGDM) being a notable example. This model employs frequency-domain filters to guide the diffusion 
process, enabling more accurate cross-modal image transformations. Liu et al.24 presented a cascaded uncondi-
tional diffusion model that integrates low-dose CT images into the diffusion process, iteratively solving multiple 
maximum a posteriori problems to tackle image denoising effectively. Muzaffe et al.25 introduced SynDiff, an 
adversarial diffusion model that facilitates a gradual mapping of noise and source images to the target during 
conditional diffusion, demonstrating superior performance in MRI-CT conversion tasks. Lastly, Peng et al.26 
employed a conditional denoising diffusion probabilistic model (DDPM) with a U-net architecture incorporating 
residual and attention blocks. This model converts Gaussian white noise samples into target CT images condi-
tioned on CBCT, successfully achieving synthetic CT synthesis. This paper focuses on the classical unsupervised 
CycleGAN-based model.

Unsupervised learning differs from supervised learning in that it does not rely on reconstruction loss but 
instead leverages constraints rooted in its own network structure or other  structures27. In the context of CT syn-
thesis, the most common unsupervised models are cycle-consistent generative adversarial networks(CycleGAN)28 
and its variations. Liu et al.29 employed a 3D CycleGAN with attention gates to generate CT images from non-
paired pelvis data in CBCT synthesis. Harms et al.4 introduced residual blocks to the generator to achieve end-to-
end mapping from CBCT to CT. Likewise, dense  blocks30–33 are frequently integrated into the U-net architecture 
to efficiently extract and generate more accurate images. Moreover, meticulously designed loss functions are 
widely used to guide the process of image generation. Zeng et al.34 proposed a hybrid GAN that incorporates a 
weakly supervised mechanism for synthesizing CT from MRI when paired data is limited.

CycleGAN and its variant methods have been extensively explored for CT synthesis. However, there are still 
several challenges that need to be addressed. Previous studies have shown that the generator of CycleGAN and 
its variants are limited to preserving and transmitting local feature information, leading to low image quality 
and authenticity.

To address these issues, we propose a new unsupervised method called improved vision transformer Cycle-
GAN (IViT-CycleGAN). (1) In the generator, we introduce a U-net framework based on vision transformer (ViT) 
to extract and preserve essential features and detailed information. The use of skip connections helps mitigate 
information loss. (2) For ViT, we further incorporate a deep convolutional network in the feed-forward neural 
network and combine it with the self-attention mechanism of the transformer. This integration aims to automati-
cally attend to information from different positions in the image during generation, better understanding the 
global structure of the image, and focusing on regions with more details, resulting in clearer and more realistic 
generated images. (3) To improve the training stability of the model, we introduce gradient penalization, ensuring 
that the network weights do not undergo significant changes when there are minor variations in the model inputs. 
(4) To enhance the consistency between the generated images and the source images, we add an additional loss 
term in the generator loss. This loss captures the differences between the source and generated images.

Methods
CycleGAN models
CycleGAN is shown in Fig. 1, where generator G aims to synthesize the input image x into a synthesized image 
G(x) that is highly similar in quality to the image of target domain y. The discriminator Dy is designed to distin-
guish the real image in the target domain y from the image G(x) synthesized by the generator G35.

The discriminator performs loss updating by backpropagation:

where ℓGAN is the classification loss function. 0 and 1 are the class labels of the generated and real images 
 respectively36.

The generators are updated by backpropagating loss from three sources: GAN loss, cycle-consistency loss, 
and identity-consistency  loss36. Using GA→B as an example:
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And,

Here, ℓreg can be any regression loss function, to harmonize the comparison experiments, we refer to  CycleGAN37 
parameter settings: �cyc=10 and �idt=0.536.

IViT-CycleGAN architecture
The original generator of CycleGAN can only retain and convey local feature information, lacking the ability to 
capture global features, thereby resulting in subpar image quality and authenticity. To address this limitation, 
this research incorporates a ViT-based U-net framework into the generator, as depicted in Fig. 2.

Firstly, the U-net architecture is employed to extract and retain crucial organizational features and detailed 
information, effectively resolving the issue of information loss through the utilization of skip connections. Sub-
sequently, the self-attention mechanism of the transformer is employed to automatically prioritize information 
from various positions within the image during image generation, enhancing the comprehension of the global 
structure within organizational images. Lastly, a deep convolutional network is introduced into the feedforward 
neural network to concentrate on regions with more intricate details, resulting in clearer and more realistic 

(5)Lidt,A = Ex∼Aℓreg
(

GB→A(x), x
)

.

(6)Lgen,A→B = LGAN,A + �cycLcyc,A + �idtLidt,A,

(7)Lgen,B→A = LGAN,B + �cycLcyc,B + �idtLidt,B.

Figure 1.  Schematic of the original CycleGAN model.

Figure 2.  IViT-CycleGAN model generator section.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11455  | https://doi.org/10.1038/s41598-024-61492-7

www.nature.com/scientificreports/

generated images. Specifically, the coding path of U-net extracts features from the input through four layers of 
convolution and downsampling, and passes the extracted features from each layer to the corresponding layer of 
the decoding path through skip connections. In the encoding path of U-net, the preprocessing layer converts the 
image into a tensor with dimensions ( w0,h0, f0 ), and the preprocessed tensor halves the width w0 and the height 
h0 in each downsampled block while the feature dimension f0 is  doubled36.

For the ViT module, as shown in Fig. 3, ViT is composed primarily of a stack of transformer encoder blocks. 
To construct an input to the stack, the ViT first flattens an encoded To construct an input to the stack, the ViT 
first flattens an encoded image along the spatial dimensions to form a sequence of tokens. The token sequence has 
length w × h , and each token in the sequence is a vector of length f. It then concatenates each token with its two-
dimensional Fourier positional embedding of dimension fp and linearly maps the result to have dimension fv36.

For the feedforward neural network, as shown in Fig. 4, we use a deep convolutional network instead of the 
original fully connected layer.The input, i.e. a sequence of tokens is first reshaped to a feature map rearranged 
on a 2D lattice. Then two 1 × 1 convolutions along with a depth-wise convolution are applied to the feature 
 map38. After that, the feature map is reshaped to a sequence of tokens which are used as by the self-attention 
of the network transformer layer.To improve the Transformer convergence, we adopt the rezero regularization 
scheme and introduce a trainable scaling parameter α that modulates the magnitudes of the nontrivial branches 
of the residual blocks. The output from the transformer stack is linearly projected back to have dimension f and 
unflattened to have width w and h. In this study, we use 12 transform encoder  blocks36.

Discriminator loss with gradient Penalty (GP)
To improve the training stability, we introduce a generalized  GP36,39 form with the following DA loss formula:

where Ldisc,A is defined as in Eq. 1, and Ldisc,B follows the same form. In our experiments, this γ-centered GP 
regularization provides more stable training and less sensitive to the hyperparameter  choices36.

(8)L
GP
disc,A = Ldisc,A + �GPE

[

(

�∇xDA(x)�2 − γ
)2

γ 2

]

Figure 3.  ViT module in IViT-CycleGAN.

Figure 4.  Depth-Wise Convolution Network. DW denotes depth-wise convolution. To cope with the 
convolution operation, the conversion between sequence and image feature map is added by Seq2Img and 
 Img2Seq38.
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Pixel-wise consistency loss
To improve the consistency of the generated and source images, we experiment with the addition of an extra 
term Lconsist

40 to generator loss. This term captures the L1 difference between the downsized versions of the 
source and translated images. For example, for images of domain A:

where F is a resizing operator down to 32× 32 pixels (low- pass filter). We add this term to the generator loss with 
a magnitude �consist for both  domains40.

Ethical statement
We confirmed that all methods were carried out in accordance with relevant guidelines and regulations, and 
informed consent for patients was waived by the Research Ethics Committee of the Nanjing Medical University. 
All experimental protocols and data in this study were approved by the Research Ethics Committee of the Nanjing 
Medical University. Approval number: NMUE2021301.

Experiments
Data acquisition
In this study, we test our proposed method in two datasets provided by a cooperative tertiary hospital.

H &N dataset
The CBCT and CT images were selected from 30 patients who were received volume modulated arc 
therapy(VMAT) in the head and neck (H &N) for nasopharyngeal and hypopharyngeal(NPC,HC) cancer from 
October 1,2021 and September 1,2023. The CT volumes were obtained with the dimensions 512×512 on the 
axial plane with a pixel size of 0.625x0.625 mm2 and a slice thickness of 2.75 mm using GE discovery position-
ing system. The CBCT volumes were obtained using Elekta XVI Systems. The appiled images protocol were the 
following parameters: 200 degrees gantry rotation,100kVp,10mA,10ms, and F0S20collimator. And images had 
a size of 384×384 on the axial plane. Every patient contain with 1 planning CT volume taken in the positioning 
before treatment and 3 CBCT volumes every week taken between treatment. We randomly divided the training 
set and test set according to 8:2.

Chest dataset
The Chest dataset had the same acquisition time as the H &N dataset. The CT and CBCT parameters had few 
differences. It consisted of 30 patients, each with 1 planning CT volume taken before treatments and 3–5 CBCT 
volumes per week taken between treatments. The CT volumes were obtained with the dimensions 512× 512 
on the axial plane with a pixel size of 0.625× 0.625 mm2 and a slice thickness of 5 mm using GE discovery 
positioning system. And the CBCT images were acquired with the following parameter: 360 degrees gantry 
rotation,100 kVp, 10 mA, 10 ms, and F0M10 collimator. and the CBCT volumes were reconstructed at medium-
resolution ( 1× 1× 1mm3 voxels) on a 410× 410× 120 matrix. We randomly divided the training set and test 
set according to 8:2.

Data processing
During the scanning process of CBCT and CT, non-human structures (such as treatment beds, fixation devices, 
and masks) are captured in the resulting images. These structures not only impede model training speed but 
also compromise the quality of synthesized images. To mitigate these issues, denoising is essential to eliminate 
the interference of irrelevant information prior to model training. In this study, the outlines of CT contours 
manually annotated by doctors serve as masks. These masks are subsequently multiplied with the correspond-
ing CT images to generate clean CT images. Likewise, the masks are also multiplied with the CBCT images to 
produce clean CBCT images suitable for training purposes. Distinctive characteristics distinguish CBCT from 
CT, encompassing variations in imaging hardware, clinical protocols, and scanning configurations. Matching 
scans from the same patient often presents a challenge due to the inherent differences. Recognizing the stability 
of organ positions and reduced tissue mobility during data acquisition, we leveraged the open-source advanced 
normalization tools (ANTs) for affine registration, with the primary objective of ensuring alignment between 
each CBCT and CT pair for the purpose of model test.

Evaluation
To accurately compare the similarity between the sCT images generated by different models and the CT images, 
we introduced quantitative evaluation metrics such as mean absolute error (MAE), peak signal-to-noise ratio 
(PSNR), and structural similarity index (SSIM). A lower MAE value indicates less difference between sCT and 
CT, resulting in more realistic image generation. Conversely, higher values of PSNR and SSIM indicate greater 
similarity between sCT and CT, leading to higher construction quality and more realistic images. These metrics 
are defined as:

(9)Lconsist,A = EAℓ1
(

F(GA→B(a)), F(a)
)

(10)MAE =
1

n

n
∑

i=1

|xi − GCBCT→CT (yi)|
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n denotes the number of testing slices, and x and y denote the CT and the CBCT, respectively.The CBCT gener-
ates the predicted CT after the CBCT generator GCBCT→CT , and then calculates the the absolute value error 
with the CT.

MAXrCT denotes the maximum pixel value in the sCT, and MSE is the mean square error. a larger PSNR indicates 
a higher similarity between the generated CT and the real CT, which means that the quality of the generated 
CT is better.

where x and y represent the CT and the fake-CT generated by the CBCT after the generator GCBCT→CT , respec-
tively, and ux and uy represent the mean of x and y, σ 2

x  and σ 2
y  represent the variance of x and y, and σxy represents 

the variance of x and covariance of y, while c1 and c2 are the two constants used to maintain stability.The value 
of SSIM ranges from −1 to 1, and the larger the value, the more similar the two images are.

Network training
In the experiments, all images are normalized to [ −1,1] and resized to 256 × 256. we train the generator five 
times and then train the discriminator once. Its parameters are set to epoch = 200 and batch size= 5. The other 
comparison methods are implemented based on the code and details provided by the authors and have the same 
hyperparameter settings as ours. All algorithms in this study were implemented on a Linux system equipped 
with four NVIDIA Tesla V100s using Python 3.6 (https://www.python.org/downloads/release/Python-362/) 
and Tensorflow 1.14 (https://tensorflow.google.co.uk/versions) implementations. Figure 5 shows a plot of the 
discriminator loss function versus the number of iterations on the two datasets, H &N and Chest, which shows 
that the proposed method in this paper (Ours) has faster convergence and is better trained.

Result and discussion
Comparison of different methods
Tables 1 and 2 present a comparison of quantitative results between our method and several contrast algorithms. 
Our proposed method demonstrates superior performance to CycleGAN and its variations in all three evaluation 
metrics mentioned above on the H &N dataset. This is attributed to the introduction of an improved ViT-based 
U-net framework. This framework enables the extraction and preservation of essential features and detailed 
information, automatic focus on information from different positions in the images, better comprehension of 
the global structure of the images, and emphasis on regions with more details. Consequently, the generated 
images are clearer and more realistic. Furthermore, we apply our method to the Chest dataset without altering 
any parameters and report the experimental results in Table 2. Our method exhibits considerable advantages on 
the Chest dataset as well, outperforming CycleGAN and its variations in the evaluated metrics. The key factor 
behind this success is the incorporation of GP and additional pixel-wise consistency loss, which enhance the 
stability and robustness of the model. These experiments validate the applicability of our method not only to the 
head and neck region but also to other parts of the body.

(11)PSNR = 20log10
MAXrCT

MSE

(12)SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)

Figure 5.  Plot of loss function vs. number of iterations on both datasets.
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Ablation studies for IViT-CycleGAN
To thoroughly assess the efficacy of each module, we employed CycleGAN-ViT as our backbone and conducted 
a module stacking analysis to gauge their individual impact on the overall performance. The abbreviations used 
are as follows: Depth-Wise Convolution Network (DCN), Discriminator Loss with Gradient Penalty (GP), and 
Pixel-wise Consistency Loss (PL). The results from the H &N dataset are compiled in Table 3, while those from 
the Chest dataset are presented in Table 4.

Table 1.  Comparison of metrics of different methods on the H &N dataset. Significant values are in bold.

Method MAE ↓ PSNR ↑ SSIM ↑

CycleGAN4 15.13 29.1536 0.9712

DualGAN41 18.59 28.5969 0.9624

AttentionGAN29 25.68 27.1325 0.9513

RegGAN42  14.74  29.8562 0.9742

ADCycleGAN35 13.56 30.1598 0.9762

Ours 10.94 31.8567 0.9834

Table 2.  Comparison of metrics of different methods on the Chest dataset. Significant values are in bold.

Method MAE ↓ PSNR ↑ SSIM ↑

CycleGAN4 20.89 27.6615 0.9612

DualGAN41 27.46 25.3512 0.9429

AttentionGAN29 23.29 26.1259 0.9526

RegGAN42  17.36  28.1523  0.9631

ADCycleGAN35 15.12 28.4563 0.9649

Ours 13.46 29.1289 0.9715

Table 3.  Quantitative results for ablations based on CycleGAN-ViT in H &N dataset. Significant values are in 
bold.

Method MAE ↓ PSNR ↑ SSIM ↑

CycleGAN-ViT 14.88 29.2561 0.9726

CycleGAN-ViT-DCN 13.12 29.8626 0.9768

CycleGAN-ViT-GP 13.48 29.3915 0.9752

CycleGAN-ViT-PL 14.64 29.3321 0.9744

CycleGAN-ViT-DCN-GP 11.78 31.4931 0.9825

CycleGAN-ViT-DCN-PL 12.62 30.3524 0.9788

CycleGAN-ViT-GP-PL 12.33 31.0162 0.9808

Ours 10.94 31.8567 0.9834

Table 4.  Quantitative results for ablations based on CycleGAN-ViT in Chest dataset. Significant values are in 
bold.

Method MAE ↓ PSNR ↑ SSIM ↑

CycleGAN-ViT 16.88 27.9823 0.9633

CycleGAN-ViT-DCN 15.02 28.5621 0.9684

CycleGAN-ViT-GP 15.35 28.3589 0.9667

CycleGAN-ViT-PL 16.12 28.0124 0.9641

CycleGAN-ViT-DCN-GP 13.79 28.9652 0.9708

CycleGAN-ViT-DCN-PL 14.33 28.6814 0.9699

CycleGAN-ViT-GP-PL 14.01 28.7714 0.9701

Ours 13.46 29.1289 0.9715
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The experimental findings substantiate the contributions of each module to the overall performance. DCN 
due to its inherent local properties, complements the self-attention mechanism in ViT, enabling it to engage 
in both global and regional information exchange. This local focus facilitates the extraction of finer details, 
resulting in more vivid and realistic generated images. GP, through regularization controlled by the parameter 
β , improves model stability during training. PL, by measuring the L1 difference between source and generated 
images, enhances consistency, thereby enhancing image generation quality. A comparative analysis of metrics, 
including MAE, PSNR and SSIM, reveals that DCN exhibits the most significant performance boost compared 
to GP and PL.

Visualization
In addition to quantifying the sCT using the aforementioned evaluation indicators, we incorporate visualiza-
tion techniques to explore the results from various perspectives and validate the effectiveness of our proposed 
method by comparing the outputs of different models. In Fig. 6, we present a comparison of synthesis results 
obtained from six algorithms, namely CycleGAN, DualGAN, AttentionGAN, RegGAN, ADCycleGAN, and Ous 
, in H &N patients. These results showcase the generated images of the cervical Bone (marked by green arrows), 
Nasopharynx (marked by blue arrows), Pituitary (marked by yellow arrows), and Eyes (marked by orange arrows) 
in a sequential left-to-right and top-to-bottom manner. Upon closer examination of the magnified images, it 
is evident that the alternative algorithms yield images with increased noise levels and significant loss of lesion 
details. In contrast, our proposed method generates images characterized by minimal noise, enhanced details 
accuracy, and closer resemblance to Real CT results. This remarkable outcome can primarily be attributed to the 
incorporation of the ViT-based U-net framework, which excels in feature extraction while preserving crucial 
detailed information. The framework also demonstrates improved comprehension of the image’s global structure, 
resulting in the production of images that are significantly clearer and more realistic.

We also conducted a comparative analysis of the synthesis results obtained from the six algorithms on the 
Chest dataset, as shown in Fig. 7. The first and second rows illustrate the Bronchi (highlighted by green arrows) 
and the Sternum (highlighted by blue arrows) as the representative anatomical structures, respectively, while the 
third and fourth rows depict the lung tumor regions. A thorough examination of the partially enlarged images 
reveals that our method applied to the Chest dataset produces consistent outcomes with those observed in the H 
&N dataset. Specifically, the generated images exhibit diminished noise, enhanced detail accuracy, and a greater 
resemblance to Real CT scans. Notably, our proposed algorithm demonstrates a more striking similarity to Real 
CT scans in the tumor regions, which proves instrumental in discerning changes within the tumor areas and 
offering valuable image references for adaptive radiotherapy. The Hounsfield Units (HU) CT values, reflecting 
tissue density and X-ray absorption, were analyzed in the test set slices ranging from −500 to 500 HU. Figure 8 
exhibits a comparative histogram of HU values for our method and CBCT, revealing that the curve shapes 
and peak positions of our approach more closely resemble those of real CT scans, suggesting a certain level of 
accuracy in the generated sCT. Figures 9 and 10 present difference plots comparing our method, CBCT, and 
ground truth CT. Utilizing a rainbow color mapping, with blue indicating minimal difference and red indicating 
maximum, the plots demonstrate that the discrepancies between our method and CT are significantly smaller 
than those between CBCT and CT, indicating that the sCT generated in this study achieves a CT-like quality to 
a considerable extent.

CBCT Real CT CycleGAN OursDualGAN AttentionGAN ADCycleGANRegGAN

Figure 6.  Visualization of sCT generation details on the H &N dataset test set.
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In addition to comparing the generated details, we also assess the performance of different methods using CT 
values. We use each pixel on the vertical and horizontal axes as a unit and calculate the average CT value at each 
pixel of all the data in the entire test set. Figures 11 and 12 showcase the distribution of average CT values across 
the vertical and horizontal axes. The x-axis denotes the pixel position, while the y-axis represents the average 
pixel value. The purple curve corresponds to the CT value distribution curve of Real CT, the red curve represents 
our proposed method, and the remaining colors indicate other methods. The outcomes highlight the congruence 
of CT value distribution trends between Real CT and the other five methods. Notably, our CT value distribu-
tion curve bears a stronger resemblance to Real CT when juxtaposed with the curves of the other five methods. 
Meanwhile, the CT values obtained from the other methods slightly surpass those of Real CT. In essence, our 
method generates sCT images that closely approximate Real CT, thus rendering them more authentically realistic.

Visualization of the synthetic CT 3D reconstruction
The CT’s imaging process, characterized by its distinct mechanism, yields two-dimensional data in the form of 
X-ray-derived slices. In clinical settings, three-dimensional reconstructions are crucial for multi-faceted analysis 
of patient lesions, facilitating accurate diagnosis and treatment. To evaluate the fidelity of our sCT, we conducted 

CBCT Real CT CycleGAN DualGAN AttentionGAN OursADCycleGANRegGAN

Figure 7.  Visualization of sCT generation details on the Chest dataset test set.

Figure 8.  Histograms of HU values for the two types of datasets.
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CBCT Ours Real CT CBCT-CT Ours-CT

Figure 9.  Error plots of CBCT vs. CT and the method of this paper vs. CT under the H &N dataset.

CBCT Ours Real CT CBCT-CT Ours-CT

Figure 10.  Error plots of CBCT vs. CT and the method of this paper vs. CT under the Chest dataset.
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3D reconstructions, focusing on the consistency across dimensions. Figures 13 and 14 illustrate the results for 
the H &N and Chest datasets, featuring axial, sagittal, and coronal perspectives. Our method generates the 
axial view, while the sagittal and coronal views are reconstructed from the sCT. The reconstructed slices from 
these datasets evidence that the generated sCT successfully retains the original anatomical integrity, ensuring a 
consistent representation of internal organ structures. For the Dose and Volume Histogram (DVH) on the right 
side of Figs. 13 and 14, where the solid line represents Real CT and the dashed line represents the Ours method, 
it can be seen that the close proximity of our method to the real clinical dose distribution validates the clinical 
applicability of our method.

Dose calculation
The primary purpose of sCT is to serve as a foundation for subsequent clinical tasks, particularly dose calculation. 
Hence, dose calculation offers the most precise approach to verifying the effectiveness of sCT generation and 
its clinical suitability. To this end, we conducted a comparison between the sCT generated by our method and 
the Real CT across different dose levels. The resulting discrepancies were then visualized in three-dimensional 
displays, as presented in Figs. 15 and 16. On the left side of Fig. 15, the differences between our method and the 
Real CT treatment plan for a nasopharyngeal cancer patient under different dose distributions are shown. On 
the right side of Fig. 15, the differences in DVH for the patient are displayed, with the solid line representing Real 
CT and the dashed line representing our method. It can be observed from the left side of Fig. 15 that our method 
closely approximates the actual clinical dose distribution under different dose distributions. Examination of the 
DVH on the right side of Fig. 15 reveals nearly no disparity in the preventive dose for the nasopharyngeal target 
area and lymphatic drainage area. The experiment successfully validates the clinical applicability of our method. 
Furthermore, for Chest patients, we observed the discrepancies between our method and Real CT in sCT under 
different dose distributions. Based on the 3D dose distribution and DVH in Fig. 16, it can be concluded that 

Figure 11.  Visualization of CT value distribution on the H &N dataset test set.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11455  | https://doi.org/10.1038/s41598-024-61492-7

www.nature.com/scientificreports/

there is also a slight disparity in the dose received by the target area and lung tissue, thereby further confirming 
the clinical applicability and robustness of our method.

Discussion
This research introduces IViT-CycleGAN, an unsupervised learning model designed to synthesize sCT from 
CBCT data. The selection of CycleGAN is driven by the practical challenge of obtaining paired CBCT and CT 
scans in clinical settings. Our approach enhances the original CycleGAN by incorporating a ViT-based U-Net 
generator, which effectively extracts and retains vital features and fine details. To further refine image generation, 
we integrate a deep convolutional network within the feedforward neural network, leveraging the Transformers’ 
self-attention mechanism to enable automatic focus on diverse image regions, thereby improving global under-
standing and enhancing detail localization. A gradient penalty is introduced to ensure more stable training, 
and an additional loss term is added to the generator’s objective function to capture discrepancies between the 
source and generated images.

Our model exhibits superior quantitative performance compared to prevailing unsupervised learning tech-
niques, achieving state-of-the-art evaluation metrics across both datasets. Comprehensive ablation studies, 
detailed in Tables 3 and 4, consistently reveal the positive impact of our proposed modules on the model’s overall 
efficacy. Of particular note, the DCN module stands out with a more substantial boost, attributed to its inherent 
local characteristics that are effectively modeled by the self-attention mechanism in ViT. This integration enables 
ViT to engage in both global and local information exchange, thereby enhancing its capabilities.

In visual assessments, we rigorously tested our model’s superiority through extensive experiments. As depicted 
in Figs. 6 and 7, our model-generated images exhibit reduced noise and enhanced detail, closely resembling 
authentic CT scans. For the H &N dataset’s first row, our sCT exhibits the closest resemblance to real CT at 
the conus region (green arrow), with ADCycleGAN and RegGAN also displaying comparable performance. 

Figure 12.  Visualization of CT value distribution on the Chest dataset test set.
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Figure 13.  3D reconstruction visualization of the H &N dataset. From top to bottom, representing axial, 
sagittal and coronal planes(left). Patient DVH differences, where the solid line is Real CT and the dashed line is 
sCT (right).

Figure 14.  3D reconstruction visualization of the Chest dataset. From top to bottom, representing axial, sagittal 
and coronal planes(left). Patient DVH differences, where the solid line is Real CT and the dashed line is sCT 
(right).
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However, in the nasal cavity, ADCycleGAN and RegGAN differ significantly from the real CT in shape. Cycle-
GAN, DualGAN, and AttentionGAN exhibit larger discrepancies, characterized by blurred details and excessive 
noise in the conus area. In the nasopharynx (blue arrow) of the second row, ADCycleGAN, RegGAN, CycleGAN, 
and DualGAN present similar shapes with minor differences from the real CT, such as blurred boundaries and 
missing details. Our sCT stands out with clear details, while AttentionGAN performs the least favorably. In 
the pituitary region (yellow arrow) of the third row, our sCT most closely matches the real CT, with distinct 
boundaries and minimal shape variations. ADCycleGAN, RegGAN, and CycleGAN lose some details, and 
eye distortion is prominent. DualGAN and AttentionGAN generally underperform. In the eye region (orange 
arrow) of the fourth row, ADCycleGAN, RegGAN, and CycleGAN exhibit minimal differences from the real 
CT, but brain tissue distortion is severe. Our sCT excels, whereas DualGAN and AttentionGAN lag behind. For 
the Chest dataset, in the bronchial bifurcation (green arrow), ADCycleGAN, RegGAN, and CycleGAN exhibit 
smaller differences from the real CT, but overall image detail is lacking. Our sCT stands out, while DualGAN 
and AttentionGAN falter. In the conus region (blue arrow) of the second row, ADCycleGAN and RegGAN 
show less shape deviation compared to CycleGAN, DualGAN, and AttentionGAN, which exhibit the great-
est discrepancies. Our sCT is the closest to the real CT in this region. In the lung tumor area (yellow dashed 
circle), ADCycleGAN and RegGAN have similar shapes to the real CT, but they lack information in the heart 
and conus regions. Our sCT outperforms others, with CycleGAN, DualGAN, and AttentionGAN performing 
the worst. In the lung tumor area of the fourth row (orange dashed circle), ADCycleGAN and RegGAN have 
slightly less shape deviation from the real CT, but they severely lack heart information. Our sCT demonstrates 
superior clarity with minimal distortion, while CycleGAN, DualGAN, and AttentionGAN remain inferior. The 
HU value histograms in Fig. 8 reveal that our method’s curve shape and peak are closer to the real CT, indicating 
a certain level of fidelity. Figures 9 and 10 illustrate the difference plots between CBCT, our method, and CT for 
both datasets. The difference plots reveal that our method exhibits significantly smaller discrepancies compared 
to CBCT, indicating that the synthetic sCT generated by our approach approaches the CT standard to a certain 
extent. In summary, our model, trained on unpaired data, is capable of extracting and preserving crucial features 
and fine-grained details, automatically focusing on various image regions, and enhancing the understanding of 

Figure 15.  Differences between our method and Real CT for different dose distributions on the H &N dataset 
(left). Patient DVH differences, where the solid line is Real CT and the dashed line is sCT (right).
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the overall image structure. Through extensive experimentation on both datasets, our model outperforms other 
competing algorithms in terms of results.

Furthermore, in addition to visual presentations, this paper also evaluates the clinical significance through 
expert analysis. Figures 13 and 14 illustrate the 3D reconstructions, demonstrating that sCT preserves the original 
anatomical structures and maintains a certain continuity in internal organ tissues. Figures 15 and 16 showcase 
the distribution of our sCT under different doses compared to the real clinical dose. The results indicate that the 
dose difference between our sCT and the real CT is minimal, confirming the clinical applicability of our method.

While our approach outperforms other unsupervised learning models, the results on the Chest dataset remain 
relatively average. For future work, we plan to experiment with the state-of-the-art diffusion models in the image 
generation domain and further investigate 3D image generation capabilities.

Conclusions
This study proposes an unsupervised learning model, IViT-CycleGAN, aiming to synthesize sCT from CBCT 
for future clinical practice. IViT-CycleGAN presents a U-net framework, which is built upon the ViT architec-
ture within the generator. This framework leverages the U-net structure to effectively extract and retain crucial 
features and intricate details. Moreover, we enhance the ViT model by integrating a deep convolutional network 
and the self-attention mechanism of Transformer into the feed-forward neural network. The objective is to auto-
matically prioritize information from various image locations during the image generation process, leading to a 
better comprehension of the overall image structure and emphasizing regions with finer details. Consequently, 
the generated images exhibit enhanced clarity and realism. To enhance the stability of model training, a gradi-
ent penalty is introduced to ensure minimal variations in network weights for minor changes in the model’s 
input. Additionally, an additional loss term is included in the generator loss to reinforce the consistency between 
the generated and source images by capturing their differences. The results demonstrate that IViT-CycleGAN 
outperforms other unsupervised learning models in terms of generating sCT, thus validating the clinical appli-
cability and robustness of our model. In future clinical practice, this method can assist clinicians in developing 
radiotherapy treatment plans.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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