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Parameter free AEWMA 
control chart for dispersion 
in semiconductor manufacturing
Abdullah A. Zaagan 1, Imad Khan 2, Ali Rashash R. Alzahrani 3 & Bakhtiyar Ahmad 4*

The study presents a new parameter free adaptive exponentially weighted moving average 
(AEWMA) control chart tailored for monitoring process dispersion, utilizing an adaptive approach for 
determining the smoothing constant. This chart is crafted to adeptly detect shifts within anticipated 
ranges in process dispersion by dynamically computing the smoothing constant. To assess its 
effectiveness, the chart’s performance is measured through concise run-length profiles generated from 
Monte Carlo simulations. A notable aspect is the incorporation of an unbiased estimator in computing 
the smoothing constant through the suggested function, thereby improving the chart’s capability 
to identify different levels of increasing and decreasing shifts in process dispersion. The comparison 
with an established adaptive EWMA-S2 dispersion chart highlights the considerable efficiency of the 
proposed chart in addressing diverse magnitudes of process dispersion shifts. Additionally, the study 
includes an application to a real-life dataset, showcasing the practicality and user-friendly nature of 
the proposed chart in real-world situations.

Keywords Statistical process control, Average run length, Control chart, AEWMA, EWMA, Process 
dispersion

Statistical process control (SPC) is a systematic quality management method with the aim of ensuring consistent, 
high-quality production. Developed by Shewhart and expanded by Deming, SPC involves the use of statistical 
techniques to monitor and analyze process variations. Key components include the use of control charts that 
visually represent process variability over time, with a centerline indicating the process mean and control limits 
delineating acceptable variation. SPC distinguishes between common and special cause variations, enabling con-
tinuous monitoring and early detection of deviations. If deviations occur, corrective actions are taken to maintain 
process control. Used in various industries, SPC contributes to improved product quality, error reduction and 
overall process optimization, promoting a culture of continuous improvement and customer satisfaction. Its 
cornerstone, quality control charts, has evolved from classical Shewhart charts, reflecting ongoing advancements 
in precision and adaptability. Quality control charts have undergone significant evolution from classical Shewhart 
 charts1. The exponentially weighted moving average (EWMA) chart, devised by  Roberts2, focuses on monitoring 
the process mean, while  Page3 introduced the cumulative sum (CUSUM) chart to monitor process dispersion. In 
practical applications, monitoring changes in process dispersion holds more significance, as increased dispersion 
deteriorates the process, while decreased dispersion enhances process capability and productivity. Normalizing 
dispersion estimators through transformations aims to attain unbiased average run length (ARL) performance in 
control charts, crucial for effective out-of-control signal issuance. Unbiased ARL signifies that all out-of-control 
ARLs are lower than the in-control ARL. Shu and  jiang4 introduce a novel EWMA dispersion chart (NEWMA) 
by truncating negative normalized observations to zero in the traditional EWMA statistic. Comparative analy-
sis indicates that the NEWMA chart surpasses the traditional EWMA chart in detecting dispersion changes, 
particularly for small changes. Abbasi and  Miller5 assesses the performance of eight control chart structures 
based on different process standard deviation estimates for monitoring process variability under normal and 
non-normal assumptions, offering guidance to quality practitioners. Castagliola et al.6 proposes precise bounds 
for double sampling  S2 chart parameters with known process variance and explores the properties of the chart 
with estimated process variance. It compares average run length, standard deviation of run length, and average 
sample size, offering design guidelines and optimal procedures for both known and estimated process variance. 
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Abujiya et al.7 focuses on EWMA charts using unbiased sample variance for monitoring upward shifts in process 
dispersion, employing simple random and ranked set sampling techniques. Monte Carlo simulations demonstrate 
superior performance compared to existing methods, with practical application illustrated using real industrial 
data. Saghir et al.8 proposed control chart, a generalization of existing charts, is evaluated for different sample 
sizes and smoothing constants, demonstrating superior performance in early detection of process variation shifts. 
The study compares the proposed modified EWMA chart with existing control charts, highlighting its efficiency, 
and provides a real-life dataset application.  Haq9 proposed Max-AEWMA chart efficiently monitors mean and/
or variance shifts in a normally distributed process, outperforming the Max-EWMA chart across various shift 
sizes. Comprehensive Monte Carlo simulations demonstrate the superior performance of the Max-AEWMA 
chart in terms of ARL SDRL. An illustrative example is provided for implementing both charts. Huwang et al.10 
introduces two one-sided EWMA charts for detecting dispersion increases and decreases, along with a two-sided 
EWMA chart for simultaneous monitoring. Simulation studies reveal superior performance in detection sensitiv-
ity compared to existing counterparts for both increases and decreases in dispersion. Abbas et al.11 introduces 
two novel memory control charts, the floating T −  S2 and floating U −  S2, for monitoring process dispersion. 
Through simulation studies, these charts demonstrate superior ARL performance compared to CUSUM and 
EWMA charts for both positive and negative shifts. Arshad et al.12 of suggested a control chart using multiple 
dependent state (MDS) sampling for monitoring process variation, providing operational formulas for in-control 
and out-of-control ARLs. The proposed chart outperforms existing ones in timely detection of assignable causes, 
as demonstrated through ARL evaluations, and is applied to a real-life industrial example.  Haq13 proposes an 
adaptive EWMA chart for monitoring dispersion shifts, based on an unbiased estimator and varying smoothing 
parameters. Through extensive Monte Carlo simulations, the AEWMA chart consistently outperforms exist-
ing competitors in detecting diverse shifts in process dispersion, demonstrating its superiority and providing 
practical insights through an illustrative example. The  S2-GWMA control chart, employing a three-parameter 
logarithmic transformation, is proposed Alevizakosa et al.14 for monitoring process variability shifts. Monte Carlo 
simulations reveal its superior performance in detecting small to moderate upward shifts compared to existing 
charts, and a real example demonstrates its practical application. Chatterjee et al.15  S2-TEWMA control chart, 
incorporating a three-parameter logarithmic transformation of the sample variance, outperforms competing 
charts in detecting small shifts in process variability, as demonstrated through Monte Carlo simulations and 
illustrated in two practical examples. This paper presents a novel parameter free AEWMA control chart tailored 
for process dispersion monitoring. An exceptional characteristic involves estimating dispersion shifts through 
EWMA statistics and dynamically adjusting the smoothing constant based on the shift’s magnitude. Notably, the 
method used to determine this constant sets the AEWMA chart apart. Extensive Monte Carlo simulations played 
a pivotal role, providing crucial metrics like ARL and SDRL. These metrics facilitated a comprehensive assess-
ment of the chart’s performance across diverse scenarios, ensuring a robust evaluation of its efficacy under varied 
conditions. This entailed a comparative examination with EWMA S2 and AEWMA S2 chart, with a particular 
focus on diminished ARL values. The proposed parameter free AEWMA-S2 concept showcases its superiority 
over the existing EWMA S2 and AEWMA S2 chart, particularly evident in practical industrial application using 
real-world data, extensively detailed in the example section. The paper unfolds as follows: section “Proposed 
parameter free AEWMA-S2 control chart” thoroughly develops the AEWMA-S2 chart, outlining its construction. 
Section “Discussion” rigorously assesses its performance, scrutinizing its effectiveness. Section “Performance 
comparison” incorporates the comparison of study. Section “Main findings” entails a main finding, illustrating 
examples discussed in section “Real-life application”. Finally, section “Conclusion remarks” encapsulates the 
study’s findings, drawing conclusive remarks on the research.

Proposed parameter free AEWMA-S2 control chart
In this section, the AEWMA-S2 control chart is introduced to monitor variations in a process parameter S2. The 
variable Y, representing production outcomes, follows a normal distribution with a mean μY and variance: Y ∼ N 
(μY, σ 2

Y ). Each Yt denotes the process outcome at a specific time t, forming a sequence {Yt} that tracks produc-
tion outcomes over time. Initially, at t0, the process variance σ 2

Y , is in control, where {Yt} for t ≤ t0 conforms to 
Yt ∼ N (μY, σ 2

Y ). However, when the process undergoes a shift denoted by δ, the variance changes to Yt ∼ N (μY, 
σ 2
1  ) for t > t0, where σ 2

1  indicates the altered process dispersion. The δ represents the ratio between the shifted 
process dispersion σ 2

1  and the original variance σ 2
Y , emphasizing the degree of change in σ 2

Y . A stable produc-
tion process is characterized by δ = 1 for t ≤ t0, while δ ≠ 1 for t > t0 indicates a shift in the system’s behavior. 
This section explores the analysis of variations in production dispersion over time. A random sample of size n 
is extracted from the sequence {Yt} at a time t > t0, resulting in {Y1t, Y2t, …, Ynt}. Each Yit represents the ith 
observation within this sample. To investigate production variance, the process mean yt =

∑n
i=1 Yit/n and 

variance S2t =
∑n

i=1 (Yit − YYit)
2/(n− 1) . To monitor the process variance,  Castagliola16 suggested to apply 

the following transformation to S2t .

here a, b and c > 0 are constants. The main vision of this approach is that if parameters a,b and c are selected 
in an arrangement that the transformation may consequence as the approximate normality to Tt which is an 
improved approach than Hamilton and  Crowder17.  Castagliola16 demonstrated that the constants a,b and c are 
essentially equal to

(1)Tt = a+ b ln
(

S2t + c
)

.

(2)a = A(n)− 2B(n) ln(σo)
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where only the sample size n is subjective on the three functions A, B and C. For more details, reader is refer to 
appendix 1 and 2 of  Castagliola18. The approximation, denoted as ≈ N (0, 1), effectively generates an approximate 
standard normal distribution, simplifying the computation of unbiased ARL values. These unbiased ARL values 
play a pivotal role in overseeing the process of Yt, ensuring δt = E(Yt) for the in-control process shift. Here, it is 
assumed that δt = 0 at t ≤ t0, signifying an in-control state, while δt ≠ 0 at t > t0 indicates an out-of-control system 
shifted state in σy, signaling a modification in the system’s behavior. This approach ensures an impartial evalu-
ation of ARL values, guaranteeing precise monitoring and detection of system shifts. After the normalization 
of values S2t  , assessing the magnitude of the process dispersion δ poses a challenge since it is often unknown in 
practical scenarios. In the field of SPC, methodologies have been proposed to estimate this dispersion δ using 
unbiased estimators. For example, Jiang et al.19 recommended approximating or estimating the actual δ value, 
offering a practical approach to comprehend or evaluate the dispersion in the process.

The range of values utilized for the smoothing constant ψ to estimate the process δ extends from 0 to 1, 
denoted as ψ ∈ (0, 1]. Haq et al.13 utilized this as an impartial estimator of δ, aiming for

with E(δ∗∗t ) = δ, aims to approximate or determine this δ value. According Haq et al.13, they extensively elaborate 
on these estimation techniques. When the process is in control (E(δ∗∗t ) = δ for t ≤ t0), indicating a phase without 
inherent dispersion δ, the estimation aligns with this zero value. However, in the event of a system shift where 
δ becomes relevant (E ( δ∗∗t ) = δ ≠ 0 for t > t0), the estimation identifies δ as positive ( δ∗∗t  > 0) or negative ( δ∗∗t  < 0) 
to denote increased or decreased δ magnitudes, respectively. For practical estimation, it is often recommended 
to use δ ̃ t = 

∣

∣δ∗∗t

∣

∣ . This approach ensures consistent estimation, regardless of whether the dispersion δ magnitude 
increases or decreases, providing a standardized representation for assessing process dispersion.

The suggested AEWMA-S2 statistic using the sequence {Yt} for monitoring process variance is given by

where g
(

δ̂t

)

∈ (0, 1] and F0 = 0 such that

Sarwar et al.20 introduced the function given in (5) to adapt the value of smoothing constant based on the 
estimated shift. The constants used in g(δ̂t) are suggested as a = 7 and c = 1 , when 1 < δ̂t ≤ 2.7 , the value of 
c = 2 for δ̂t ≤ 1 . The process is said to be out-of-control if the plotting statistic of exceeds the threshold value h ; 
otherwise, the process is in control.

If the recommended statistic  Ft exceeds h or falls below h in a one-sided AEWMA-S2 chart, crossing the 
assumed positive decision interval h (h > 0), it triggers an out-of-control status for the process. Conversely, if it 
does not breach these thresholds, the process remains in control. The threshold h serves as a specific limit for 
a given n, and ψ’s value is chosen to ensure the in-control ARL guarantees optimal sensitivity for the proposed 
chart statistic Ft at a predefined fixed ARL0 level. For each set of n and ψ, a distinct h value is calculated. Deter-
mining whether the monitoring system should detect an increased or decreased pattern relies on the insights 
gained during phase I. This approach ultimately minimizes sampling costs and human effort in the monitoring 
process. The combination of parameters ψ and n significantly influences the optimized threshold performance 
for specified in-control run-lengths, as highlighted by  Haq12, considering a predefined δ. The h value serves 
to establish the in-control ARL as ARL0, employing an adaptive function-based approach as recommended. 
Employing smaller ψ values aims to efficiently detect smaller magnitudes of δ while maintaining the capability 
to detect larger process δ, as elaborated in the subsequent section.

Discussion
The evaluation of a control chart’s performance involves assessing its reliability attributes, including mean, 
standard deviation, and percentiles of the run length (RL). Various techniques, such as the Probability method, 
Markov chain, Integral equations, and Monte Carlo (MC) simulation, can be utilized to determine these attrib-
utes. In this context, we specifically employed the MC simulation method, which is widely acknowledged and 
utilized for calculating RL profiles in the proposed AEWMA control chart. To obtain RL profiles, we conducted 
sampling from a normal distribution with a specified mean (δ) and variance of 1. The values of δ were system-
atically varied, covering a range of scenarios, with ψ values set at 0.15 and 0.20. This comprehensive approach 
allowed us to assess and understand the performance of the AEWMA control chart under different conditions, 
ensuring a thorough analysis of its reliability characteristics.

(3)b = B(n)

(4)c = C(n)σ 2
o

(5)δ∗t = ψTt + (1− ψ)δ∗t−1,

(6)δ∗∗t =
δ∗t

1− (1− ψ)t

(7)Ft = g
(

δ̂t

)

Tt +
(

1− g
(

δ̂t

))

Ft−1

(8)
�

δ̂t

�

=







1

a

�

1+
�

δ̂t

�−c
� if 0 < δ̂t ≤ 2.7

1 if δ̂t > 2.7

.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10512  | https://doi.org/10.1038/s41598-024-61408-5

www.nature.com/scientificreports/

The analysis reveals that the performance of the proposed parameter free AEWMA control chart is superior 
when considering zero-state reliability profiles, including ARL, SDRL, and percentiles. This enhanced perfor-
mance is particularly evident as the parameter δ, representing shifts in the process dispersion, varies. Comprehen-
sive details and specific values can be found in Tables 1, 2, 3, and 4, providing a comprehensive understanding of 
the AEWMA control chart’s behavior under different conditions. Furthermore, a concise discussion is presented 
to offer insights into the overall findings and implications of the study.

• Tables 1, 2, 3, and 4 provide a comprehensive analysis of the AEWMA-S2 control chart’s ARL and SDRL 
at fixed ψ values. The results reveal a clear trend: as the value of δ increases, both ARL and SDRL tend 
to decrease, and conversely, as δ decreases, ARL and SDRL show an increasing pattern. For instance, in 
Table 1, with ψ fixed and varying values of δ (0.25, 0.80, 1.10, 1.40, 2.00), the corresponding ARL1 values are 

Table 1.  Run-length profile of the offered parameter free AEWMA-S2 chart applying two-sided for 
ARL0 = 370, with n = 5.

Shift ARL SDRL P05 P10 P25 P50 P75 P90 P95

0.25 6.26 0.44 6.0 6.0 6.0 6.0 7.0 7.0 7.0

0.50 10.79 1.81 8.0 9.0 10.0 11.0 12.0 13.0 14.0

0.75 26.94 8.19 16.0 18.0 21.0 26.0 32.0 38.0 42.0

0.80 36.04 13.28 19.0 22.0 27.0 34.0 43.0 53.0 61.0

0.85 54.28 26.03 24.0 28.0 36.0 48.0 66.0 88.0 105.0

0.90 104.13 68.64 33.0 40.0 56.0 85.0 131.0 193.0 238.0

0.95 313.31 277.10 43.0 63.0 117.0 228.0 422.0 675.0 862.0

1.00 370.28 375.78 20.0 37.0 103.0 257.0 515.0 848.0 1114.0

1.10 42.03 36.09 7.0 10.0 17.0 31.0 56.0 89.0 114.0

1.20 17.04 11.82 4.0 6.0 9.0 14.0 22.0 33.0 40.0

1.30 10.26 6.24 3.0 4.0 6.0 9.0 13.0 18.0 22.0

1.40 7.32 4.12 2.0 3.0 4.0 6.0 9.0 13.0 15.0

1.50 5.70 3.04 2.0 3.0 4.0 5.0 7.0 10.0 12.0

1.60 4.72 2.37 2.0 2.0 3.0 4.0 6.0 8.0 9.0

1.70 3.99 1.95 2.0 2.0 3.0 4.0 5.0 7.0 8.0

1.80 3.51 1.68 1.0 2.0 3.0 4.0 5.0 6.0 7.0

2.00 2.83 1.30 1.0 1.0 2.0 3.0 3.0 5.0 5.0

2.50 2.00 0.88 1.0 1.0 1.0 2.0 2.0 3.0 4.0

Table 2.  Run-length profile of the offered parameter free AEWMA-S2 chart applying two-sided for 
ARL0 = 500, with n = 5.

Shift ARL SDRL P05 P10 P25 P50 P75 P90 P95

0.25 6.63 0.50 6.0 6.0 6.0 7.0 7.0 7.0 7.0

0.50 11.39 1.89 9.0 9.0 10.0 11.0 13.0 14.0 15.0

0.75 28.72 8.69 17.0 19.0 23.0 28.0 33.0 40.0 45.0

0.80 38.79 14.42 21.0 23.0 29.0 36.0 46.0 58.0 66.0

0.85 59.90 29.03 26.0 30.0 39.0 53.0 73.0 97.0 115.0

0.90 121.57 82.99 36.0 44.0 64.0 98.0 155.0 229.0 288.0

0.95 406.83 367.50 54.0 78.0 148.0 294.0 549.0 884.0 1139.0

1.00 500.35 506.19 26.00 49.00 138.00 344.00 701.00 1163.00 1513.05

1.10 48.27 41.25 8.0 11.0 19.0 36.0 64.0 101.0 130.0

1.20 18.82 12.74 5.0 6.0 10.0 16.0 24.0 35.0 43.0

1.30 11.25 6.63 4.0 4.0 7.0 10.0 14.0 20.0 24.0

1.40 7.98 4.37 3.0 3.0 7.0 8.0 10.0 14.0 16.0

1.50 6.19 3.17 2.0 3.0 4.0 6.0 8.0 10.0 12.0

1.60 5.06 2.52 2.0 2.0 3.0 5.0 6.0 8.0 10.0

1.70 4.29 2.04 2.0 2.0 3.0 4.0 5.0 7.0 8.0

1.80 3.77 1.76 2.0 2.0 2.0 3.0 5.0 6.0 7.0

2.00 3.04 1.35 1.0 2.0 2.0 3.0 4.0 5.0 6.0

2.50 2.14 0.91 1.0 1.0 2.0 2.0 2.0 3.0 4.0
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6.26, 36.04, 42.03, 7.32, and 2.83, while SDRL1 values are 0.44, 13.28, 36.09, 4.12, and 1.30, respectively, at 
 ARL0 = 370. This trend is consistent across different δ values and is similarly observed at  ARL0 = 500, high-
lighting the inverse relationship between δ, ARL, and SDRL in the context of the AEWMA-S2 control chart.

• Tables 1, 2, 3, and 4 reveal a consistent inverse relationship between RL percentiles and the parameter δ in 
the context of the AEWMA control chart. For instance, examining Table 2, with an In-Control (IC) ARL set 
at 500, varying values of δ (0.50, 0.80, 1.10, 2.00) showcase the following percentiles  (P05,  P10,  P25,  P50,  P75, 
 P90,  P95): (9, 9, 10, 11, 13, 14, 15), (21, 23, 29, 36, 46, 58, 66), (8, 11, 19, 36, 64, 101, 130), and (1, 2, 2, 3, 4, 5, 
6) respectively. This consistent pattern is observed in Tables 1, 3, and 4, emphasizing the influence of δ on 
RL percentiles in the AEWMA control chart.

• The value of the “h” and IC ARL is directly related, as expected and the r codes are included in Appendix A.

Performance comparison
In the standard evaluation of a control chart, its statistical presentation is typically assessed through its RL pro-
files, encompassing mean, standard deviation, and percentiles of RLs. A control chart is considered superior if 
its out-of-control ARL is smaller than that of other charts, given a specific in-control ARL and the magnitude 
of the shift. This study compares the proposed parameter-free AEWMA-S2 control chart with EWMA-S2 and 
AEWMA-S2 control charts in terms of RL profiles, including zero-state, under various dispersion shift sizes. In 
the field of SPC, it is well-established that adaptive charts tend to be more sensitive than non-adaptive ones in 
detecting shifts within a specified range, thus offering enhanced protection. Haq et al.13 introduced an AEWMA-
S2 control chart wherein they estimated the shift using a bias-free estimator. Subsequently, the value of the 
smoothing constant for plotting the EWMA statistic was selected through a step function. They claimed that 

Table 3.  Run length results of suggested parameter free AEWMA-S2 chart under one-sided for monitoring 
increase in dispersion at ARL0 = 370.

Shift ARL SDRL P05 P10 P25 P50 P75 P90 P95

1.00 370.56 385.95 16.0 30.0 91.0 245.0 513.0 872.1 1155.0

1.05 86.62 85.29 9.0 13.0 26.0 59.0 118.0 199.0 257.0

1.10 38.14 33.42 6.0 8.0 15.0 28.0 51.0 81.0 106.0

1.20 15.75 11.02 4.0 5.0 8.0 13.0 21.0 30.0 37.0

1.30 9.65 5.91 3.0 4.0 5.0 8.0 12.0 17.0 21.0

1.40 6.86 3.90 2.0 3.0 4.0 6.0 9.0 12.0 14.0

1.50 5.40 2.97 2.0 2.0 3.0 5.0 7.0 9.0 11.0

1.60 4.42 2.30 2.0 2.0 3.0 4.0 6.0 8.0 9.0

1.70 3.78 1.91 2.0 2.0 2.0 3.0 5.0 6.0 7.0

1.80 3.33 1.64 1.0 2.0 2.0 3.0 4.0 5.0 6.0

2.00 2.68 1.27 1.0 1.0 2.0 2.0 3.0 4.0 5.0

2.50 1.90 0.86 1.0 1.0 1.0 2.0 2.0 3.0 3.0

3.00 1.53 0.65 1.0 1.0 1.0 1.0 2.0 2.0 3.0

Table 4.  Run length results of suggested parameter free AEWMA-S2 chart under one-sided for monitoring 
increase in dispersion at ARL0 = 500.

Shift ARL SDRL P05 P10 P25 P50 P75 P90 P95

1.00 500.97 511.16 22.0 43.0 129.0 337.0 697.0 1177.0 1524.0

1.05 105.77 100.88 11.0 17.0 33.0 74.0 146.0 238.0 306.0

1.10 44.76 37.89 8.0 11.0 18.0 33.0 60.0 95.0 120.0

1.20 17.62 12.08 4.0 6.0 9.0 14.0 23.0 33.0 41.0

1.30 10.61 6.38 3.0 4.0 6.0 9.0 14.0 19.0 23.0

1.40 7.57 4.18 3.0 3.0 5.0 7.0 10.0 13.0 16.0

1.50 5.90 3.10 2.0 3.0 4.0 5.0 7.0 10.0 12

1.60 4.85 2.42 2.0 2.0 3.0 4.0 6.0 8.0 9.0

1.70 4.10 1.99 2.0 2.0 3.0 4.0 5.0 7.0 8.0

1.80 3.61 1.69 2.0 2.0 2.0 3.0 4.0 6.0 7.0

2.00 2.92 1.32 1.0 2.0 2.0 3.0 4.0 5.0 5.0

2.50 2.06 0.89 1.0 1.0 1.0 2.0 3.0 3.0 4.0

3.00 1.64 0.71 1.0 1.0 1.0 2.0 2.0 3.0 3.0
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their proposed control chart outperforms existing AEWMA, Cumulative Sum (CUSUM), Adaptive CUSUM 
(ACUSUM), and Double CUSUM (DCUSUM) charts. As part of this comparison, the proposed control chart is 
evaluated against the AEWMA control chart. The RL profiles of AEWMA-S2 and the proposed parameter-free 
AEWMA-S2 control charts are determined using Monte Carlo simulations with 100,000 iterations. The in-control 
RL is set at  ARL0 = 370 and 500 for comprehensive analysis and comparison.

Table 5 illustrates the superior performance of the proposed AEWMA-S2 chart compared to the EWMA-S2 
and AEWMA-S2 charts at various shift values with an in-control  ARL0 set at 370. For instance, the proposed 
AEWMA-S2 chart, with δ values of 1.10 and 1.06, yields ARL values of 253.73, 71.32, and SDRL values of 258.69, 
68.09. In contrast, the EWMA-S2 control chart provides ARL values of 303.0, 135.66, and SDRL values of 291.85, 
131.55. Similarly, for AEWMA-S2 control chart, the run length values are ARL = 270.11, 90.88, and SDRL = 304.01, 
94.06. The trend continues at various shift magnitudes (e.g., δ = 1.50 and 2.00), where the proposed AEWMA-S2 
control chart consistently outperforms its counterparts, as demonstrated in the provided data.

Main findings
Based on the analysis of Tables, key observations regarding the proposed parameter-free AEWMA-S2 control 
chart can be emphasized as follows:

(1) The proposed control chart is well-suited for the rapid detection of minor shifts in the dispersion of a pro-
duction process, particularly when the variable of interest adheres to a normal distribution. For instance, 
as depicted in Table 5, when a shift of 1.10 occurs, the ARL of the proposed chart is notably lower at 253.73. 
In comparison, the ARL values for the existing EWMA and AEWMA control charts are higher at 303.00 
and 270.11, respectively. This substantiates the efficacy of the proposed chart in swiftly identifying subtle 
shifts in process dispersion.

(2) Upon examination of Tables 1, 2, 3, and 4, it is evident that the ARL values exhibit a decreasing trend with 
an increase in the dispersion shift. This pattern indicates that the chart efficiently detects process shifts 
early on, especially with larger changes in dispersion. For instance, referring to Table 4, at a shift of 1.20, 
the ARL is 17.62, while at a mean shift of 1.60 under the same conditions, the ARL further decreases to 
4.85. This underscores the effectiveness of the chart in promptly identifying both minimal and substantial 
shifts in dispersion.

(3) Upon detailed analysis of the tables, it is evident that the proposed parameter-free AEWMA-S2 control chart 
outperforms its counterparts in terms of smaller RL profiles, encompassing ARL, SDRL, and percentiles. 
This superior performance is notable when the shift, regardless of its magnitude, affects the process disper-
sion. Additionally, the proposed chart effectively addresses the challenge of a high false alarm rate during 
zero-state conditions.

Real-life application
In this segment, we presented the real-world implementation of the proposed AEWMA-S2 control chart for 
monitoring dispersion. A genuine dataset sourced from  Montgomery21 is employed, specifically concentrat-
ing on the flow width of wafers measured in microns during the hard bake phase and photolithography stages 
of semiconductor manufacturing. Phase I involves the meticulous collection of 25 samples, each containing 5 
measurements at hourly intervals. The primary statistical parameter derived from these samples is the variance, 
offering valuable insights into the variability within each set of measurements.

The initial 25 samples are considered in-control with t0 = 25, while the subsequent 10 samples form a phase II 
shifted dataset with t1 = 10, deliberately subjected to a dispersion δ to showcase the swift detection capability of 
the proposed statistic. Consequently, sample means and variances are computed as follows: yt =

∑n
i=1 YYit/n 

Table 5.  ARL and SDRL outcomes for comparative analysis in process dispersion.

Shift

EWMA-S2 n = 5

Haq et al.13 
AEWMA-S2, 
n = 5

Proposed 
parameter free 
AEWMA-S2 n = 5

ARL SDRL ARL SDRL ARL SDRL

1.00 370.99 362.97 370.89 424.91 370.56 385.95

1.01 303.00 291.85 270.11 304.01 253.73 258.69

1.02 254.21 254.47 204.87 225.40 188.45 197.64

1.03 215.34 208.96 158.46 172.71 142.19 143.12

1.04 182.94 176.77 128.36 136.44 110.90 111.50

1.05 159.36 156.89 108.09 113.00 86.62 85.29

1.06 135.66 131.55 90.88 94.06 71.32 68.69

1.07 120.79 116.08 77.01 79.47 59.08 54.59

1.08 104.83 99.73 67.13 68.21 50.24 50.24

1.50 9.81 6.54 6.47 5.92 5.90 3.10

2.00 2.92 1.30 2.84 2.81 2.72 1.32
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and S2t =
∑n

i=1 (Yit − YYit)/(n− 1) for t = 1, 2, …, 25 and i = 1, 2, …, 5, where Yit denotes the ith observation in 
the tth sample of phase I. Using the phase I data, the overall process mean μ is estimated as Y =

∑t0
i=1 Yt/t0 and 

the process variance σ2 as S2t =
∑t0

i=1 S
2
t /t0 are also calculated. For the phase II shifted dataset, data is adjusted as 

Y * it = Y + δ(Y it − Y) for δ values of 0.25 and 1.75 across all observations. The shift in the plotted statistics for 
the proposed chart in Fig. 1 illustrates fluctuations in the process, capturing both upward and downward trends. 
Figure 1 indicates that during the initial 25 samples both charts remained within control affirming production 
stability. However, after the 25th observation with the remaining shifted 10 samples the proposed charts promptly 
reflected the impact of δ on process dispersion displaying immediate upward and downward trends. Notably, 
Fig. 1 show exiting EWMA-S2 dispersion chart identify increasing and decreasing δ at the 34th and 31th points, 
respectively. While the offered parameter free AEWMA-S2 dispersion chart detected increasing and decreasing 
δ at Fig. 2 detect out-of-control on 28th and 30th points respectively. This highlights the effectiveness of the 
proposed AEWMA-S2 dispersion chart in swiftly identifying dispersion δ, indicating its potential for practical 
implementation across various industries.

Conclusion remarks
The realm of adaptive control charts has gained significant prominence due to their heightened sensitivity in 
promptly identifying deviations in the process (denoted by δ). These adaptive charts exhibit superior sensitivity 
compared to conventional Shewhart and EWMA mean and dispersion monitoring charts, particularly for small 
and moderate δ values. They are intricately designed to swiftly detect process δ within specified ranges, prov-
ing especially advantageous for industries where detecting even minor deviations is crucial. In industries like 
pharmaceuticals, automotive, food production, packaging, and automation, where small variations in δ can have 
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Figure 1.  Plot for the suggested EWMA-S2 control chart.

Figure 2.  Plot for the proposed AEWMA-S2 control chart.
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serious implications, the introduction of a novel adaptive EWMA-S2 dispersion chart, termed parameter-free 
AEWMA-S2, becomes highly relevant. The objective of this chart is to efficiently and promptly monitor frequent 
shifts of any magnitude within specified δ intervals, outperforming the current AEWMA-S2 dispersion chart. 
The efficacy of the proposed AEWMA-S2 chart is substantiated by its shorter run-length profiles, extensively 
assessed through Monte Carlo simulations in R software and presented in tabular format. Upon examination 
of the outcomes, the suggested chart consistently exhibits superior performance in comparison to the existing 
AEWMA chart across diverse δ magnitudes, showcasing efficiency in scenarios involving small, moderate, and 
large δ variations. As a suggestion, it can be proposed for more effective surveillance of alterations in process 
dispersion compared to established approaches. Extending this method to a Bayesian framework with the normal 
distribution could substantially broaden its applicability in various domains of medical sciences. Its versatility in 
diverse scenarios, including clinical trials, disease prognosis, or assessing treatment effectiveness, could provide 
valuable insights, assisting in decision-making processes and fostering a deeper comprehension of patterns in 
medical data.

Data availability
The corresponding author possesses the datasets employed or scrutinized in the recent study and can provide 
access to interested parties upon a reasonable request. This ensures that individuals seeking the data for further 
analysis or validation can contact the corresponding author to obtain the requisite information.
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