
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11176  | https://doi.org/10.1038/s41598-024-61420-9

www.nature.com/scientificreports

Enhancing diagnostic 
accuracy of multiple myeloma 
through ML‑driven analysis 
of hematological slides: new 
dataset and identification model 
to support hematologists
Caio L. B. Andrade 1, Marcos V. Ferreira 2, Brenno M. Alencar 2, Ariel M. A. Junior 2, 
Tiago J. S. Lopes 3, Allan S. dos Santos 1, Mariane M. dos Santos 1, Maria I. C. S. Silva 1, 
Izabela M. D. R. P. Rosa 1, Jorge L. S. B. Filho 2, Matheus A. Guimaraes 2, 
Gilson C. de Carvalho 1, Herbert H. M. Santos 1, Márcia M. L. Santos 4, Roberto Meyer 1, 
Tatiane N. Rios 2, Ricardo A. Rios 2* & Songeli M. Freire 1

Multiple Myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of 
plasma cells within the bone marrow. Diagnosing MM presents considerable challenges, involving the 
identification of plasma cells in cytology examinations on hematological slides. At present, this is still 
a time‑consuming manual task and has high labor costs. These challenges have adverse implications, 
which rely heavily on medical professionals’ expertise and experience. To tackle these challenges, 
we present an investigation using Artificial Intelligence, specifically a Machine Learning analysis of 
hematological slides with a Deep Neural Network (DNN), to support specialists during the process 
of diagnosing MM. In this sense, the contribution of this study is twofold: in addition to the trained 
model to diagnose MM, we also make available to the community a fully‑curated hematological slide 
dataset with thousands of images of plasma cells. Taken together, the setup we established here is a 
framework that researchers and hospitals with limited resources can promptly use. Our contributions 
provide practical results that have been directly applied in the public health system in Brazil. Given 
the open‑source nature of the project, we anticipate it will be used and extended to diagnose other 
malignancies.

Multiple Myeloma (MM) is a plasma cell oncohematology with the highest incidence, being more frequent in 
individuals over 50 years old. According to the International Agency for Research on Cancer of the World Health 
Organization (WHO), in 2020, MM was responsible for 176,404 new cases and 117,077 deaths of patients of both 
 sexes1. In Brazil, the Brazilian Oncology Panel shows that, between 2013 and 2019, around 2600 cases of MM were 
diagnosed annually, representing a rate of 1.24 cases/100,000 inhabitants—1.47% of new cases  worldwide2,3. This 
oncology corresponds to about 1% of malignant tumors and 10–15% of hematological  neoplasms1. The diagnosis 
and patient’s prognosis are based on a wide range of exams, from clinical evaluations of the patient’s condition, 
through biochemical, and histological tests, to more advanced techniques such as immunophenotyping and 
cytogenetics. Among such exams, we highlight Myelogram, which is characterized as being primarily adopted 
and dependent on manual procedures, implying several limitations on the speed and capacity of meeting the 
growing demand for new cases in contrast to the limited availability of qualified  professionals1–3.
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Plasma cells are effector cells of the B lymphocyte lineage with an essential role in the humoral immune 
response due to the production and secretion of antibodies. Plasma cells originate from B lymphocytes that 
have undergone differentiation into plasmablasts −→ proplasmocytes −→ plasma  cells4–6. After being differenti-
ated into plasma cells, their function is to produce immunoglobulins, which act in the humoral defense against 
viruses, bacteria, and  allergens4–6. They present the markers CD19, CD20, CD22, and surface immunoglobulin 
(IgM or IgD) as immunophenotypic characteristics. When transformed into plasmocytes, they lose or decrease 
the expression of B lymphocyte markers and begin to express CD27, CD38, and  CD1386,7. Their cytomorpho-
logical characteristics are 12–18 µm in diameter, rounded or oval, a meager nucleus-cytoplasm ratio, a dense 
chromatin nucleus, evenly distributed, regular outline, generally eccentric location, an oval or round shape, and 
characteristic perinuclear clear halo. Moreover, their cytoplasm is relatively abundant, deeply basophilic (intense 
blue), and without  granules6,7. In summary, they are typical cells in lymph nodes and bone marrow but extremely 
rare in peripheral blood, except in a few cases of viruses such as rubella (but always less than 5%), in rare cases 
of MM in terminal stages or in the rare and aggressive primary plasma cell  leukemia6,7.

In MM, the exacerbated proliferation of plasmocytes, resulting from a hematopoietic malignancy, leads to 
a high concentration of these cells in the bone marrow, thus causing, in symptomatic cases, high secretion of 
monoclonal protein, light or heavy chains of incomplete antibodies detectable in the blood or urine, and organ 
dysfunction. Symptoms of myeloma may include extreme tiredness, weakness, pallor and weight loss, malfunc-
tion of the kidneys, swelling in the legs, excessive thirst, loss of appetite, severe constipation, bone pain (especially 
in the spine), spontaneous fractures, and constant  infections5,6.

The importance of leveraging Artificial Intelligence (AI) to support patients afflicted with MM has been 
widely emphasized in studies recently published in the literature. In 2022, researchers disseminated a review of 
studies devoted to applying Machine Learning (ML) and Deep Neural Networks (DNN) methods to improve 
the disease’s diagnosis, prognosis, and treatment  selection8. Besides gathering related works with their respective 
AI-based methods and datasets, the authors conclude that the use of ML and DNN has the potential to increase 
our knowledge, thus providing a better understanding of the myeloma genesis mechanisms. According to the 
authors, adopting AI-based methods is still an open problem in this area, which may drive the decision-making 
processes in the near future. Since 2019, it is possible to notice an increasing amount of  papers9–17 proposing 
DNN architectures (e.g., Recurrent Neural Network - RNN, and Convolutional Neural Network - CNN) to 
process images from Computed Tomography (CT) scanners in order to support precise and early diagnosis of 
MM. In such studies, the proposed DNN architectures were capable of suppressing image noises and artifacts 
without losing spatial resolution, thus presenting the potential to improve radiologists’ ability to visualize lesions 
in multiple  myeloma18. Similarly, in 2022, authors presented a new study on using DNN to examine Magnetic 
Resonance Imaging (MRI) images and provide satisfactory diagnostic performance in diagnosing  MM19, and 
supporting differentiate spinal MM and metastases originating from lung  cancer20. From a different perspective, 
researchers have also designed DNN architectures to model images from Immunofixation Electrophoresis (IFE) 
tests in order to identify monoclonal proteins (M-proteins, makers for multiple myeloma) from human serum (or 
urine)21. The primary distinguishing aspect between our proposal and prior works lies in the dataset utilized for 
investigating MM. Rather than examining CT, MRI, or IFE images, we have devised a novel architecture that is 
directly trained on plasma cells. However, it is essential to highlight that their DNN architectures were carefully 
analyzed and inspired the design of our new model.

In relation to the process of modeling plasma cells, we have found some manuscripts strongly related to our 
investigation. The first one, published in 2021, presented a CNN architecture trained on a dataset with slides 
prepared from the bone marrow aspirate of the healthy and cancer  subjects22. However, the images derived from 
this dataset differ significantly from ours, since each segmented image comprises only a single cell positioned 
at the origin. The second one, published in 2022, presents an approach combining DNN and a decomposition 
method to segment plasma cells into nuclei and  membranes23. The dataset considered by the authors contains 
298 images with high resolution.

Lastly, it is worth noting a study presented in 2022, where the researchers analyzed patients’ data to construct 
a Graph-based Neural Network for predicting the likelihood of developing  MM24. Despite differences in the 
dataset and DNN architecture compared to our study, we incorporated this manuscript into our review owing 
to its relevance in addressing this disease.

In our study, we have dedicated a great effort to aggregate knowledge to the current state-of-the-art towards 
facilitating the discovery of effective strategies for managing and diagnosing MM. In summary, the contribu-
tions presented in this study were conducted in two phases. Initially, we generated a novel dataset with images 
comprising diverse cell types (e.g., Plasma cells, Lymphocytes, and Erythroblasts), which were analyzed and 
manually labeled by a committee of specialists. While our primary objective was to improve the diagnosis of MM 
by identifying Plasma cells, the comprehensive nature of the dataset provides a valuable resource for researchers 
investigating other cell types and diseases.

Subsequently, we conducted a rigorous analysis of the existing modeling processes described in the literature 
and devised a specific DNN architecture to highlight the significance of our dataset. Our DNN model has a practi-
cal emphasis on assisting specialists in rendering more accurate diagnoses to patients enrolled in the public health 
system, particularly since such professionals lack access to advanced technological aids for decision-making. Our 
proposal addresses this deficiency by leveraging the available infrastructure without incurring additional costs 
to acquire expensive experimental setups to capture and process high-resolution images. The dissemination of 
our dataset, DNN architecture, and findings extends support to MM patients in developing countries and new 
studies on diseases in other cell types.
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Results
Sample preparation
The diagnosis of MM has made several advances in recent years with the implementation of new techniques, 
such as immunophenotyping and oncogenetic analyses. However, it still relies on the myelogram, which involves 
a laborious methodology, demanding significant effort and time from hematologists. Moreover, these analyses 
present a risk of human error for being an observer-dependent  approach25–27. Although several studies bring 
new perspectives in the transition from this manual technique to an automated format using AI, several image 
repositories were produced with high-cost equipment, often inaccessible to laboratories that serve lower-income 
populations, and images from slides with higher quality than usually observed in the daily routine of hematol-
ogy professionals. Furthermore, most bone marrow slide datasets identify only plasma cells, not allowing the 
automatic evaluation of the percentage of plasma  cells28,29.

The present study includes samples of patients from the Brazilian public health system (Unified Health Sys-
tem) attended by the Laboratory of Immunology and Molecular Biology from the Federal Univeristy of Bahia 
(LabImuno/UFBA) and diagnosed with MM and other hematology diseases, as illustrated in Fig. 1a. For the 
construction of our image dataset, histological slides of bone marrow aspirate stained with Wright–Giemsa 
(SIGMA-ALDRICH, MERCK) were selected (Fig. 1b), visualized with a NIKON ECLIPSE CI visible light micro-
scope in a 100x objective with the use of immersion oil (Fig. 1c). Each slide was positioned to view the crest 
region of the smear, and the nucleated cells found were photographed with a smartphone camera with the aid 
of a universal mobile phone support for the microscope.

Next, a committee formed by trained researchers and hematology specialists individually analyzed every 
captured image and manually labeled all cells according to their types (e.g., plasma cells, lymphocytes, and 
erythroblasts), as shown in Fig. 1d. All those specialists work in the Brazilian public health system and have 
vast experience in MM diagnoses. We emphasize that cells lacking unanimous agreement among the specialists 
were excluded from labeling and not utilized during the training phases to prevent the propagation of errors.

During this task, we used the LabelImg  tool30, which is a graphical interface that helps users to easily draw 
bonding boxes on Regions of Interest (ROI) and set labels that are later used to train AI-based techniques.

Finally, the labeled images were sent to the AI specialists to train an DNN models capable of automatically 
identifying plasma cells. In this work, although our dataset is composed by images with different types of cells, 
supporting the investigation of several biological subjects, we have focused our attention to support the diagnosis 
of MM. Therefore, the labels of our cells were categorized into 1,891 “plasma cells” and 1,931 “non-plasma cells”.

This project fulfills scientific objectives and addresses a significant social need, making it an essential contri-
bution. The LabImuno/UFBA laboratory is a leading scientific facility that offers diagnoses for various hemato-
logical conditions. Analyzing blood samples supports the public healthcare system in the state of Bahia, Brazil. 
As a result, the outcomes presented in this manuscript have immediate practical implications, emphasizing the 
importance of this project as a crucial step towards advancing healthcare practices and improving the life qual-
ity of local patients.

Machine learning framework
The objective of the present study is to investigate the automatic identification of plasma cells in images through 
the development of an ML-based approach. The primary challenge lies in devising an approach that aids special-
ists in the diagnosis of MM. Notably, our work is distinct from usual approaches, focusing on modeling images 
captured using standard smartphone cameras. This feature is particularly pertinent as it facilitates the decision-
making process in hospitals with resource-constrained settings.

The experimental setup designed to build our plasma-cell classifier was based on traditional steps defined 
by the open standard process model Cross-Industry Standard Process for Data Mining (CRISP-DM)31. This 
process is extensively recognized in Machine Learning tasks, and our project encapsulates three main steps: (i) 
Data understanding and preparation, a.k.a. preprocessing; (ii) Modeling; and (iii) Evaluation. During the pre-
processing step, as mentioned in Section “Sample Preparation”, the dataset was created using histological slides 
of bone marrow aspirate stained with Wright-Giemsa. Next, a committee formed by specialists who work in the 

Figure 1.  (a) Bone marrow aspirate procedure; (b) Wright–Giemsa stained bone marrow aspirate smear slides 
from MM patients, analyzed by the oncohematology and immunophenotyping service of the Laboratory of 
Immunology and Molecular Biology; (c) Observation of stained slides in visible light optical microscopes and 
image capture by smartphone device; (d) Identification and labeling of detected cells.
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hematology service of the health system, two hematologists and two biomedics with specialization in hematology, 
was responsible for individually drawing bounding boxes on regions of interest and explicitly defining labels to 
inform the cell types. The final cell labels were set after a consensus among all specialists.

Subsequently, the modeling process was executed by employing a stratified 10-fold cross-validation strategy. 
The optimal outcomes were determined based on the mean identification performance across all folds. This 
approach was adopted to mitigate the possibility of drawing conclusions by chance and finding the best perfor-
mance of the model. Further information on the modeling and evaluation steps is provided in Section “Material 
and methods”.

Plasma cell identification
Although the dataset presented in this manuscript was initially curated by specialists to identify diverse types 
of cells, we have devoted our effort to creating an DNN-based model capable of detecting plasma cells and, 
consequently, supporting the diagnosis process.

In order to better understand our investigation, consider Fig. 2, which presents a set of images used in our 
experimental setup. In the first column, Fig. 2a, c and e show images labeled by specialists. On the other hand, 
images in the second column (b, d, and f) show labels provided by our approach. Such images illustrate the chal-
lenging task of identifying plasma cells on different image backgrounds. Moreover, one may notice that images 
present different cells and their residues, which affect the learning process. Another important observation is 
the impact on the final evaluation. By considering the expected (Fig. 2a,e) and predicted (Fig. 2b,f) images, one 
may see a perfect alignment with more precise bounding boxes (less background). However, Fig. 2c and d show 
a significant agreement (true positive cases) between expected and predicted bounding boxes, but with some 
relevant differences. By looking at these figures, there are plasma cells not classified by the specialists but detected 
by our models. Although the bounding boxes identified by our models are probably plasma cells, specialists 
have not highlighted them due to a confidence issue, i.e., once the cells are not wholly visually seen, they are not 
considered by the specialists. In this case, the detections performed by our model are considered false positives. 
The considered “misclassification” increases the general error, even partially detecting plasma cells.

After visually inspecting our approach, we have performed an experimental evaluation using stratified 10-fold 
cross-validation (10 executions with different combinations of training and validation), employing metrics con-
ventionally utilized in object identification tasks, as shown in Table 1. To summarize all metrics, in the last row, 
we show the mean values per metric calculated on all folds. The mean results emphasize the performance of our 
approach in terms of exactitude and completeness between 80 and 84% and mean F1-scores greater than 80%.

Finally, Fig. 3 shows the Precision-Recall (PR) curve on all images randomly used to compose the test folds. 
By plotting the PR curve, we can better visualize the relationship between Precision and Recall. This is particu-
larly useful in our scenario where the cost of misclassified regions is caused by different sources. The Precision 
metric takes into account false positive identifications (i.e., other cells considered plasma cells), whereas Recall 
measures the influence of missed plasma cells. The combination of both metrics in a single curve allows us to 
verify whether there is a classification bias. In summary, Precision and Recall getting close to 1.0 lead the curve 
to approximate to the upper-right corner, which is the best possible result. After analyzing this figure along with 
their individual values (Table 1), we conclude that our approach provides great individual (Precision and Recall) 
and combined (F1-score and Precision-Recall curve) results.

Discussion
The present investigation conducted initial assessments to determine a viable strategy for creating an image 
repository that emulates the MM diagnostic protocol in Brazil, including the demarcation of non-plasma cell 
populations, for subsequent computation of plasma cell proportions. Consequently, the collected dataset was 
utilized to assess the optimal software framework for training an AI system, based on Machine Learning, to 
discern immune system cells, specifically plasma cells, and quantify them.

The preparation process for analyzing myelogram samples involves several stages, including processing, 
reading, and analyzing the samples for the release of diagnostic reports and therapeutic procedures. Although 
using an ML model does not eliminate the need for hematology specialists to examine myelogram images, it can 
simplify the verification and certification process, making it more accessible, precise (once our contribution can 
assist specialists by highlighting cells in advance), and rapid while also considering the total and proportional 
count of plasma cells in the smear. Implementing a tested and validated ML model can support hematologists 
specializing in myelograms, ensuring safety and quality. With reduced slide reading time, hematology specialists 
can attend to other critical technical and medical functions required for patient care.

Specifically, our model has demonstrated to be a valuable tool in supporting the diagnosis of Myeloma, a 
traditionally time-consuming and subjective task. By analyzing large datasets of patient data, ML algorithms can 
identify patterns and features that distinguish myeloma from other forms of cancer, resulting in more accurate 
and efficient diagnosis. Additionally, the use of ML in the classification of myeloma vs. non-myeloma represents 
a critical step towards improving cancer diagnosis and treatment, with the potential to impact patient outcomes 
and advance our understanding of the disease.

The myelogram procedure plays a pivotal role in the initial diagnosis of oncohematological disorders, yet 
it presents a significant obstacle to rapid and safe diagnosis. While several automated systems are available for 
sample preparation in hematology, bone marrow preparation for myelogram remains a labor-intensive manual 
process. Following bone marrow aspiration, hematologists must create smears of the samples on microscope 
slides and stain them with Wright–Giemsa6. This manual procedure introduces a range of potential variations 
in slide quality, which the present dataset seeks to incorporate to enhance the development of AI in this field. By 
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addressing the issue of manual slide preparation, the dataset aims to improve the accuracy and efficiency of AI 
models in diagnosing oncohematological disorders.

Moreover, the available datasets utilized in prior studies were generated using high-quality imaging equipment 
attached to microscopes. In contrast, the present dataset was produced using equipment commonly available 
in laboratories that cater to the Brazilian Public Health  System22,23,28,32. From this standpoint, the cell-type clas-
sification provided by the current dataset enables the identification of other nucleated cells, which is a critical 
component of various diagnostic procedures and has recently been the focus of several studies aimed at auto-
mating this time-intensive process. Prior projects using smaller datasets have demonstrated promising results, 

Figure 2.  Example of expected (ground truth) and predicted bounding boxes on plasma cells. Images (a), (c), 
and (e) show the regions of interest drawn by specialists. On the other hand, Images (b), (d), and (f) illustrates 
the bounding boxes defined by our AI-based approach.
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albeit limited to plasma cell identification. However, these datasets do not furnish the necessary information for 
percentage counting of plasma cells, which is vital in identifying multiple  myeloma22,23,28,32.

The present study marks a significant milestone in developing a reliable dataset for oncohematology diagno-
ses. By labeling non-plasmacytic cells and expanding the image bank to include additional labeled images, the 
study lays the foundation for more accurate and efficient diagnoses of oncohematological disorders. However, 
it is essential to acknowledge that the current dataset still needs to encompass a greater variety of plasma cell 
varieties, such as Mott cells, which require more refined ML algorithms to identify accurately. Currently, the 
dataset is composed of 512 images with 3822 identified cells. In our results, AI has already shown promising 
results in identifying cell areas and plasmocytes, even in the early stages of training. As such, the present study 
has the potential to advance the development of ML-based tools that can accurately diagnose and treat onco-
hematological disorders. The dataset will become increasingly robust with ongoing research and development, 
enabling more accurate diagnoses and better patient outcomes.

By creating a dataset that closely resembles the diagnostic routine of hematology professionals in Brazil, 
the study enables the development of ML models that can better meet the needs and demands of this sector. 
Moreover, the dataset is produced using low-cost devices that are easily adaptable to Brazil’s existing structure of 
diagnostic laboratories. This dataset makes it possible to implement AI-based diagnostic tools in a cost-effective 
and accessible manner, ultimately improving the quality and speed of diagnoses for patients with oncohema-
tological disorders. By leveraging the unique characteristics of the Brazilian healthcare system, the present 
study can potentially transform how oncohematology is diagnosed and treated, both in Brazil and beyond. The 
remarkable outcomes achieved in plasma cell identification on our dataset pave new avenues for enhancing the 
diagnosis of MM. Based on our experience, adopting our final AI model can leverage basic setups, which include 
a microscope and smartphone camera, to support the decision-making process. Our final model is also freely 
accessible, enabling users to refine it by training it appropriately with specific MM images. Furthermore, we 
highlight the utility of our dataset, which includes labels for different cell types, in augmenting other datasets.

In oncological diagnosis, time and sensitivity are critical factors, significantly impacting the chances of suc-
cessfully treating the patient. Therefore, there is a pressing need for advancements in the automation of diag-
nostic approaches, particularly with the growing number of diseases such as MM cases. The use of AI, trained 

Table 1.  Plasma cell identification using different evaluation metrics. Mean values computed from 10 test 
folds show high general performances.

Fold #Images Labels Precision Recall F1-score

1 53 175 0.83 0.88 0.85

2 51 155 0.85 0.76 0.80

3 52 198 0.81 0.87 0.84

4 52 218 0.75 0.53 0.62

5 50 194 0.88 0.79 0.83

6 51 188 0.84 0.93 0.88

7 49 194 0.81 0.82 0.81

8 51 204 0.79 0.76 0.78

9 50 184 0.91 0.86 0.88

10 53 181 0.93 0.85 0.88

µFold – – 0.84 0.80 0.81

Figure 3.  Precision-recall curve: the approximation on the right-top corner emphasizes the important 
performance of our approach.
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with a dataset produced by low-cost equipment, represents a significant step towards democratizing access to 
healthcare. This approach aims to support specialists by underlining the identification of cells crucial for the 
diagnostic process. We emphasize that specialists are actively involved in this process, leveraging their expertise 
to determine the relevance of specific cells. In several contexts, a limited number of specialists analyzing several 
slides can delay diagnoses and induce errors. However, by prioritizing the recognition of pertinent cells, our 
contribution is essential to support the diagnostic without the need for costly equipment. By leveraging the power 
of AI, the diagnosis of oncohematological disorders can be made more efficient, accurate, and cost-effective. 
This improvement, in turn, can potentially improve patient outcomes and increase the accessibility of healthcare 
services, particularly in resource-limited settings. Overall, the use of AI in the diagnosis of oncohematological 
disorders is a critical tool in the fight against these devastating diseases. In that sense, our methodology can be 
extended to other malignancies, where automated classification and quantification of malignant cells can aid 
in early diagnosis and selecting appropriate treatments. The availability of such technology, which can be easily 
adapted to existing laboratory infrastructure, can revolutionize cancer diagnosis, making it more accessible, 
accurate, and efficient for healthcare providers and patients.

Finally, considering the constraints inherent in our study, we have identified important pathways for further 
research stemming from our findings, offering valuable insights for advancing the diagnosis of multiple myeloma 
(MM). Specifically, we outline the prospect of exploring alternative deep neural network (DNN) architectures, 
such as attention mechanisms and generative models, to enhance diagnostic accuracy. From a biological per-
spective, we intend to design new approaches and models for detecting plasma cells with multiple nuclei and 
structural issues relevant to understanding how MM evolves and affects the patient’s condition.

Material and methods
Deep neural network
The DNN architecture considered to detect plasma cells in our new dataset is based on YOLO (You Only Look 
Once)33, which is the state-of-the-art technique to detect objects in real time. We have used the YOLO version 
7 that combines the highest precision along with the lowest inference time.

In summary, YOLO is based on three specific components: backbone, head, and neck. Backbone is respon-
sible for extracting features from low to high levels in images. Next, such features are transmitted to the head 
component throughout the neck component, which speeds up the processing task by combining different scales 
and reducing the dimensionality.

The head component is in charge of detecting objects, drawing bounding boxes, and inferring the estimated 
classes (labels). Historically, the backbone component used different architectures: Darknet in the first  version34, 
Cross-Stage Partial Network (CSP) in Version  535, and Extended Efficient Layer Aggregation Network (E-ELAN) 
in the last  version36. The main advantage of using E-ELAN is during the training phase, in which the gradient 
update is continuously improved to extract the best performance of the network. Another significant contribution 
of this version (v.7) is the model scaling, which allows to adjust the network on different devices and applica-
tions. By taking advantage of this functionality, we were able to configure and tune a DNN specifically devoted 
to identifying plasma cells and non-plasma cells in stained bone marrow aspirate smear slides. The process used 
to perform such a configuration was based on the traditional construction of DNN by adding and removing 
layers, changing image resolution, modifying channels and filters, and tuning parameters. It is also relevant to 
mention that YOLO v.7 uses an optimization process based on re-parameterization planning (RP)37.

Aiming to reach the best performance possible, we have used an innovative approach referred to as transfer 
learning to accelerate the training process. In summary, this approach allowed us to re-use the knowledge learned 
from previous tasks to boost the performance of detecting plasma cells. In this sense, we have used frozen weights 
and parameters, especially from the backbone and neck layers, which were initially modeled on the dataset 
Microsoft COCO (Common Object in Context)38. COCO is a large-scale object detection, segmentation, and 
captioning dataset containing several images traditionally used to perform different tasks in Computer Vision. 
Next, we performed a fine-tuning process on our images, significantly increasing our results in detecting bound-
ing box sizes, probabilities, and classifications of plasma cells.

The final configuration of our training process was obtained after using a batch with a size equal to 32, 300 
epochs, 64 GB of GPU memory, a learning rate equal to 0.01, and an Adam optimizer. After using our images 
during the training phase, the resultant model presented 362 layers with 70,782,444 parameters.

Evaluation metrics
The evaluation methodology employed in this study adheres to the conventional practices of the Computer 
Vision field for object detection tasks. In summary, the detection performance is evaluated by comparing the 
areas between expected (a.k.a. ground truth) and predicted bounding boxes, as illustrated by the blue and red 
regions in Fig. 4, respectively.

Aiming to understand this evaluation better, consider the bounding box highlighted by a blue rectangle sur-
rounding a plasma cell, which was defined by the specialists and is used to represent the ground truth area (G). 
The red bounding box illustrates the predicted area (P) detected by the DNN model. By considering these areas, 
we have used the Intersection Over Union (IOU) ratio as defined in Eq. 1 to estimate the numbers of true posi-
tives (TP), false positives (FP), and false negatives (FN). This estimation is based on a threshold, which works 
as a confidence interval to accept or reject the prediction. In a nutshell, if IOU ≥ τ , there is enough overlapping 
between the predicted and ground truth area to classify the detected object as true positive (TP). If the predicted 
area has no enough overlapped area with ground truth, a false positive (FP) is detected. Similarly, when a ground 
truth area is not overlapped by a prediction bounding box, it is considered a false negative (FN).
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Based on IOU, it is also possible to assess the model confidence (C), which can be used to measure the perfor-
mance of predicting an object in a given bounding box. In summary, this confidence is calculated by the product 
between the probability of the presence of an object and IoU, such as C = Pr(Object) ∗ IOU.

Both the threshold ( τ ) and the model confidence (C) are hyperparameters (not adjustable during the training 
phase), which can be varied to find objects in images better. Once there is no well-defined approach to set their 
values, we used a grid search in our experiments and selected their best combination based on the performance 
measured with F1-score, which is detailed next. In Fig. 5a, we show the results for τ ∈ [0.50, 0.95] . One may notice 
that optimal performance is consistently attained when employing any of the first five options. Throughout our 
analysis, we have considered the default value (0.65) specified by the authors.

Similarly, we analyzed the model confidence across different values within the interval C ∈ [0.10, 0.95] , as 
shown in Fig. 5b. In this case, the first seven options yielded identical highest performances. In our experiments 
targeting plasma cell detection, we selected the default confidence value of 0.25, a recommendation also endorsed 
by the authors.

After calculating IOU, we are able to extract three significant metrics widely used in ML to assess the cell 
detection: Precision, Recall, F1-score, and precision-recall curve. Precision and Recall are calculated by using 
Eqs. 2 and 3, respectively. In summary, Precision assesses the models’ exactitude, i.e., it computes the rate of 
correct classifications for the positive label over the number of outcomes classified as positives. On the other 
hand, Recall measures the models’ completeness, which is calculated by the rate of correct classifications for 
the positive label over the number of elements expected to be under the positive label. We also evaluated the 
performance of our model using the F1-score metric that works as a harmonic mean of precision and recall, as 
shown in Eq. 4. The Precision-Recall curve allows to graphically visualize the general performance after several 
executions on different test folds.

Ethical approval
Project approved by the Institutional Research Committee - CEP ICS (CAAE - 70193723.5.0000.5662). The 
request for waiver of signing the TCLE to the CEP was justified by the use of slides and data tabulated and coded 
by specialists in the diagnosis of multiple myeloma in the clinical care hematological and laboratorial sectors 
of health care at a public university. This request was to encourage the procedure, since the evidence comes 

(1)IOU =
G ∩ P

G ∪ P

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP+ FN

(4)F1-score =
2× Precision× Recall

Precision+ Recall

Figure 4.  Bounding boxes illustrating a Region of Interest (ROI) defined by specialists (ground truth) in blue 
and a classification output in red. The black-hatched region constitutes the intersection area between both 
bounding boxes. The union area stands for all parts combining the colored boxes.
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from sets of bone marrow aspirate slides from the bank of coded slides and integrated into the collections of 
MM diagnoses under the custody of hematologists and technicians from the diagnostic service at Hospital and 
Laboratory. This request by the Investigators avoids substantial risks to privacy and breach of trust between the 
physician, patient and investigator-researcher.

Data availability
The source code and datasets used in the study are freely available at https:// github. com/ LabIA- UFBA/ Multi 
ple- Myelo ma- Datas et.
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