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Cardiac function in a large animal 
model of myocardial infarction 
at 7 T: deep learning based 
automatic segmentation increases 
reproducibility
Alena Kollmann 1,4, David Lohr 1,4*, Markus J. Ankenbrand 2, Maya Bille 1, Maxim Terekhov 1, 
Michael Hock 1, Ibrahim Elabyad 1, Steffen Baltes 1, Theresa Reiter 1,3, Florian Schnitter 3, 
Wolfgang R. Bauer 3, Ulrich Hofmann 3 & Laura M. Schreiber 1

Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac 
function. It requires reliable image segmentation for myocardial tissue. Clinically used software 
usually offers automatic approaches for this step. These are, however, designed for segmentation of 
human images obtained at clinical field strengths. They reach their limits when applied to preclinical 
data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with 
myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and 
used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by 
two observers and inter- and intra-observer variability were assessed. Aiming to make the functional 
analysis faster and more reproducible, an established deep learning (DL) model for myocardial 
segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We 
then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was 
found between manual and DL segmentation: For ejection fraction (EF) we achieved a Pearson’s r of 
0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. 
Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.

Cardiovascular diseases have an immense impact on global public health and are a burden for many people as 
well as healthcare systems. Not only are they the leading cause of death worldwide, the number of deaths associ-
ated with cardiovascular diseases has increased significantly in recent years, amounting to 1.9 million in 2020, 
equivalent to an increase of 18.7% compared to  20101.

Disease-related changes in cardiac function and morphology can be assessed using cardiac magnetic reso-
nance (CMR) imaging. It has become an increasingly important diagnostic tool which is recommended in the 
guidelines for a growing number of  indications2,3 and is considered the gold standard for the quantitative assess-
ment of cardiac  function4,5.

With regard to CMR, higher field strengths are of growing interest, since they are expected to increase spatial 
 resolution6, improving diagnostic value and precision in parameters like cardiac function. In clinical practice, 
these improvements in precision may enable early disease detection as well as the assessment of small changes in 
therapy monitoring. In clinical research, the higher precision and therefore more reliable detection of statistical 
differences directly translates to lower numbers of subjects in a study. This is also very important in preclinical 
studies, because it reduces the burden on research animals significantly, while simultaneously reducing study 
costs.
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Most 7 T MRI research is done in healthy human subjects. However, many research applications are new and 
methods still need to be established, making large animal models particularly relevant in contexts where the use 
of humans would be impractical or unethical. In these cases, animal models allow the testing of specific disease 
related diagnostics, for example late gadolinium enhancement (LGE) imaging to visualize post-infarction tissue 
alterations. Pre-clinical studies may thus harvest the benefits of 7 T in a pre-clinical setting before they become 
available in clinical practice, enabling access to information inaccessible at clinical field strengths. While 7 T 
CMR imaging has been developing towards clinical applications in  humans7–9, this process will likely be sup-
ported by large animal  studies7–10.

The assessment of cardiac function based on CMR images requires a precise segmentation of the myocar-
dium. Manual post-processing is not only very time-consuming, but also makes the analysis more subjective 
and the results less reproducible. Therefore, there are many approaches for fully-automatic segmentation, which 
are already included in some commercially available software packages used in clinical  practice10. However, it 
has been shown that these tools embedded in commercially available clinical software do not perform well in 
large animal data. They do not provide suitable myocardial segmentation of porcine  hearts11, so that manual 
segmentation is needed to calculate cardiac volumes and mass. We encountered the same issues when analysing 
cardiac cine data from our comprehensive preclinical 7 T CMR study in  pigs12–14.

The aim of this study was thus to reduce inter- and intra-observer variability of myocardial segmentation in a 
porcine 7 T CMR study. We used a transfer learning approach for automatic segmentation to increase reproduc-
ibility and compared it to manual segmentation. Simultaneously, we aim to demonstrate that an existing deep 
learning (DL) model already tested regarding 7 T CMR in  humans15 can be re-trained and adjusted with a rela-
tively small data set and reasonable effort, enabling reliable automatic segmentation of the porcine left ventricle 
in 7 T CMR images. Sharing our data and models, we aim to provide fully automatic myocardial segmentation to 
preclinical settings, making cardiac functional analysis faster, more reproducible, and less observer-dependent.

Methods
The data used in this study are part of a comprehensive large animal  study12–14. Details of our data can be accessed 
via the Zenodo repository (see chapter Data availability).

The methods of image acquisition, DL model training, segmentation, and analysis used in this study are 
described below. For a schematic illustration of the study procedure, see Fig. 1.

Animal model
The large animal study was approved by the District Government of Lower Franconia, Germany, (Grant 55.2.2-
2532.2-1134-16) and all experiments were performed in accordance with relevant guidelines and regulations. 
The study report follows recommendations in the ARRIVE guidelines. Details regarding experimental animals 
and experimental procedures have been previously reported by Schreiber et al.16. Experiments were performed 
in three blocks of n = 4 animals, where the first two blocks belonged to the treatment group and the third block 
to the sham group. Since one animal died following infarct induction, corresponding data was omitted from this 
study. No blinding was applied with respect to groups. Blinding applied with respect to outcome and data analysis 
is described in the section “Manual segmentation”. The same concept was applied to the image quality rating.

We thus included a total number of eleven pigs. In seven of these, myocardial infarction was induced by 
90-min occlusion of the left anterior descending artery (LAD) using a balloon catheter inserted via a femoral 
coronary catheter, after baseline magnetic resonance imaging (MRI).

Four sham animals were used as a control group and received the same intervention with exception of the 
balloon catheter inflation and occlusion of the coronary artery. Each of the animals underwent a total of four 
7 T MRI scans. One baseline scan before the procedure (MRI 1) and three scans (MRI 2–4) at different times 
(3 ± 1 days, 12 ± 1 days, and 58 ± 1 days) after infarction or sham  procedure12.

Cardiovascular magnetic resonance imaging
MR images were acquired on a 7 T MAGNETOM™ Terra system (Siemens Healthineers, Erlangen, Germany). 
We used three in-house built 8Tx/16Rx  coils17 of different sizes to adapt to the increasing weight of the pigs 
throughout the study.

Scan parameters for high-resolution cine imaging were slice thickness: 6 mm, in-plane spatial resolution: 
0.4 mm × 0.4 mm, TE/TR: 3.18/49.52 ms, echo spacing: 6.2 ms, bandwidth: 893 Hz/Px and flip angle: optimal 
(15°–27°). A short-axis stack includes 30 frames per cardiac cycle and 11–16 slices from base to apex. The meas-
urements were performed under breath hold.

Image quality rating
To assess the quality of the high-resolution cine images, each image in the end diastole and end systole was rated 
from one (best) to four (worst) based on three criteria (artefacts, noise, and general image quality). The scores 
were defined as (1) no artefacts/hardly any noise/very good image quality, (2) minor artefacts/noise/reduced 
image quality that does not affect the delineation of structures, (3) artefacts/noise/reduced image quality that 
affects the delineation of structures and may lead to misinterpretation, and (4) nondiagnostic image due to major 
disturbances. The three parameters were then summed up to obtain a total score for each image ranging from 
three (best possible result) to twelve (worst possible result)18.

Manual segmentation
Post-processing of the obtained MR images was performed using the commercially available software Medis 
 Suite®  (QMass®, Version 3.1.16.8, Medis Medical Imaging Systems, Leiden, Netherlands).
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A standardized procedure was followed for manual segmentation of the short-axis cine  stack19. The end-
systolic and end-diastolic phases were selected based on the visually smallest and largest volume of the left 

Figure 1.  Schematic representation of the design of the study. Eleven animals (seven infarct pigs and four sham 
pigs) were imaged in a 7 T MR scanner four times each. The acquired high resolution images were labelled 
using different methods: Two different observers performed a manual segmentation. The end-diastolic and 
end-systolic labels from observer one were used in a transfer learning algorithm to re-train a DL model. This 
pre-trained model has a U-Net structure (illustrated schematically) and a ResNet34 backbone. In the transfer 
learning process, the model was trained using 560 high-resolution 7 T images and the labels of observer 
one (manually created ED/ES labels or empty segmentation masks if no tissue to be segmented was visible). 
212 images served for validation of the model, with which different stages of the model were tested and the 
performance evaluated. Parameters were changed and the training continued. Then, the model with the best 
performance (highest dice score) was selected and used as our model. It was tested on 288 images it had not 
seen so far (test set), and it provided labels for those images. In addition, we segmented the images using an 
automatic tool within the clinical software  Medis®. All different segmentations were then compared to each other 
in a statistical analysis. Dice scores and Hausdorff distances of the labels and the derived cardiac parameters 
were calculated and compared. MRI magnetic resonance imaging, DL deep learning, ED end-diastolic, ES end-
systolic.
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ventricular (LV) blood pool, respectively. Epi- and endocardial borders of the myocardium were then deline-
ated in these phases. Papillary muscles were not excluded from the blood pool, since both in- and exclusion 
are presented as valid approaches in the  guidelines19 and the original DL model is not trained to recognize and 
label papillary muscles.

After one observer completed the segmentation, it was repeated by the same observer after a period of at least 
one week to evaluate the intra-observer variability. In addition, all scans were segmented by a second observer 
to assess the inter-observer variability. The two examiners were blinded to each other’s segmentation; only the 
end-diastole and end-systole were set to the same phases for all observers prior to segmentation to allow calcula-
tion of Dice scores.

All figures showing CMR images with myocardial contours were processed subsequently. To improve contours 
with respect to general visibility and colour-blind readers, green and red pixels of the epicardial and endocardial 
contours were re-coloured blue and magenta, respectively. We used  Adobe®  Photoshop® CS6 (Version 13.0,  Adobe® 
Systems Incorporated, San Jose, California, USA) for this purpose.

Commercially available automatic segmentation
CMR analysis software usually provides tools for fully automated LV segmentation. We used Medis  Suite® 
 (QMass®, Version 3.1.16.8) for CMR post-processing, which is intended for clinical use in human patients. We 
tested their automatic tool in  QMass® on our 7 T images of porcine hearts.

Deep learning model
Starting point for the deep learning was a pre-trained model published by Ankenbrand et al.15 This model has 
a U-Net  architecture20 with a ResNet34  backbone21 implemented in  fastai22. Pre-training was performed using 
cardiac MRI data from the "Data Science Bowl Cardiac Challenge Data”23. Prediction is done for three classes 
(background, left ventricular cavity, and left ventricular myocardium) on images scaled to 256 × 256 pixels.

Data augmentation
To increase the amount of training data and make the predictions more consistent, various methods of data 
augmentation were applied. The images were rotated, flipped, and contrast and brightness were changed (flip 
[left–right], rotation [90°], lighting [0.4] and zoom [1.2]).

Training process
Scanning the eleven pigs four times each resulted in a total number of 44 scans. Four of those scans had to be 
excluded from the study as high-resolution short-axis cine stacks were not recorded during the measurements. 
The remaining forty scans (24 of infarct animals, 16 of sham animals) were divided into three different subsets. 
This was done animal-wise: six (four infarct and two sham) were assigned to the training set, two (one infarct 
and one sham) to the validation set and three (two infarct and one sham) to the test set. It was ensured that the 
animals were divided equally according to infarct or sham group. However, within the groups, the animals were 
distributed randomly. This resulted in a total of 560 training images, 212 validation images, and 288 images for 
the test set. Supplementary Table S1 shows the number of images per scan and the division into the subsets for 
transfer learning in detail.

Re-training of the base model was performed in two steps. In the first step, all parameters except for those 
from the final parameter group were set as un-trainable (frozen). We trained for 100 epochs this way. An epoch 
is one full pass through the training data. We used the Adam  optimizer24 to minimize the general Dice loss as 
implemented in fastai version  222. At this stage the maximum learning rate which determines how strongly the 
parameters are adjusted in each optimization step was set to  10–4. Checkpoints of the model were saved every 
10 epochs. In the second step, models of all 10 checkpoints were compared with respect to the Dice scores on 
the validation set. The model with the highest Dice score was used as the basis for another 100 epochs with 
all parameters set as trainable (unfrozen) and maximum learning rate of  10–5. Afterwards, the model with the 
overall highest Dice score on the validation set was selected for further analyses. A test set consisting of scans of 
three pigs (two infarct pigs and one sham pig, 288 images) was excluded from the training process to evaluate 
the performance of the model.

Cardiac magnetic resonance image analysis
The results of the manual segmentation could be calculated directly in  QMass®, while the contours generated 
by the DL model had to be imported into the software first.  Medis® uses dedicated contour files (.con) to store 
contour information. DL generated contours were transferred into such a contour file and imported into  Medis® 
for further analysis.

Based on the segmentation, various cardiac parameters were calculated: ejection fraction (EF), stroke volume 
(SV), LV mass, end-systolic volume (ESV), and end-diastolic volume (EDV). EDV and ESV [ml] were calcu-
lated by summing the voxels within the endocardial contour of all slices of the end-diastole and end-systole, 
respectively. SV [ml] was calculated as EDV minus ESV. EF [%] is expressed as SV divided by EDV, multiplied by 
100. LV mass [g] was calculated as the difference of the total epicardial and endocardial volume in end-diastole, 
multiplied by the specific density of myocardium (1.05 g/ml)19.

Deep learning model performance
The following approach was taken in the overview assessment of the contours generated by the DL model. In 
some cases, the short-axis stack included images of the base of the heart that were above the part of the heart 
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that guidelines suggest to segment. Therefore, only images that were also labelled manually were included in the 
evaluation. These were then examined and classified as labelled correctly, incorrectly, or not labelled at all. Any 
missing or incorrect contours could easily be manually added or adjusted in the software. This was intentionally 
avoided to be able to compare unedited results.

Metrics for comparing contours
To quantify how close the automatically generated contours are to the manually drawn contours, we used two 
geometric  metrics25:

The Dice score measures the volumetric overlap of two contours, with a value of 1 indicating perfect agree-
ment and 0 indicating no agreement between the two contours. It was calculated for the left ventricle  (DICELV) 
and the myocardium  (DICEMY). The Dice score of a contour A and a contour B is calculated as the volumetric 
overlap of the two contours multiplied by the factor two, and then divided by the two areas of A and B:

The Hausdorff distance (HD) is the maximum distance between two contours, therefore, a low value indicates 
high agreement. The HD of two contours A and B is calculated as follows: The point a from contour A is deter-
mined as the maximum distance to contour B. Then, from this point a, the minimum distance to a point b from 
contour B is determined, resulting in the distance d(a, B). The same method is used to determine the distance 
d(b, A). The HD is now defined as the maximum of these two distances:

with d(a, B) being the minimal distance from point a to contour B and d(b, A) being the minimal distance from 
point b to contour A.

Both metrics quantify how strongly the two compared contours agree mathematically.
Images where the DL model provides a label but the observer does not (and vice versa) result in a Dice score 

of 0 and an infinite HD.

Statistical methods
We assessed the differences in clinical measures that were calculated based on the two methods of segmentation. 
All statistical analysis of the predicted cardiac parameters was done using  OriginPro®, Version 2021  (OriginLab® 
Corporation, Northampton, Massachusetts, USA) and Microsoft  Excel® 2016 (Microsoft®, Redmond, Washing-
ton, USA).

Continuous variables were checked for normal distribution using a Shapiro–Wilk test.
Paired Student’s t-tests were performed to test for significant differences. Since for each parameter (EF, SV, 

LV mass, EDV, and ESV) four hypotheses were tested (observer one vs. repeat, observer one vs. observer two, 
observer one vs. DL model, and observer one vs. DL model including only scans in the test set), the overall 
α of 0.05 was adjusted according to a Bonferroni correction in order to decrease the risk of a type I error for 
multiple testing. Therefore, for each t-test a p-value of α < 0.0125 was considered statistically significant. For the 
assessment of the intra-class correlation coefficient (ICC), we used a two-way mixed-effects model based on 
absolute agreement. It was calculated and interpreted according to the guidelines of Koo and Li: Values < 0.5 were 
classified as poor, between 0.5 and 0.75 as moderate, between 0.75 and 0.9 as good and > 0.9 as  excellent26. The 
coefficient of variability (CoV) was calculated as the standard deviation of the difference divided by the mean 
of two  values27–29. We used a Bland–Altman analysis to determine intra-observer and inter-observer variability, 
plotting the difference of the values against the mean of two  values30. Additionally, Pearson correlation plots 
were created, and the corresponding r values were calculated.

Results
First, the characteristics of the cohort are reported, then the training process is described, followed by an evalu-
ation of the DL model’s performance in comparison to the manual segmentation.

Characteristics of the cohort
Figures 2 and 3 show typical 7 T images used for analysis. Results from cardiac function analysis are presented 
in Table 1.

Image quality rating
The scans were obtained in different series of measurements and have varying image quality. Table 2 shows the 
ratings for the individual parameters artefacts, noise, and general image quality as well as the overall score. The 
parameter artefacts was rated 2.6 ± 0.2, noise 1.9 ± 0.3, and general image quality 2.0 ± 0.3, resulting in a total 
score of 6.5 ± 0.5. The high resolution allowed the recognition of anatomical structures of the heart such as valves, 
papillary muscles, and trabecular mass.

Commercially available automatic segmentation
The automatic segmentation did not perform properly using the automatic tool within Medis  QMass®. Representa-
tive segmentation results are shown in Fig. 2. Contours were detected in less than 50% of the images, in which 

Dice score =
2 · |A ∩ B|

|A| + |B|
.

HD(A,B) = max

{

max
a∈A

d(a,B), max
b∈B

d(b,A)

}
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Figure 2.  Comparison of different methods of segmentation. (a) Comparison of the contours of the automatic 
segmentation tool in Medis  QMass® (left), the manual segmentation of observer one (centre) and the contours 
created by the DL model (right) in six short-axis cine images. Endocardial contours are drawn in magenta, 
epicardial contours in blue. A representative single basal, midventricular and apical slice were selected 
(end-systolic phase). The top images show scans without infarction, the bottom ones show the same heart 
with subacute infarction (MRI 3, 10 days after infarct procedure). (b) Illustration of the differences in the 
segmentation of observer one and that of the DL model. Pixels that deviate from the ground truth (here: the 
segmentation of observer one) are highlighted in yellow. MRI magnetic resonance imaging, DL deep learning.
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in less than 50% the myocardium was correctly identified. In many cases, the epicardial label marked the outer 
contour of the whole heart. There were particularly severe problems in the basal slices, and in apical slices where 
no ventricular lumen was present. This is often observed in pigs since their trabeculae are more  extensive31,32. 
The correct labelling of epi- and endocardial contours was also impaired by the presence of severe artefacts or 
a low signal-to-noise ratio (SNR).

Figure 3.  DL model performance. (a) DL model segmentation of a short-axis stack of a porcine heart with 
subacute myocardial infarction (10 days post MI). Endocardial (magenta) and epicardial (blue) contours of 
the left ventricle are shown in end-diastole (left), end-systole (right) and in a midventricular slice throughout 
the cardiac cycle (bottom). (b) Representative images with missing or incorrect DL prediction. The most likely 
factors preventing correct segmentation here were: low SNR of the inferolateral wall and low blood-tissue 
contrast (I), low SNR of the inferolateral wall (II), artefacts and low SNR of the inferior wall (III), artefacts and 
the lack of a visible blood pool (IV), the lack of a visible blood pool (V), artefacts in the inferolateral wall (VI), 
and wall thinning in the infarct area (chronic infarction, 59 days post MI), and generally low image quality 
(VII). (c) Varying quality of automatic segmentation in three images of adjacent cardiac phases (phase nine to 
eleven) of a midventricular slice. All images show wall thinning in the infarct area (59 days post MI). In two 
of them, the image quality and or morphology in this area results in missing and incorrect labels, respectively, 
whereas in the right image the myocardium was labelled correctly. DL deep learning, SNR signal to noise ratio, 
MI myocardial infarction.
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Training process
Throughout the training, the Dice score for all classes increased in the beginning and saturated after 70 epochs 
of training in the first step (training with frozen parameters). During the second training step (training with 
unfrozen parameters), the Dice score continued to increase for another 50 epochs before reaching a plateau. Thus, 
the model selected for further analyses was the one trained for 70 epochs frozen and another 50 epochs unfrozen.

Performance of the deep learning model
Epi- and endocardial labels were generated by the DL model not only for end-diastole and end-systole, but 
for all phases. Figure 3a shows an example (MRI 3) where only one end-systolic image was not labelled, while 
all other depicted images were labelled correctly and visually similar to observer one (see also Fig. 2 for direct 
comparison). Of all images in the test set that were manually segmented due to guidelines, the model was able 
to detect and correctly segment the myocardium in 91.8% (3360/3660). In 8.0% (293/3660) of the images in the 
test set no DL contour was calculated, and contours in another 0.2% (7/3660 images) were not correctly label-
ling the LV myocardium.

Some visual analysis showed that of those 293 unlabelled images, 123 (equivalent to 42.0%) belonged to the 
same scan, that of the pig with the lowest body weight (22 kg). Accordingly, the rate of missing contours in this 
scan was 45.6%, whereas the rate of the remaining ten scans in the test set was 4.6%.

Representative examples of missing or incorrect LV labels are shown in Fig. 3b. Figure 3c shows varying 
quality of automatic segmentation of the infarcted left ventricle.

Comparison of results: image segmentation
When comparing the first and second segmentation of observer one (intra-observer analysis), we obtain 
 DICEMY = 0.90,  DICELV = 0.93 and  HDMY = 7.0,  HDLV = 5.4. For inter-observer analysis between observer one 
and observer two, we obtain the following values:  DICEMY = 0.82,  DICELV = 0.86 and  HDMY = 9.0,  HDLV = 7.6. 
When comparing the automatic segmentation of the DL model to the manual delineation of observer one, we 
receive a mean Dice score of  DICEMY = 0.84 (for myocardium) and  DICELV = 0.88 (for the left ventricle). The 
median HD is  HDMY = 10.4 and  HDLV = 8.5. See Fig. 4.

Comparison of results: cardiac function
For results from the cardiac function analysis of the infarction and sham group, see Table 1.

Table 1.  Results from manual functional analysis (observer one). The cardiac values are shown for the 
different scans throughout the study: MRI 1 (baseline scan) and MRI 2–4 at different times after intervention 
(myocardial infarction or sham procedure, respectively). Values are expressed as mean ± single standard 
deviation. LV mass is reported in grams, volumes in ml and EF in %. MRI magnetic resonance imaging, EF 
ejection fraction, SV stroke volume, LV left ventricle, EDV end-diastolic volume, ESV end-systolic volume.

MRI 1 (baseline scan)
MRI 2 (3 ± 1 days post 
intervention)

MRI 3 (12 ± 1 days post 
intervention)

MRI 4 (58 ± 1 days post 
intervention)

Infarct group

EF [%] 60.6 ± 6.7 40.1 ± 6.8 41.1 ± 5.1 42.2 ± 4.7

SV [ml] 39.6 ± 8.6 40.6 ± 8.9 42.9 ± 11.8 62.8 ± 8.9

LV mass [g] 74.8 ± 6.7 94.7 ± 10.3 102.6 ± 8.1 138.6 ± 9.9

EDV [ml] 65.6 ± 13.5 101.4 ± 15.5 103.0 ± 21.3 149.0 ± 12.9

ESV [ml] 25.8 ± 7.0 60.6 ± 11.4 60.3 ± 11.8 86.2 ± 9.3

Weight [kg] 38.8 ± 5.2 42.8 ± 4.6 46.2 ± 4.6 75.8 ± 4.8

Sham group

EF [%] 62.5 ± 2.7 61.5 ± 3.8 59.5 ± 3.4 63.3 ± 4.0

SV [ml] 28.3 ± 6.2 32.5 ± 3.4 37.3 ± 4.6 62.3 ± 14.0

LV mass [g] 57.5 ± 11.8 66.0 ± 7.1 69.0 ± 9.5 114.3 ± 17.5

EDV [ml] 45.0 ± 9.2 52.3 ± 4.3 62.0 ± 6.4 97.0 ± 16.2

ESV [ml] 16.8 ± 3.3 20.0 ± 2.9 24.8 ± 3.0 35.0 ± 2.1

Weight [kg] 31.4 ± 6.5 34.7 ± 7.7 37.1 ± 7.1 75.3 ± 9.1

Table 2.  Image quality rating sorted by experimental group and sham group. Values are expressed as 
mean ± single standard deviation. The total score is the sum of values in the three categories artefacts, noise, 
and general image quality. n number of CMR scans in the set.

Artefacts Noise General image quality Total score

Infarct animal scans (n = 24) 2.6 ± 0.2 2.0 ± 0.3 1.9 ± 0.3 6.6 ± 0.5

Sham animal scans (n = 16) 2.6 ± 0.2 1.8 ± 0.1 2.1 ± 0.2 6.5 ± 0.5

All animals (n = 40) 2.6 ± 0.2 1.9 ± 0.3 2.0 ± 0.3 6.5 ± 0.5
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At a significance level α = 0.05, the Shapiro–Wilk test classified all obtained values (EF, SV, EDV, ESV, LV mass) 
of observer one (first and second segmentation), observer two, and the DL model as normally distributed, with 
exception of the EF of observer one, first segmentation (p-value 0.03), the ESV of observer one, both segmenta-
tions (p-value 0.01 for both), and the ESV of the DL model (p-value 0.02). We considered the sample size of 
n = 40 for the parameters affected to be sufficient to still perform paired Student’s t-tests.

The paired sample t-tests showed significant differences in several cases (Table 3). In the test set, all values 
obtained using the DL predictions were not significantly different from the values calculated using the manually 
drawn contours of observer one. Mean differences in cardiac parameters, grouped by the presence of myocardial 
infarction, are listed in Supplementary Table S2. Overall, values derived from model predictions were closer to 
the ground truth for animals without myocardial infarction than for those with infarction.

CoV and ICC values measuring inter- and intra-observer reproducibility and corresponding literature values 
for the CoV are displayed in Table 4. In the clinical context, the CoV is usually calculated to measure inter-
observer variability, while publications on deep learning tend to use the Dice score or the ICC. Literature values 
for the ICC are given in the discussion to evaluate the DL model performance. The CoV for observer one vs. DL 
model (test set) ranged from 6.6 to 11.3% with a mean value of 8.4% (not displayed in Table 4).

Due to consistent predictions, a CoV of 0% and an ICC = 1 are received for intra-observer variability of the 
DL model.

Figure 5 displays Bland–Altman plots for metrics of cardiac function derived from observer one and the DL 
model. With a few exceptions, all values lie within ± 1.96 standard deviations. In some plots, there is a system-
atic deviation of the mean difference from y = 0 between observer one and the DL model. This can be observed 
particularly for SV and LV mass, where the value of the DL model tends to be lower and higher, respectively, 
than that of observer one.

Figure 4.  Agreement between segmentation results. (a) Dice scores for the left ventricle (left) and the 
myocardium (right). Each plot contains three different comparisons (from left to right): DL vs. observer one, 
observer one vs. observer two, and observer one vs. repeat. Each dot represents the Dice score of one image. 
The box contains all values between the lower and the upper quartile, with the horizontal line representing the 
median Dice score. (b) Hausdorff distances (HD) for the left ventricle (left) and the myocardium (right). Each 
plot contains three different comparisons (from left to right): DL vs. observer one, observer one vs. observer 
two, and observer one vs. repeat. Each dot represents the HD of one image. The box contains all values between 
the lower and the upper quartile, with the horizontal line representing the median HD. All values greater than 
100 (including infinite values) were set to 100 for visualisation. LV left ventricle, MY myocardium, DL deep 
learning.
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R values are displayed as Pearson correlation plots (see also Fig. 5). The intra-observer comparison (observer 
one) shows a mean value of r = 0.99, observer one compared to observer two has a mean value of r = 0.95. The 
values for observer one vs. DL model range between r = 0.90 and r = 0.97, with a mean value of r = 0.94. When 
including all scans (not shown), they increase to values between r = 0.94 and r = 0.99, mean value r = 0.96.

Discussion
The present study is to our knowledge the first approach to fully automatic myocardial segmentation in large 
animals. We present a well performing DL model for automatic LV segmentation in 7 T images of healthy and 
infarcted (acute to chronic) porcine hearts.

Due to the animal model and the longitudinal study protocol, training images for DL model were sourced 
from a heterogeneous group of both healthy and diseased animals. Furthermore, we observed some variance in 
image quality (artefacts and noise as described previously). While this may be considered as a disadvantage in 
a clinical setting, we considered it to be an advantage in this particular study, where our aim was to train a well 
performing and generalizing DL model that can be applied in future CMR large animal studies.

The heterogeneity in image quality was due to various factors such as the use of different coils to accommodate 
growth of the pigs, animals of different disease states (healthy to chronically infarcted hearts), and the varying 
quality of ECG/acoustic gating during the scans, which was for example impaired by post-infarction arrhythmias. 
Additionally, we observed  B0 inhomogeneity and resulting susceptibility artefacts, which were present mainly at 
the posterior wall and caused by the interface between myocardial and lung tissue, and  B1 inhomogeneity and 
resulting signal voids or signal variations. While  B1 inhomogeneity was addressed quite well with the use of three 
different RF-coils in this study,  B0 and  B1 inhomogeneity remain challenging issues in 7 T CMR.

As mentioned above, we considered the varying heart morphology and image quality as advantageous and 
therefore chose to use all of the acquired images for transfer learning, not just those of good or optimal quality. 
This also allowed us to test the DL model under difficult conditions for myocardial segmentation. Since it has 
already been shown for humans that it is sufficient to train a DL model with end-diastolic and end-systolic labels 
 only15, we followed this approach that significantly reduces the required time for label generation, but also for 
model training and validation.

Table 3.  Mean differences in cardiac parameters and corresponding p-values for paired Student’s t-tests. At an 
α-level of 0.0125 statistically significant differences are highlighted by bold font for metrics and corresponding 
p-values. EF ejection fraction, SV stroke volume, LV left ventricle, EDV end-diastolic volume, ESV end-systolic 
volume, DL deep learning, n number of scans included in the comparison.

Observer one vs. repeat (n = 40) Observer one vs. observer two (n = 40)
Observer one vs. DL model (all scans, 
n = 40)

Observer one vs. DL model (scans in 
the test set, n = 11)

ΔEF [%] 0.88 (p = 0.005) 5.08 (p < 0.001) 1.45 (p = 0.041) 1.55 (p = 0.353)

ΔSV [ml] < 0.001 (p = 1.000) 2.80 (p < 0.001) 2.35 (p = 0.008) 2.82 (p = 0.266)

ΔLV mass [g] 0.13 (p = 0.885) 3.48 (p = 0.028) − 7.7 (p < 0.001) − 9.36 (p = 0.029)

ΔEDV [ml] − 1.55 (p = 0.002) − 2.30 (p = 0.011) 2.60 (p = 0.016) 3.82 (p = 0.243)

ΔESV [ml] − 1.48 (p < 0.001) − 5.35 (p < 0.001) 0.25 (p = 0.710) 0.91 (p = 0.629)

Table 4.  Intra- and inter-observer reproducibility: CoVs and ICCs for different parameters of cardiac 
function. Referenced literature values for intra- and inter-observer reproducibility are given below for each of 
the two coefficients. Values are mean values of all scans (n = 40). For the ICC we used a two-way mixed-effects 
model based on absolute agreement. CoV Coefficient of variability, ICC Intra-class correlation coefficient, EF 
ejection fraction, SV stroke volume, LV left ventricle, EDV end-diastolic volume, ESV end-systolic volume.

EF SV LV mass EDV ESV

Intra-observer 
(observer one vs. 
repeat)

ICC 0.99 0.99 0.99 0.99 0.99

CoV 2.4% 3.4% 3.6% 2.3% 3.3%

Literature values—
CoV 0.01–9.8%11,29,33–37 2.6–17.2%29,35–37 3.3–15.4%11,29,33–37 2.1–14.3%29,33–37 5.8–18.8%29,33,35–37

Inter-observer 
(observer one vs. 
observer two)

ICC 0.90 0.97 0.96 0.99 0.98

CoV 8.0% 8.5% 7.7% 3.7% 8.7%

Literature values—
CoV 2.3–9.5%29,33–38 3.3–12.5%29,35–38 3.7–12.9%29,33–38 2.6–18.7%29,33–38 6.8–16.7%29,33,35–38

Inter-observer 
(observer one vs. 
DL model)

ICC 0.97 0.96 0.96 0.99 0.99

CoV 6.0% 9.6% 6.0% 5.6% 6.5%

Literature values—
CoV 2.3–9.5%29,33–38 3.3–12.5%29,35–38 3.7–12.9%29,33–38 2.6–18.7%29,33–38 6.8–16.7%29,33,35–38
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Figure 5.  Agreement of LV volumes and mass between observer one and DL model. The left column shows 
Bland–Altman plots for EF, SV, LV mass, EDV and ESV calculated based on the test set (a set of images that 
was not used for training or validation of the DL model). In each plot, the horizontal blue line shows the mean 
difference, and the light green area represents the range between ± 1.96 standard deviations of the differences. 
The column on the right shows Pearson correlation plots for EF, SV, LV mass, EDV and ESV, again using only 
scans from the test set. Each one plots the value of observer one (x-axis) against the value of the DL model 
(y-axis). The continuous red line represents the linear fit of the values, the dashed grey line the bisector (f(x) = x), 
and the grey area the confidence band (95% confidence interval). The corresponding Pearson’s r values are given 
in red. EF ejection fraction, SV stroke volume, LV left ventricle, EDV end-diastolic volume, ESV end-systolic 
volume, DL deep learning.
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Initially, considering their development mainly for human use at clinical field strength, it was unclear if a 
commercial image segmentation tool would be usable in our study. Similar to another research group mentioned 
 earlier11, we found that the tested commercial software tool could not be directly applied to preclinical data. Our 
study demonstrated that the use of commercial software currently may need further checks and adaptations 
before being used in pipelines for preclinical 7 T CMR image analysis. At this point it has to be mentioned that 
the automatic tool of only one post-processing software was tested and thus no statement about the performance 
of other software packages is possible.

Overall, high Dice scores and low HDs for model predictions of both epicardial and endocardial contours 
indicated high segmentation agreement with the two human observers.

For individual end-diastolic and end-systolic images, the DL model did not provide a segmentation label. 
As pointed out in the results, the rate of missing labels was particularly high for one scan (45.6% missing labels) 
compared to the other scans (4.6% missing labels). This scan contained data from the baseline (prior to MI) 
measurements of the lightest pig of this study (22 kg body weight). The mean body weight of the other animals 
for the baseline was (35.5 ± 6.9) kg. The pig’s small body and heart size introduced difficulties with respect to 
cardiac planning. Following standard procedures did not result in proper short-axis orientation, but rather a 
pseudo short-axis orientation that could not be resolved despite multiple attempts. The resulting atypical left 
ventricular morphology (compare Supplementary Fig. S1) deviates from all other typical short-axis images in 
the study. We consider this to be the reason for the high rate of missing labels in this scan.

Note that in the images with missing or incorrect labels, the factors mentioned such as artefacts, low SNR, or 
problems in the infarct area (see Fig. 3b for examples), did not always prevent correct segmentation. Over 90% 
of the images were segmented correctly, whereas, for instance,  B0 artefacts were present in many images, since 
those are very common when performing measurements at 7 T. The presence of infarct-typical morphology 
was also not rare, since about 50% of the images come from pigs with myocardial infarction. It is not possible 
to state exactly what the decisive factor is that prevents correct segmentation in each case. It is often observed 
that images are not segmented or segmented incorrectly, although images from adjacent cardiac phases, which 
differ only slightly, are labelled correctly. An example is shown in Fig. 3c, where we considered the infarct area 
to be the cause of the incorrect (phase 10) or missing label (phase 9). Although there is only a minimal visual 
difference, the infarcted myocardium was labelled correctly in phase 11, as it was in most images with infarc-
tion. While further analysis was beyond the scope of this study, such information could be gained via attention 
mapping, where areas of images are mapped based on their impact on the model decision, essentially visualizing 
the attention of the model to different image  regions39,40.

Values for inter- and intra-observer variability assessed as CoV and ICC as well as literature values for com-
parison are listed in Table 429,33–38,41,42. Since this is the first study to analyse inter- and intra-observer reproduc-
ibility in a large animal model at 7 T, no directly comparable studies were available. The studies referenced used 
clinical field strengths (1.5 T and 3 T), were mostly analysing human hearts, and followed different approaches 
concerning the in- or exclusion of papillary muscles. Especially for the intra-observer comparison, the calcu-
lated CoV is excellent and at the lower end of the reference range, indicating that the achieved reproducibility 
in metrics of cardiac function in this study can be considered comparatively high. All ICC values were > 0.9 and 
therefore interpreted as “excellent”.

The literature above is focussed on manual segmentation. Regarding the evaluation of DL models, only limited 
literature reports exist that focus on the accuracy of metrics of cardiac function, since they rather use segmenta-
tion metrics such as the DICE coefficient or the HD. For the CoV of the EF, Backhaus et al.37 received values of 
6.5% and 6.7%, respectively, depending on if the automatically generated values were compared to those of an 
experienced or an inexperienced human observer. Schuster et al.41 received a CoV of 12.3%. Regarding EF, our 
calculated CoV was 6.6% (test set) and 6.0% (scans of all sets). For LV mass, Backhaus et al.37 found a CoV of 8.7% 
and 18.7%, respectively, and Schuster et al.41 one of 14.2%. Our CoV for LV mass was 8.4% (test set) and 6.0% 
(scans of all sets). For both cardiac parameters, our CoVs are comparable to or lower than what has been reported.

ICC values (DL model vs. observer one, test-set) were comparable to what has been found in other previously 
mentioned automatic segmentation studies: Our ICC for EF was 0.97, while the referenced studies found ICCs 
of 0.88 and 0.9737,41. Regarding LV mass, we found an ICC of 0.94, while reference ICCs ranged between 0.84 
and 0.9937,41. Also with regard to the ICCs, the results of our model indicate a comparatively high inter-observer 
reproducibility.

Thus, within our study, obtained parameters of cardiac function show overall good agreement between DL 
model and human observer and metrics evaluating reproducibility are consistent with or improved compared 
to literature reports at clinical field strengths.

When directly comparing the resulting parameters of cardiac function, the mean differences between the DL 
model and observer one are overall comparable to the mean differences between the two human observers (see 
Table 3). Paired Student’s t-tests comparing the values of the DL model and observer one (including the values 
of all scans) showed significant differences for the parameters SV and LV mass. When including only scans in 
the test set, no significant differences between the values of the DL model and those of observer one were found. 
Mean differences in the test set comparison were higher than in the all scans comparison. The paired t-tests 
showing no significant differences in the test set comparison should thus be considered a result of the smaller 
sample size in the test set (n = 11) rather than a sign of better agreement and model performance.

Dividing the animals by the presence or absence of myocardial infarction showed overall higher mean dif-
ferences between model predictions and ground truth in the infarction group (see Supplementary Table S2). 
The higher deviation in EDV and the derived metrics (SV and EF) in the infarct group may be related to less 
consistent heart rates during image acquisition. However, due to the small sample sizes (n = 5 and n = 6) in the 
test set comparison, the DL model’s performance on individual scans can have a major impact on the mean dif-
ference in this comparison of subgroups, restricting generalized conclusions.
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As mentioned, the DL segmentations were not edited subsequently. Incorrect contours were not corrected 
and missing contours were not added manually. In some cases, contours for the end-systolic or end-diastolic 
phase were missing. This artificially reduced the volume in end-systole or end-diastole (ESV and EDV), which 
consecutively affected the calculation of the EF.

In the Bland–Altman plots visualising the agreement of observer one and the DL model (see Fig. 5), a system-
atic underestimation of the SV by 2.35 ml and an overestimation of the LV mass by 7.7 g is observed. Compared 
to the average values of all scans of all animals, this corresponds to a deviation of 5.4% (2.35 ml deviation with 
a mean value of 43.4 ml) and 8.4% (7.7 g deviation with a mean value of 91.9 g), respectively. A tendency of the 
model to draw the endocardial contour more inward is apparent, which increases the LV myocardial mass but 
decreases the LV volume (especially in end-diastole). We attribute this mainly to the fact that a clear discrimina-
tion between myocardium and papillary muscle is sometimes very difficult or even impossible, especially in apical 
slices. Pigs are well suited for cardiac studies as their heart anatomy largely corresponds to that of  humans31,43,44. 
One difference, however, is that the papillary muscles are more  extensive31,32, which often results in drastically 
reduced lumen and therefore blood pool in apical slices. Drawing anatomically correct endocardial contours in 
these slices is already challenging for human observers, leading to differences from scan to scan. Such incon-
sistencies are introduced in the model training as well, indicating trends and biases in the training data that are 
not necessarily perceivable by visual inspection. The advantage of an automatic segmentation model is that the 
decision on how to draw the endocardial contour in such a case is made consistently. As pointed out above, a 
human observer, on the other hand, will probably draw the contour sometimes more conservatively and some-
times less conservatively over time.

The good agreement between the DL model segmentation and manual segmentation raises the question of 
whether there are cases where the model outperforms a human observer. Intra-observer variability is typically 
smaller than inter-observer variability, as can be observed in Table 3. For all cardiac parameters, the difference 
between two observers is greater than that between two repeated measurements of the same observer. One 
important finding is that for the parameters EF, SV, and ESV, the difference between the model and observer 
one is smaller than that of the two human observers. Especially for the diagnostically relevant parameter EF, the 
model’s values are substantially closer to observer one than those of the second observer are.

Together with the fact that once the training is finished, a model makes consistent predictions corresponding 
to a CoV of 0% and an ICC of 1, this highlights the benefits of using DL, particularly in preclinical research. Here, 
higher reproducibility in analysis directly translates to a lower number of animals required for a study. The pos-
sibility of limiting the number of animals in a study (reduction) is crucial considering the previously described 
fact that for some applications in ultra-high field MRI animals may be irreplaceable (replacement as another of 
the 3R  principles45 of laboratory animal protection). This emphasizes the importance of high reproducibility in 
image analysis in preclinical research, making it an ideal setting for the application of DL models.

There is currently no commercial tool that provides reliable automatic segmentation of the left ventricle for 
large animals. Therefore, to benefit from automatic segmentation, one needs to train a model for this respective 
case. We have demonstrated that it is feasible to train such a model for automatic segmentation of 7 T CMR 
images of porcine hearts with reasonable effort using transfer learning. It is noteworthy that transfer learning 
can induce an effect called catastrophic  forgetting46, where the adaptation of weights due to training with new 
data or new target tasks can negatively impact the performance of the model on the original data or task. Careful 
consideration of the target data is therefore required to profit from transfer learning. By publishing this study in 
combination with data and code, we hope to encourage other groups that analyse pre-clinical CMR images and 
have not yet been able to use clinical software tools for automatic segmentation to use our approach.

Data availability
The datasets generated and analysed during the current study are available in the Zenodo repository [https:// 
doi. org/https:// doi. org/ 10. 5281/ zenodo. 76840 34]. The source code is available in the GitHub repository [https:// 
github. com/ chfc- cmi/ cmr- seg- tl- sscro fa].
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