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ESG guidance and artificial 
intelligence support for power 
systems analytics in the energy 
industry
Qingjiang Li 1, Guilin Zou 2, Wenlong Zeng 2*, Jie Gao 3*, Feipeng He 4 & Yujun Zhang 2

In order to increase the precision and effectiveness of power system analysis and fault diagnosis, 
this study aims to assess the power systems in the energy sector while utilizing artificial intelligence 
(AI) and environmental social governance (ESG). First, the ESG framework is presented in this study 
to fully account for the effects of the power system on the environment, society, and governance. 
Second, to coordinate the operation of various components and guarantee the balance and security 
of the power system, the CNN-BiLSTM power load demand forecasting model is built by merging 
convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). Lastly, 
the particle swarm optimization (PSO) algorithm is used to introduce and optimize the deep belief 
network (DBN), and a power grid fault diagnostic model is implemented using the PSO technique and 
DBN. The model’s performance is assessed through experimentation. The outcomes demonstrate 
how the CNN-BiLSTM algorithm significantly increases forecasting accuracy while overcoming the 
drawback of just having one dimension of power load data. The values of 0.054, 0.076, and 0.102, 
respectively, are the root mean square error (RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). Effective processing of large-scale nonlinear data is achieved in the area 
of power grid fault diagnosis, resulting in prediction accuracy of 96.22% and prediction time of only 
129.94 s. This is clearly better than other algorithms and increases fault prediction efficiency and 
accuracy. Consequently, the model presented in this study not only produces impressive results in 
fault diagnosis and load demand forecasting, but also advances the field of power system analysis 
in the energy industry and offers a significant amount of support for the sustainable and intelligent 
growth of the energy industry.

Environmental Social Governance (ESG), with its emphasis on social responsibility, environmental friendli-
ness, and good governance, has emerged as a key indicator of enterprise operation in today’s energy industry, 
as society’s concerns about sustainable development and environmental protection  grow1,2. ESG covers three 
aspects: environment, society, and governance, and also plays a vital role in power system  analysis3. In this 
context, power system analysis has become the key to ensure the success of energy industry in terms of sustain-
ability and efficiency.

ESG guidance has a far-reaching impact on power system analysis. It urges energy companies to adopt more 
environmentally friendly and socially responsible practices and encourages them to integrate renewable energy 
into the power system. This requires in-depth analysis of the traditional power system to determine how to better 
integrate renewable energy, optimize energy production and distribution, and minimize the negative impact on 
the  environment4. Under the guidance of ESG framework, power system analysis is not only the optimization of 
technology, but also the comprehensive consideration of environment, society, and governance.

In addition, the support of artificial intelligence (AI) also brings new possibilities for power system analysis. 
AI technology can process large-scale data, provide more accurate and real-time forecasting and optimization 
models, and help power systems run more  efficiently5,6. In order to find possible areas for improving energy 
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efficiency and to optimize the operation of the power system, which lowers energy waste and emissions, the 
deep learning algorithm can be used to extract features of data information from the power system in the energy 
industry without  supervision7–9.

Therefore, this study aims to use ESG guidance and AI support to analyze the power system efficiently, and 
realize the sustainable development goal with the efficiency and reliability of the energy industry. The innova-
tions of this study are as follows: Firstly, ESG framework is introduced into power system analysis, and combined 
with deep learning algorithm, power load demand forecasting and power grid fault diagnosis are improved and 
optimized. Second, this study proposes a CNN (Convolutional Neural Network)-BiLSTM (Bidirectional Long 
Short-Term Memory) power load demand forecasting model. This model is intended to facilitate the coordina-
tion of various components’ operations and guarantee the stability and security of the power system. Lastly, 
this study also suggests a power grid failure diagnostic model based on the particle swarm optimization (PSO) 
algorithm and deep belief network (DBN), taking into account the new difficulties brought about by the idea of 
a smart grid. This comprehensive analysis method not only helps energy companies to enhance their competi-
tiveness, but also promotes the development of the whole industry in a more environmentally friendly, socially 
responsible and sustainable direction.

The overall organizational structure of this study is as follows. “Introduction” section, introduces the research 
background and motivation, and emphasizes the importance of power system analysis and fault diagnosis in 
the sustainable development of energy industry. “Recent related work” section, the recent related work, combs 
the related research in the field of power system analysis and fault diagnosis, highlighting the existing research 
results and existing research gaps. “Methods” section, the method, describes the application of ESG framework 
in power system analysis in detail, and designs a model based on CNN-BiLSTM and PSO-DBN in power load 
demand forecasting and power grid fault diagnosis. “Results” section, the result, presents the actual data and 
analysis results of power system analysis and fault diagnosis in the form of charts and data. “Discussion” sec-
tion, the discussion, interprets and analyzes the results in detail, highlighting the significance, limitations, and 
future research direction of the research results. “Conclusions” section, the conclusion, summarizes the whole 
research and emphasizes the significance to the sustainable development of energy industry and the focus of 
future research.

Recent related work
The trend in energy transformation is toward cleaner, sustainable, and environmentally friendly development 
due to the world economy’s rapid growth. Many scholars have studied the power system in the energy industry. 
Yao et al.10 deeply studied the renewable energy target of China in 2030, and emphasized the economic and cli-
matic advantages of vehicles to power grid technology. Their research illustrated how this method can promote 
the low-carbon transformation of power system, and provided inspiration for China’s renewable energy goals. 
Mao et al.11 discussed the role of energy storage in planning low-carbon distributed power systems. Their assess-
ment highlighted the key role of energy storage in achieving a more sustainable energy infrastructure. Huang 
et al.12 proposed a low-carbon economic scheduling and energy sharing method for multiple integrated energy 
systems. Their method focused on the overall perspective of the system and provided a comprehensive idea for 
realizing the low-carbon goal of energy distribution. Xin-gang and  Ying13 examined China’s renewable energy 
industry policy and its effectiveness in supporting low-carbon energy transformation. Their work has made 
an in-depth evaluation of policies and measures in promoting the sustainable energy pattern. Borowski and 
 Karlikowska14 solved the challenges faced by enterprises in adopting clean hydrogen in the era of low-emission 
and zero-emission economy. Their research emphasized the complexity and obstacles faced by integrating clean 
hydrogen in achieving sustainable energy goals.  Wang15 used quantitative analysis method to analyze the data of 
renewable energy enterprises to determine whether there was a relationship between low-carbon transformation 
and ESG disclosure. The findings demonstrated a positive association between renewable energy enterprises’ 
ESG disclosure and their low-carbon transition. This showed that the low-carbon transformation may promote 
the ESG practice of renewable energy enterprises and increase the concern about environmental, social and 
governance issues.

Deep learning algorithms are currently being used by numerous academics to examine and research the elec-
tricity system. The use of deep learning in frequency analysis and regulation of contemporary power systems was 
examined by Zhang et al.16. They gave detailed insights into the future application of deep learning technology 
and talked about how it could enhance frequency analysis and power system control. Yang et al.17 put forward 
an intelligent data-driven method, which had the ability of autonomous learning and provided a new decision-
making idea for the security and efficiency of power system. Hong et al.18 conducted power system fault event 
analysis based on deep learning technology. Their research used deep learning to analyze power system fault 
events, which provided new possibilities for improving power grid reliability and rapid fault location. Khattak 
et al.19 proposed a hybrid model based on deep learning, which was used to detect power loss using big data 
in power systems. Their model combined deep learning and big data technology, providing a new and efficient 
method for power loss detection. Ahmadian et al.20 proposed a method combining mixed integer linear program-
ming with deep learning to forecast the power load demand of virtual power plants. The results showed that 
this method can integrate renewable energy and electric vehicles more effectively, and provide a new intelligent 
scheme for power system management.

To sum up, through the research and analysis of the above scholars, it is found that it highlights the diversity 
and complexity in the field of energy transformation and expands the understanding of how to realize a clean, 
sustainable and environmentally friendly power system more effectively. Deep learning, meanwhile, offers a new 
technical avenue for power system analysis, as demonstrated by the fault analysis of the power system by Hong 
et al. and the power loss detection by Khattak et al. However, in the demand of sustainable development of low 
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carbon and environmental protection, few scholars apply ESG and AI technology to the analysis of power system 
at the same time. In order to encourage the growth of the global new energy field in a low-carbon and intelligent 
direction, this study uses the power system in the new energy field as its object, applies the ESG framework to 
it, and uses deep learning to analyze the power system.

Methods
Application of ESG framework in power system analysis
ESG framework plays a vital role in the energy industry, covering three aspects of environment, society and 
governance, and has become a key indicator for enterprises and industries to evaluate sustainability and social 
 responsibility21,22. In the energy industry, especially in power system analysis, ESG framework plays a guiding 
and evaluating role, as displayed in Table 1.

In Table 1, the application of ESG framework in power system is mainly reflected in three aspects: environ-
ment, society and governance. In terms of environment, ESG framework pays attention to sustainability by 
evaluating the impact of power system on the environment. Through the ESG framework, energy companies can 
more comprehensively evaluate the environmental impact of their power production methods, thus promoting 
a more environmentally friendly and sustainable energy production model. In the social aspect, ESG framework 
also pays attention to the impact of power system on society, such as employee welfare, the impact of local com-
munities and social responsibility. In power system analysis, social indicators may include the implementation 
of social responsibility projects, employee welfare and safety measures. By considering these factors, the social 
sustainability of power system can be evaluated and the development of social justice and responsibility can be 
promoted. In terms of governance, this involves the effectiveness of regulatory compliance and decision-making 
transparency. Through these indicators, the good governance of power system can be evaluated.

Therefore, the application of ESG framework in power system analysis not only helps to evaluate the sustain-
ability and environmental friendliness of power system, but also promotes the development of energy industry 
towards more social responsibility and governance norms. In order to support the more standardized and effec-
tive operation of the power system in the energy industry, the deep learning algorithm is further introduced by 
this study to anticipate the power demand and fault detection in the power system.

Application of deep learning to power load demand forecasting and analysis
This study uses a deep learning algorithm to predict power demand, coordinate the operation of various com-
ponents, and guarantee the security and balance of the power system to analyze the energy industry’s power 
system and lessen the high fluctuation and uncertainty of the power grid load brought on by residents’ behavior.

Table 1.  Application of ESG framework in power system.

Aspect Index Specific content Classification Representative meaning

Environment

Energy type Renewable energy/traditional energy 
usage ratio

Less than 25% The lower the proportion, the lower the utiliza-
tion of renewable energy, while the higher the 
proportion, the more the enterprises rely on 
renewable energy, the less the dependence on 
traditional energy and the more environmentally 
friendly

25–50%

50–75%

75% or above

Carbon emissions Carbon emissions generated during 
power generation

Less than 1000 tons Low carbon emissions mean that enterprises 
produce less greenhouse gases in the process of 
power generation and have less impact on the 
climate, while high carbon emissions mean that 
enterprises may have a greater negative impact 
on the climate

1000–5000 tons

5000–10,000 tons

10,000 tons or above

Ecosystem impact Influence of power generation on local 
ecosystem

No impact
No impact means that enterprise activities have 
no significant impact on the ecosystem, while 
significant impact may mean that enterprise 
activities have seriously damaged the ecosystem

Slight impact

Medium impact

Significant impact

Society

Social responsibility project Social responsibility projects and plans 
implemented

Less than 5 projects
The greater the number of social responsibil-
ity projects, the more active enterprises are in 
fulfilling their social responsibilities and making 
contributions to the community

5–10 projects

10–15 projects

15 projects or above

Employee welfare The company’s welfare treatment and 
safety measures for employees

Less than 1000 yuan/month The higher employee welfare means that enter-
prises care more about employees and provide 
better wages and safer working environment

1000–3000 yuan/month

More than 3000 yuan/month

Governance

Power system governance structure Structure and decision-making mecha-
nism of power system

Low level The higher the level, the more transparent and 
independent the decision-making process of 
the enterprise, which reduces the possibility of 
power interference

Medium level

High level

Transparency and compliance Transparency and compliance of power 
system operation

Low level The higher the level of transparency and compli-
ance, the better the enterprise is in information 
disclosure and compliance with laws and regula-
tions, and more responsible to stakeholders

Medium level

High level
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The one-dimensional nature of power load data significantly restricts the neural network’s capacity to extract 
the full range of information from power load series. Implicit qualities include the link between power load data 
and time series data continuity.  CNN23 has the ability to map one-dimensional data into multi-dimensional data, 
completely utilize the information contained in power load series, and enhance the features of restricted data. 
CNN is therefore able to adequately represent the regional features of power load data. Meanwhile, power load 
data sequentially records power consumption based on a predetermined time interval and sampling frequency. 
Therefore, this study further introduces BiLSTM  algorithm24 to extract the features of power load data. Eventually, 
a CNN-BiLSTM-based model structure for power load demand forecasting is built, as seen in Fig. 1, including 
input, feature extraction, prediction, output, and network optimization layers.

In Fig. 1, the power load demand forecasting model mainly consists of two parts: feature extraction and data 
forecasting. After preprocessing the data in the power system, CNN extracts the feature information sequence 
from the pre-processed time series. CNN module uses two convolution layers and ReLU as the activation func-
tion to make the network more trainable.

Brief introduction and working principle of CNN-BiLSTM model
CNN-BiLSTM model combines CNN and BiLSTM to process time series data, such as the data in power load 
demand forecasting. Among them, CNN model consists of convolution layer, pooling layer, and activation 
function, which can effectively extract features from one-dimensional data. In power load demand forecasting, 
CNN is used to transform one-dimensional power load data into multi-dimensional data to better capture the 
spatial characteristics of the data. Through convolution operation and activation function, CNN can extract key 

LSTM LSTM LSTM

LSTM LSTM LSTM

BiLSTM

CNN

...Output
layer

Actual value output

Calculate losses

RMSprop optimization

Input layer

Power system data

Data preprocessing

Feature
extraction

layer

Prediction
layer

Network
optimization layer

Figure 1.  Frame diagram of power load demand forecasting model based on CNN-BiLSTM.
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features from data, such as load fluctuation and trend. In power load demand forecasting, CNN model is used 
for feature extraction, which transforms the original one-dimensional power load data into multi-dimensional 
feature sequence, so that the subsequent forecasting model can better understand and process the data.

BiLSTM model is composed of forward and backward LSTM networks, which captures the context of 
sequence data respectively. BiLSTM can capture the long-term dependence in sequence data to better under-
stand the time dynamic characteristics of data. Through the forward and backward LSTM networks, BiLSTM 
can consider the data of the current moment and the data of the past moment at the same time to predict the 
future trend. In power load demand forecasting, BiLSTM model is used for sequence forecasting, receiving the 
feature sequence extracted from CNN model, and forecasting the future power load demand by learning the 
time dependence of sequence data.

CNN-BiLSTM model combines the feature extraction ability of CNN with the sequence modeling ability of 
BiLSTM, and makes full use of the spatial and temporal dynamic characteristics in time series data. Through 
this integration, the model can predict the future power load demand more accurately and improve the accu-
racy and stability of the prediction. The model integrating CNN and BiLSTM can better capture the spatial and 
temporal characteristics of data in power load demand forecasting and improve the accuracy of forecasting. The 
features are extracted by CNN model and passed to BiLSTM model for sequence modeling. The model can bet-
ter understand the complexity of power load data and make more reliable predictions. In a word, by integrating 
the advantages of CNN and BiLSTM, CNN-BiLSTM model can process time series data more effectively, and 
improve the accuracy and stability of forecasting, thus playing an important role in energy industry.

When using CNN network to extract the features of the power data in the original power system, preprocess 
it first. If the original power data is as shown in Eq. (1):

Let T be the length of time series, that is, predict the ith point and take the previous T points as input, then 
the data set � can be expressed as Eq. (2):

�i can be expressed as Eq. (3):

Equation (4) serves as the conversion function, and the data is processed using the min–max standardization 
method to increase the model algorithm’s operational efficiency.

xi refers to raw data and xj′ refers to standardized data.
A dropout layer is added between CNN feature extraction block and BiLSTM sequence prediction to prevent 

over-fitting. Then, BiLSTM network is used to effectively process the input characteristic information sequence 
data, which can capture the dependence between data information in power system.

The features xt and ht−1 of data information in the power system are input into the BiLSTM model, and the 
input data are obtained by sigmoid function, and the coefficients ft , it are input by activation function, and the 
temporary unit variable c̃t is obtained. The calculation process is shown in Eqs. (5)–(7):

σ and tanh are activation functions, and the former is sigmoid function. Wf ,Wi ,WC ,Wo are weight parame-
ters. ht−1 refers to the output of the previous neuron. Ct refers to the cell state at time t. ht refers to the hidden layer 
output at time t, and b refers to the bias vector. Then, the hidden state  ht at t can be expressed as Eqs. (8)–(10):

W and b respectively represent the relative weights of the door unit and the memory cell. ct and ht respectively 
represent the state of the memory cell and the hidden state of LSTM at t. → and ← represent forward data feature 
prediction and reverse data feature prediction respectively.

(1)� = {ϕ1,ϕ2, . . . ,ϕN }.

(2)� = {�1,�2, . . . ,�n−T }.

(3)�i =
{

ϕj−L,ϕj−L+1, . . . ,ϕj−1

}

, 1 ≤ i ≤ n− L, j = i + L, i, j ∈ N .

(4)x′j =
xi − xmin

xmax − xmin

.
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]
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′
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]
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,
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′
c ·

[
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]
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.
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In the process of back propagation, the parameters in the model should be updated in the direction of the 
fastest gradient decline. Assume that the network parameter is θ , the learning rate is η . The function represented 
by the network is J(θ) . The maximum gradient of the function to θ at this time can be expressed as ∇θ J(θ) , so 
the updating equation of parameters can be expressed as Eq. (11):

In order to further optimize the problem that the loss function has too large swing amplitude in the update of 
the model and accelerate the convergence speed of the function, RMSProp algorithm uses the differential square 
weighted average for the gradient of weight W and offset b, as shown in Eqs. (12)–(15):

sdW and sdb refer to the weighted average of exponential squares initialized to zero, respectively, and β refers to 
momentum.

In this model, the pseudo code of CNN-BiLSTM algorithm applied to power load demand forecasting is 
shown in Fig. 2.

In Fig. 2, firstly, CNN-BiLSTM algorithm receives raw power data as input, and outputs the prediction result 
of power load demand. In the data preprocessing stage, the original data is preprocessed to prepare for the sub-
sequent feature extraction. Then, CNN model is used to extract features from the preprocessed data, and a CNN 
feature extraction function is defined to ensure that the model can effectively extract important spatial features 
from the data. Then, BiLSTM model is used to predict the sequence of features extracted from CNN to capture 
the time dynamic features in the data, and this process is realized by the defined BiLSTM sequence prediction 
function. Finally, RMSProp algorithm is used to train and optimize the model to improve the performance and 
prediction accuracy of the model. After the whole process, the algorithm gives the prediction results of future 
power load demand. Through this algorithm flow, CNN-BiLSTM model can be effectively applied to accurately 
predict the power load demand, which provides important support and guidance for the management and 
operation of the energy industry.

Application of DBN in power system fault prediction and analysis
At present, with the concept of smart grid put forward, the establishment of intelligent information operation 
and maintenance platform store a lot of data, and the large-scale access of distributed power sources increases 
the nonlinearity and uncertainty of data, which makes the fault analysis of power system more difficult. Aiming 
at the fault analysis of power system under the new situation, this study proposes a power grid fault diagnosis 
model based on PSO algorithm and DBN, as shown in Fig. 3.

(11)θ = θ − η∇θ J(θ).

(12)sdW = βsdW + (1− β)dW2,

(13)sdb = βsdb + (1− β)db2,

(14)W = W − α
dW√
sdW + ε

,

(15)b = b− α
db√

sdb + ε
.

1 Start

2 Input: Raw power data

3 Output: Power load demand prediction results

4 # Data preprocessing

5 # CNN feature extraction

6 def CNN_feature_extraction(preprocessed_data):

7 # Define CNNmodel structure

8 # BiLSTM sequence prediction

9 def BiLSTM_sequence_prediction(extracted_features):

10 # Define BiLSTM model structure

11 model = Sequential()

12 # Model training and optimization (utilizing RMSProp algorithm to update parameters)

13 def train_model(data):

14 preprocessed_data = data_preprocessing(data)

15 extracted_features = CNN_feature_extraction(preprocessed_data)

16 predicted_sequence = BiLSTM_sequence_prediction(extracted_features)

17 End

Figure 2.  Pseudo-code flow charts of CNN-BiLSTM algorithm applied to power load demand forecasting.
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In Fig. 3, firstly, power system fault data is input, and the input data is denoised by Variational Mode Decom-
position (VMD)25. Then, the parameters of  DBN26 and PSO  algorithm27 are initialized. The model takes the 
accuracy of fault prediction as the fitness function of PSO algorithm to guide it to search for individual and 
global optimal solutions. PSO algorithm constantly updates the position and velocity of particles to converge 
towards the optimal solution step by step. If the requirements are satisfied, the global optimal value—which 
denotes the ideal number of neurons in the hidden layer—is produced by iterative evaluation. In the event that 
the termination condition is not satisfied, the PSO algorithm will go on finding the optimal architecture while 
updating the particle’s position and speed. The optimal individual value, or the ideal number of neurons in the 
hidden layer, is sent into the DBN model for training once the termination condition is satisfied. Finally, DBN 
training is completed and the identification results of power grid faults is output.

In this model, the fault parameter estimation is defined as Eq. (16):

β̂ i
k−1,k is the i-th fault parameter when calculating k-1 at time k. Wi

k ,V
i
k are the weight matrix of the output 

layer and hidden layer of the i-th DBN. yk is the input vector of the DBN, and g is the nonlinear mapping realized 
by the DBN. During training, the Lyapunov  function28 changes as shown in Eq. (17):

ek refers to learning error. Let Gk = ∂Jk/∂Wk ,Gkmax = max
k

||Gk|| . Because of η1 = ηwG
2
kmax , the Eq. (18) is 

defined:

(16)β̂ i
k−1,k = g

(

yk ,W
i
k ,V

i
k

)

.

(17)�Lk =
1

2

(

e2k+1 − e2k
)

.

Power system fault data

VMD denoising

Initialize DBN parameters

Initialize particle swarm
parameters

Using prediction accuracy as
fitness value

Searching for individual and
group extremum

Update particle position and
velocity

Calculate particle fitness
values

Update particle position and
velocity

Are the
termination conditions

met?

Output global optimal value
(number of hidden layer neurons)

Update particle position and
velocity

Input the optimal individual
extremum into the DBN model

Complete DBN training

Prediction result output

Yes

No

Figure 3.  Power grid fault diagnosis model based on PSO algorithm and DBN.
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If the condition satisfying the convergence of the DBN is �Lk < 0 , then � > 0 . The following equation can 
be obtained from Eq. (18).

If Eq. (19) is satisfied in the DBN, the network model can be kept stable and convergent, thus the state and 
output of the power system can be predicted.

The fault diagnosis and prediction framework can be divided into the following steps:

(1) Data preprocessing. Input power system fault data, which may include power grid operation status, equip-
ment sensor data, etc. Variational Modal Decomposition (VMD) is used to denoise the data, so as to reduce 
the interference noise in the data and improve the robustness and accuracy of the subsequent model.

(2) Model initialization. Particle swarm optimization (PSO) is used to initialize the parameters of deep belief 
network (DBN) and PSO. DBN is a neural network model with multiple hidden layers, which is used for 
fault diagnosis and prediction.

(3) PSO process. PSO algorithm takes the accuracy of fault prediction as the fitness function, and constantly 
updates the position and speed of particles to find the optimal parameter configuration of neural network. 
Through iterative optimization, PSO algorithm guides particles to search in the direction of global optimal 
solution.

(4) PSO algorithm termination conditions. PSO algorithm will continue to iterate and update until the ter-
mination conditions are met, such as the maximum number of iterations, accuracy requirements or other 
preset conditions.

(5) Once the PSO algorithm meets the termination conditions, it outputs the global optimal value, which 
represents the optimal number of neurons in the hidden layer. This value will be used as a key parameter 
for subsequent DBN model training.

(6) DBN model training. The optimal number of hidden layer neurons determined by PSO algorithm will be 
used as the hidden layer configuration of DBN model, and then the DBN model will be trained. This step 
may involve supervised learning with fault data, so that the model can accurately identify power grid faults.

(7) Output of fault diagnosis results. After completing the training of DBN model, the model will be used to 
identify and predict power grid faults. Finally, through this process, the identification results of power grid 
faults are output, which provides guidance for subsequent fault treatment and maintenance.

This framework integrates data preprocessing, PSO and DBN to effectively diagnose and predict power grid 
faults and improve the accuracy and robustness of power system faults.

Experimental analysis
In order to analyze the performance of the power load demand forecasting model based on CNN-BiLSTM, the 
smart meter data of XX community in Xi’an from October 2021 to October 2022 are collected. The original 
power load data is collected every 6 s by the home smart meter, but this study analyses and forecasts the 5-min 
power load data and needs to convert the data unit. The load data is converted into electricity consumption 
within 5 min, and then the data are integrated, and 36,105 power data are obtained after integration. According 
to a 7:3 ratio, power statistics are split at random into training and test sets. The model makes use of a number 
of Python modules and the TensorFlow simulation framework. There are 100 iterations and a batch size of 100 
in the particular super parameter settings. The random gradient descent algorithm is utilized to optimize the 
loss function, with a starting learning rate of 0.001. The model techniques presented by CNN, BiLSTM,  LSTM29, 
and Ahmadian et al. are utilized to evaluate the model’s performance in this study using three different metrics: 
root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

Furthermore, the performance of the power grid fault diagnosis model based on PSO algorithm and DBN is 
evaluated. The simulation experiment is completed on an Inter Core i7-9750H personal computer with a single 
CPU of 2.6 GHz, 16 GB of memory and 64-bit operating system. Because the accuracy of model identifica-
tion will change with the number of hidden layers, DBN models with hidden layers of 1, 2, 3, 4 and 5 are built 
respectively. The number of neurons in each layer is set to 200, the number of iterations is set to 100, the loss 
function is cross entropy, the learning rate adopts random gradient descent algorithm, and the initial learning 
rate is set to 0.001. The improved 10 kV distribution network model of IEEE13 nodes is established, the arc fault 
module is analyzed, and the early fault model is completed. Half-cycle early fault, multi-cycle early fault, fixed 
impedance grounding, motor start-up and load switching are respectively set, and the load of each fault branch 
is respectively set to light load, heavy load, and full load. When the motor is started, three groups of situations 
with different power levels are set according to the power level of the motor. The switching time of capacitors is 
set to 9 random values in a cycle, and 12 groups of capacitors with different sizes are set. According to the above 
simulation conditions, the obtained data are parameterized, and a total of 8517 groups of samples are obtained. 
The training set consists of 70% data samples of various state types, and the remaining 30% samples constitute the 
test set. Compared with the model algorithms proposed by DBN, General Regression Neural Network (GRNN)30 
and Hong et al. in terms of accuracy and training time.
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Results
Power load demand forecasting analysis with different model algorithms
Figures 4 and 6 illustrate the evaluation of the CNN-BiLSTM power load demand forecasting model algorithm 
used in this study and the model algorithms proposed by CNN, BiLSTM, LSTM, Ahmadian et al. and  Aseeri31 
from the perspectives of RMSE, MAE, and MAPE, respectively. Meanwhile, the average values of each algorithm 
under RMSE, MAE, and MAPE indicators are shown in Table 2.

In Figs. 4, 5 and 6 and Table 2, the results that the errors of RMSE, MAE and MAPE change with the 
increase of iteration times. By comparing the error change results of each algorithm, it shows that the aver-
age RMSE, MAE and MAPE of CNN-BiLSTM algorithm proposed in this study are 0.054, 0.076 and 0.102, 
respectively, while the error values of other model algorithms are obviously higher than those of the algorithm 
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Figure 4.  RMSE result of power load forecasting with different algorithms.

Table 2.  The average results of each algorithm under RMSE, MAE, and MAPE indicators.

Indicators CNN-BiLSTM Ahmadian et al. BiLSTM LSTM CNN Aseeri

RMSE 0.0535 0.0598 0.0648 0.0707 0.0755 0.0617

MAE 0.0764 0.0845 0.0916 0.0975 0.1052 0.0891

MAPE 0.1023 0.1133 0.1229 0.1365 0.1494 0.1193
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Figure 5.  MAE result of power load forecasting with different algorithms.
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model proposed in this study. Additionally, the model algorithms for this study < model algorithm suggested by 
Ahmadian et al.20 <  Aseeri31 < BiLSTM < LSTM < CNN, and the recognition errors RMSE, MAE, and MAPE of 
each algorithm are the model algorithms. As a result, the CNN-BiLSTM-based power load demand forecasting 
model in this study has higher power load forecasting accuracy when compared to other researchers’ algorithms. 
This means that the model can more accurately support the low-carbon intelligent development of the power 
system in the energy industry by better predicting the load demand in the power system.

Prediction and analysis of power grid fault diagnosis with different model algorithms
The power grid fault diagnosis model constructed in this study is compared with the model algorithm proposed 
by DBN, GRNN and Hong et al.18, and the results of accuracy and training time are shown in Figs. 7 and 8.

In Fig. 7, comparing the fault prediction model algorithm constructed in this study with the model algorithm 
proposed by DBN, GRNN and Hong et al.18 it shows that the fault prediction accuracy of the model algorithm 
proposed in this study reaches 96.22%, which is 2.30% higher than that of the model algorithm proposed by 
Hong et al.18. Meanwhile, the order of prediction accuracy of each algorithm is the proposed algorithm > Hong 
et al.18 > GRNN > DBN. In Fig. 8, it shows that with the increase of iteration times, the prediction time required 
by this model algorithm is obviously lower than other algorithms, reaching 129.94 s. It indicates that compared 
with other scholars’ algorithms, the power grid fault diagnosis model based on PSO algorithm and DBN con-
structed in this study has higher power grid fault prediction accuracy, higher fault prediction efficiency, better 
noise resistance and stability.
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Figure 7.  Result of fault prediction accuracy of different algorithms.
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Discussion
Through the analysis of the above results, it shows that the CNN-BiLSTM and PSO-DBN models proposed in 
this paper have achieved remarkable advantages in power load demand forecasting and power grid fault diagno-
sis. Firstly, from the aspect of load demand forecasting, the average RMSE, MAE and MAPE of CNN-BiLSTM 
model are 0.0535, 0.0764 and 0.1023, respectively, which are significantly lower than other model algorithms. 
Secondly, by comparing the forecasting accuracy of different models, it is found that the performance of this 
model in power load demand forecasting is better than other researchers’ algorithms, which is CNN-BiLSTM 
model > Ahmadian et al.20 model > BiLSTM > LSTM > CNN. Echoing the views of Shi et al.32 and Anu Shalini 
and Sri  Revathi33, this means that the model in this paper can more accurately predict the load demand of power 
system and help support the energy industry to develop into low-carbon intelligence. However, its scope of 
application may be affected by factors such as power system structure, energy types and seasonal changes. If the 
model is verified on data sets that fully represent different geographical and climatic conditions, the adaptability 
of the model to different power system scenarios can be better understood.

For power grid fault diagnosis, the proposed model is compared with other algorithms (such as the model 
proposed by DBN, GRNN and Hong et al.18). The results show that the fault prediction accuracy of this model 
reaches 96.22%, which is 2.30% higher than the model proposed by Hong et al.18. In addition, the ranking of 
fault prediction accuracy is the proposed model, Hong et al.18 model, GRNN, and DBN. In terms of prediction 
time, the time required by this model is obviously lower than other algorithms, only 129.94 s. This is consistent 
with the conclusion of Sun et al.34, which shows that PSO-DBN model is superior in accuracy and efficiency 
compared with other scholars’ algorithms in power grid fault diagnosis. However, factors such as power system 
structure, equipment type and operating environment may affect the applicability of the model. In order to 
evaluate the universality of the model, it is necessary to verify the data of different types of power grids, power 
systems of different scales and different regions. This ensures that the model can perform well in various power 
system scenarios.

Therefore, the CNN-BiLSTM and PSO-DBN models are excellent in load demand forecasting and power grid 
fault diagnosis, and have higher forecasting accuracy and efficiency than other algorithms. These results are of 
great significance for promoting the sustainable development of energy industry and the intelligent development 
of power system.

Conclusions
Firstly, a CNN-BiLSTM-based power load demand forecasting model is built in this study. Through the analysis 
of its RMSE, MAE and MAPE error results, it reaches 0.054, 0.076 and 0.102 respectively, which is obviously 
better than the identification error of the model algorithm proposed by Ahmadian et al.20, showing higher 
forecasting accuracy. In the aspect of fault prediction, the power grid fault diagnosis model algorithm based on 
PSO algorithm and DBN proposed in this study shows 96.22% prediction accuracy, which is obviously improved 
compared with other models, such as DBN, GRNN and previous research models. This shows the superiority of 
this model in power load demand forecasting, and provides more accurate support for the low-carbon intelligent 
development of power system.

However, this paper also has some limitations, such as data availability and quality, data acquisition dif-
ficulties and data quality inconsistency, which may affect the training and accuracy of the model. In addition, 
the integration of the model into a complex power system may be limited by technology, and the limitations of 
system integration and actual operation need to be considered. Therefore, in the follow-up research, people can 
explore multi-source data integration and data cleaning technology, and focus on customizing the model to adapt 
to different scenarios. In addition, the optimization of system integration and the operational practicability of 
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the model are also key, so people need to pay attention to the practical feasibility study and algorithm efficiency 
optimization. To sum up, solving the problems of data availability, system integration, and operation limitation 
will be the key direction of future research to improve the feasibility and effectiveness of CNN-BiLSTM and 
PSO-DBN models in practical application of power system.

Data availability
The data presented in this study are available on request from the corresponding author.
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