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Approximating the nuclear binding 
energy using analytic continued 
fractions
Pablo Moscato 1,2* & Rafael Grebogi 1,2

Understanding nuclear behaviour is fundamental in nuclear physics. This paper introduces a data-
driven approach, Continued Fraction Regression (cf-r), to analyze nuclear binding energy (B(A, Z)). 
Using a tailored loss function and analytic continued fractions, our method accurately approximates 
stable and experimentally confirmed unstable nuclides. We identify the best model for nuclides 
with A ≥ 200 , achieving precise predictions with residuals smaller than 0.15 MeV. Our model’s 
extrapolation capabilities are demonstrated as it converges with upper and lower bounds at the 
nuclear mass limit, reinforcing its accuracy and robustness. The results offer valuable insights into the 
current limitations of state-of-the-art data-driven approaches in approximating the nuclear binding 
energy. This work provides an illustration on the use of analytical continued fraction regression for a 
wide range of other possible applications.

At present, although nearly 100 years have passed since the introduction of the semi-empirical ‘Liquid Drop’-
based  approximation1–3, there is still no wide consensus on a physical model that can be used to analytically 
derive the nuclear binding energy (NBE) B(A, Z) as a function of the atomic mass number A and the number 
of protons Z4. In particular, the Liquid Drop Model does not provide good approximations for low A nuclides 
as we will show later in this work.

In our recent  work5, we introduced a novel symbolic regression technique based on continued fractions. 
Symbolic regression is a unique type of multivariate regression analysis aiming to find a mathematical expression 
to approximate an unknown target function that would fit a  dataset6,7. We use this novel technique to establish 
both lower and upper analytical bounds for B(A, Z). This approach involves the use of an asymmetric loss func-
tion and the representation of the unknown function as an analytic continued fraction.

For the upper bound model (UB), we define the loss function ℓUB as follows:

Here, |err| = |ymeas − ypred | represents the absolute value of the residual error between the observed value 
( ymeas ) and the prediction ( ypred ), while relErr is the relative error given by relErr = err · y−1

meas . The parameters 
relErrTolUB and relErrTolLB denote the acceptable relative error tolerance values for the upper and lower bounda-
ries, respectively (in our work, they were set to 1× 10−4).

Analogously, for the lower boundary (LB), we use a similar structure for the loss function ℓLB , but with the 
condition relErr ≥ relErrTolLB . This approach allows us to establish both upper and lower analytical bounds 
for B(A, Z).

In our  study5, we demonstrated that the models we developed can effectively approximate the bounds of 
both experimentally observed stable and unstable nuclides, as illustrated in Fig. 1a. This includes nuclides with 
estimated values, as shown in Fig. 1b. Notably, the two bounds intersect at approximately A ≈ 337.725.

Let f (x) represent one of these boundary functions, where x is an array of variables including A, Z, and N 
(e.g., N = A− Z ) and certain selected powers of these variables. Equation (2) describes the general form of a 
multivariate analytic continued fraction utilized in our  work5:

(1)ℓUB =
{

|err|, if relErr ≤ −relErrTolUB
(|err| + 1)4, otherwise,
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where n indicates the depth of the continued fraction (CF) or depth_n , gi(x) ∈ R for all integers i ≥ 0 , each 
function gi : Rn → R is associated with a vector ai ∈ R

n and a constant αi ∈ R , as well as hi : Rn → R is asso-
ciated with a vector bi ∈ R

n and a constant βi ∈ R . The total number of variables (c) employed in the function 
and the variables are described in the vector x = [x1, . . . , xc] with their respective coefficients represented in 
the vector ai = [ai1 , . . . , aic ] and bi = [bi1 , . . . , bic ] . Following previous  work6,9–12 we have used linear functions 
 in5, as follows.

As a result, the process of obtaining effective upper and lower bounds becomes a complex optimization problem 
that combines combinatorial and nonlinear elements. This task involves utilising a given experimental dataset to 
discover suitable upper and lower bound models, which ultimately depends on identifying the sets of coefficients 
ai , bi , αi , and βi . While our previous paper is strongly focused on establishing two different mathematical models 
that act as upper and lower bounds of the nuclear binding energy, this manuscript tackles a significantly more 
challenging task: approximating the precise value for each entry in the dataset with a single model. To illustrate 
this concept, consider a recent study where continued fraction regression (cf-r) was employed to derive ana-
lytical approximations for the minimum electrostatic energy configuration of n electrons, denoted as E(n)10. In 
the aforementioned study, the electrons were constrained to reside on the surface of a sphere, addressing the 
solutions of the Thomson  Problem10.

Our approach differs from other data-driven models aimed at approximating the binding energy per nucleon, 
which have predominantly relied on Artificial Neural Networks (ANN). For instance, in Ref.13, researchers 
proposed the use of an ANN to model and predict nuclear binding energy across a wide range of proton and 
neutron numbers, with the objective of identifying the elusive ‘island of stability’. Another example can be found 
in Ref.14, where an ANN model was employed to predict residuals between experimental values obtained from 
the Atomic Mass Evaluation 2020 (AME2020)  report8 and values predicted using the Liquid Drop Model (LDM). 
This ANN aimed to enhance prediction precision.

While methods like ANNs are capable of modelling  NBE13 or predicting residuals from  LDM14, they are often 
regarded as ‘black-box’ models, lacking interpretability. In contrast, this work proposes an alternative approach 
that leverages data from AME2020 and symbolic regression methods to generate interpretable analytic functions, 
which are perhaps more amenable to downstream studies via uncertainty propagation and sensitivity analysis 
and thus more “explainable”6,7.

Following15  and16, there is a renewed interest in the application of symbolic regression methods to the problem 
of identifying new physical laws and also to model unknown independent variables from experimental data for 
which they have incomplete knowledge without subjecting human  bias7.

In our case, we are primarily interested in achieving accurate approximations with low complexity that 
effectively model the data. To accomplish this, we employ the formal concept of ‘convergents of a continued 
fraction’, which aligns perfectly with our objective. We can opt to truncate the expansion precisely when each of 

(2)
f (x) = g0(x)+

h0(x)

g1(x)+ h1(x)

g2(x)+
h2(x)

g3(x)+ . . . + hn−1(x)
gn(x)

,

(3)gi(x) =aTi x + αi ,

(4)hi(x) =bTi x + βi .
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Figure 1.  This figure shows that the experimentally observed values from the  AME20208 dataset (red cross) 
are the ones that influence the upper bound model (in orange line) of the nuclear binding energy per nucleon. 
The lower bound model (blue line) is mainly influenced by the estimated values from  AME20208, particularly 
for low values of A. The bounds meet at A ≈ 337.72 . We note that  in5 we have not made any use of the labels 
‘estimated’ and ‘experimental’ so the bounds have been found using the data as a whole. (a) Experimentally 
observed values. (b) Estimated values.
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the convergents is formally defined, allowing us to assess both the fit and complexity of these convergent-based 
models. The explicit analytic forms of these upper and lower bound models identified  in5 are provided in Sup-
plementary Material.

Nuclear stability and the Liquid Drop Model
In the 1930s, two pivotal papers emerged in the field of nuclear physics: one by Weizsäcker1 and another by 
 Bethe2. These papers gave birth to the LDM, a foundational concept. The LDM envisions the nucleus as a charged, 
irrotational spherical liquid drop, with its energy comprising several components, including a ‘volume energy’, a 
‘surface energy’, and a ‘Coulomb energy’. Additionally, it includes two more specific terms known as the ‘asym-
metry’ and ‘pairing’  terms2,17–20.

As articulated  in20, the LDM can be represented as B(A, Z, N),

where δ(N ,Z) is,

known as the pairing term. δ(N ,Z) is either zero or ±δ0 depending on the parity of number of neutrons N and 
protons Z19–22. The free parameters found in the model derive from least squares to fit experimental data and 
can be found  in20; they are the volume coefficient, aV = 15.192 ; the surface coefficient, aS = 16.269 ; the Coulomb 
coefficient, aC = 0.679 ; the asymmetry coefficient, aa = 21.675 and the previously mentioned called the pairing 
term, δ0 = 10.619 . It is known that further terms exist to explain additional  phenomena4,23 and that this model 
does not fit well the data for low values of A as we will show in our results.

Databases
The AME2020 Database
We have used the data obtained from the  AME20208 and National Nuclear Data Center Database (NuDat) and 
it was restricted to the most highly stable nuclides. We now look at unstable nuclides experimentally found that 
might exhibit new features not present in stable  nuclei24 as previously mentioned. Seeking to demonstrate the 
power of our method amid data showing different features, this study explores distinct characteristics through 
the use of two different datasets explained below. Regardless of the dataset, each sample describes a nuclide by 
its value of the binding energy per nucleon (in MeV) defined as the dependent variable, and by its Z, A and N, 
defined as the independent variables. To enhance the model’s performance, the original set of inputs is extended 
using a new set of meta-features, employing the powers p with p ∈

{
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 of 
the independent variables to create the meta-variables to find models with less complexity (as we did  in25). We 
also included the parity described in Eq. (6) with δ0 = 1 . The value δ0 = 1 was defined to only represent each 
nuclide’s parity sign, due to the fact that if we analyse Eqs. (3) and (4), it is possible to notice that if the parity 
term is included in a function employed in a model the contribution of parity will be weighted by the coefficients 
found by the algorithm.

Dataset 1—Tritium and 254 most stable nuclides from AME2020 also used in Ref.22

According to IAEA, an isotope is considered stable when it is non-radioactive. The Nuclear Data Services pro-
vided by IAEA (International Atomic Energy Agency) defines 243 stable isotopes in the Nuclear Chart (see 
Supplementary Material). However,  in22, the authors used a reduced number of nuclides in their study, a total 
of 109 nuclides (see Supplementary Material). They used 96 stable isotopes and included 12 long-lived isotopes 
and the tritium in their selection of stable isotopes, all inclusions are described and their measured or estimated 
half-lives are indicated in Supplementary Material.

To help with further comparisons we opted to select the isotopes  from22 for the training subset due to the 
reduced number of elements, allowing us to demonstrate the performance of our method even when using a 
smaller number of observations. This training subset was the one used in the first example of symbolic regres-
sion by applying the Thomson problem to find an alternative numerical approximation of the binding energy 
per nucleon for highly stable nuclei.

Aiming to demonstrate how our method would perform when confronted with the remaining stable isotopes 
from the nuclear chart, the testing subset contains the other 147 stable isotopes.

Dataset 2—2531 experimentally observed values of AME2020
This dataset comprises a total of 3535 nuclides with A ≥ 8 for the stable and unstable nuclides. From these 3535 
nuclides, 2531 had their binding energy measured and the remaining 1004 nuclides had their binding energy 
 estimated8,26. Based on this aspect we defined the nuclides with experimentally observed values of binding energy 
as the training subset, represented by red crosses in Fig. 1a. Whereas the nuclides with an estimated value of 
binding energy as the testing subset, represented in Fig. 1b by black crosses.

(5)
B(A,Z,N) ≈ aV A− aS A

2
3 − aC Z(Z − 1)A− 1

3

− aA (A− 2Z)2 A−1 + δ(N ,Z)A− 1
2 ,

(6)δ(N ,Z) = δ0
(−1)N + (−1)Z

2
,
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Results
We started first the investigation by testing if it would be possible that the putative optimal solutions of the 
Thomson problem could be leveraged somehow to obtain better approximations. We note that at the time of the 
publication of the contributions of Weizsäcker1 and  Bethe2 these solutions were not available and the Coulomb 
term reflects an asymptotic behaviour of a set of classical point charges. We cover this in the following subsection.

The Thomson problem and an alternative numerical approximation of the binding energy per 
nucleon for highly stable nuclei
At the beginning of the 20th century, J. J. Thomson proposed the earliest model of the atom based on his previous 
discovery of the negatively charged electron. We now know as the Thomson Problem the task of determining 
the minimum electrostatic potential energy configuration of a number of electrons when they are constrained 
to the surface of a unit sphere, where each other will repeal with a force given by Coulomb’s  law27,28. In what 
follows, without losing generality, we will assume a unit of one for the charges and for Coulomb’s constant. Then 
the total electrostatic potential energy U(Z) of a configuration of Z protons is proportional to the sum of all 
pair-wise interactions so we can write,

where rij = |ri − rj| is the distance between each pair of protons located at points on the sphere defined by vectors 
ri and rj . Then we define T(Z) as the value of the normalized electrostatic interaction energy occurring between 
each pair of protons of equal charges in the configuration of minimum energy cost when they are on a sphere 
of unit radius, so T(Z) = 2U(Z)Z−2.

Unlike the early 20th century when LDM was developed, we now possess knowledge of T(Z), thanks to the 
efforts of researchers over the past four decades. These researchers have employed optimization methods, result-
ing in putative optimal solutions to the Thomson problem for cases where Z < 20010.

Motivated by this wealth of data, we embarked on an investigation to determine if these values could be 
leveraged to create an alternative approximation formula to the LDM, potentially offering improved accuracy, 
especially for Z < 20 . To explore this possibility, we utilized the commercial package TuringBot (https:// turin 
gbots oftwa re. com/), employing variables such as A, N, Z, and the values of T(Z) from the putative optimal solu-
tions to the Thomson Problem.

The package TuringBot was used without any special parameter fine-tuning, but indeed some selections 
are obviously needed. For instance, with some symbolic regression packages, you often need to specify the 
mathematical functions to use. We only employed the four basic arithmetic functions (addition, subtraction, 
multiplication, and division). The coefficients were chosen to be integers and the objective function to minimize 
was the Mean Squared Error.

Our expectation was that, as symbolic regression methods inherently aim for lower model complexity, Turing-
Bot might rediscover the equation of the LDM or provide an alternative one. However, employing data from 
 AME20208, we obtained a new and intriguing approximation, as demonstrated by Eq. (8).

In a second experiment, we included the parity of N and Z (with δ0 = 1/(2A) .) as a variable and we obtained 
Eq. (9) which again has the same functional form.

The functional form of Eqs. (8) and (9) surprised us in some sense. For instance, Eq. (9) is proportional to the par-
ity, another term that is proportional to the ratio of protons to nucleons plus T(Z) and a third term that is a ratio 
of two low-order polynomials on A only. This term has a pole for A = 5 and for this value, no nucleus with A = 5 
has been found. The Mean Square Error (MSE) of Eq. (8) is 1.150× 10−2 , contrasting with MSE = 7.856× 10−2 
for the LDM and an MSE = 7.498× 10−3 when parity is included in Eq. (9). Figure 2a represents the approxi-
mation using Eq. (9) and its respective residual in Fig. 2b. Most interestingly, both Eqs. (8) and (9) are better 
approximations than the LDM, particularly for small A as Fig. 3a shows. 

We should also note our previous result  in5 which we found that

where c0 = 10.79546163 , c1 = −7.611300946 , c2 = −0.700133274 , c3 = 0.633240196 and δ(N ,Z) is the parity 
term using δ0 = 5.7175 . Comparing this approximation’s MSE of 1.103× 10−2 with the LDM, it is also a better 
approximation (residual represented in Fig. 3b). Together this indicates that it may be possible to approximate 
well using a truncated analytic CF of small depth. This has motivated us to find numerical approximations of 
the nuclear binding energy directly using the CF representation and the rest of our work helps to extend the 
approach to all nuclides.

(7)U(Z) =
∑

i<j

1

rij
,

(8)
B(A,Z)

A
≈

(

A2 − 1221A+ 6350

164 (5− A)

)(

Z

A
+ T(Z)

)

.

(9)
B(A,Z)

A
≈

(

A2 − 1229A+ 6289

166 (5− A)

)(

Z

A
+ T(Z)

)

(1+ δ(N ,Z))

(10)
B(Z,N)

A
≈ c0 +
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Z
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δ(N ,Z)

A
,
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A data-driven approximation for B(A, N, Z)/A for all nuclides based on continued 
fractions
Up to this point in our paper, our focus has primarily centered on approximating stable and long-lived nuclides. 
Nevertheless, a significant challenge in modern nuclear physics lies in the exploration of unstable nuclides, 
particularly those at the limits of  stability29. Investigating these unstable nuclei offers a profound understanding 
of nuclear interactions and unveils novel features not present in stable nuclei. The quest to derive the proper-
ties of atomic nuclei from the interactions among their constituent nucleons has long been a central pursuit in 
nuclear  physics24,30.

A pivotal realm of research delves into the heaviest nuclides on the nuclear chart, commonly referred to as 
superheavy nuclides (SHN), characterized by Z ≥ 104 in the transactinide region. All currently known SHN are 
radioactive and have been synthesized through nuclear reactions by dedicated  scientists30–33. The study of SHN 
is essential for addressing fundamental questions such as ‘How are superheavy nuclei and atoms formed and 
organized?’, ‘Do extraordinarily long-lived superheavy nuclei exist in nature?’, and ‘What are the heaviest nuclei 
that can naturally exist, and where does the Periodic Table of Elements ultimately conclude?’30.

Identification of model using continued fraction regression via memetic algorithms
In our efforts to optimize the models generated using cf-r, we employed a Memetic Algorithm (MA), a popu-
lation-based meta-heuristic technique, for variable selection and coefficient determination. MAs were initially 
introduced by one of the authors in  198934 and, in this context, serve as the chosen evolutionary technique. They 
are applied to fine-tune both the selection of parameters and variables within the formula, aiming to identify the 
fittest model based on the designated loss function. This procedure plays a crucial role in enhancing the regres-
sor’s performance, and its significance is further elucidated in our paper.
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Figure 2.  Approximation of the stable and long-lived nuclides of the training subset of Dataset 1 using the data-
driven Thomson-based model represented in Eq. (9) and the residual for the experimentally observed values 
(data from  AME20208) of the training subset of Dataset 1 containing stable and long-lived isotopes (109, for 
same nuclei of Ref.22). (a) NBE per nucleon according to Eq. (9) and comparison with the experimental values 
(black). (b) Residual of data-driven approximation by symbolic regression that delivered Eq. (9).
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Figure 3.  Residual of approximations of the stable and long-lived nuclides of the training subset of Dataset 
1 (see “Databases” section) restricted to A < 40 . In (a), the residual of approximations using the Thomson 
data-driven model with parity (red) and without parity (black), described in Eqs. (9) and (8) respectively. Both 
models are compared with LDM (blue), where the model using parity demonstrates a better approximation 
capability, particularly for lighter nuclides, than the model without parity and LDM. In (b), the residual of 
approximations using the data-driven model from Eq. (10) (red) and the LDM (blue). The data-driven model 
approximations are more accurate and outperform LDM for nuclides with N ≤ 20 , highlighting the first and 
third approximations showing smaller errors in the order of 10−6 , this efficiency repeats for elements at A ≈ 30.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11559  | https://doi.org/10.1038/s41598-024-61389-5

www.nature.com/scientificreports/

The MA framework encompasses evolutionary processes that incorporate mutation and recombination 
procedures, along with a local search algorithm that operates within the generation cycles to tackle complex 
 problems35,36.

In this contribution we are using a modified version of the Nelder-Mead proposed  in37 for its simplicity and 
quality. It has been used in our methods since 2018 because it allows us to experiment with many types of objec-
tive functions. The modified NM version operates using a simplex defined by (n+ 1) vertices and a centroid, all 
obtained from a single initial solution provided. The algorithm manipulates the simplex vertices in each iteration 
by replacing the worst vertex with a better one. In each iteration, all vertices are classified according to their loss 
function value. This variant simplifies the NM method by eliminating redundant elements while retaining the 
fundamental set of terminals and functions, ultimately resulting in a tree-structured  representation37.

To facilitate parameter and variable selection within the MA, we defined the following parameters: a mutation 
rate of 0.1, a feature selection parameter (referred to as � ) set to 0.1, and a total of 200 generations. The chosen 
MA structure is a depth-3 ternary tree-based population structure. The NM method uses one initial solution, 
as mentioned before, and a total of 250 generations are performed along 4 runs of the local-search in each 
generation of the MA. It is worth noting that these parameters remain consistent throughout all experiments 
conducted and were derived from prior  work9,11. To evaluate the fitness of the obtained solutions, we employ 
the MSE metric. This metric, combined with the feature selection parameter � , forms our defined loss function, 
denoted as ℓ = MSE × (1+�× # of features).

Our initial task was to determine the appropriate CF depth for cf-r that best fits the data. To achieve this, 
we aimed to minimize the MSE of the fit, irrespective of the model’s depth (complexity). We pursued this by 
conducting 25 independent runs of the MA, starting from depth0 , for a given dataset. At each depth, we selected 
the best-performing model. We terminated this process when we observed that the MSE of the selected model 
ceased to decrease with increasing depth. This signified that the preceding depth had returned a model with 
a lower MSE and lower complexity than subsequent runs. Following the selection of the CF depth using this 
approach, we executed another 100 independent runs to identify the best model, all at the same selected depth. 
These additional runs provided us with further insights into the performance of the MA and its consistency in 
discovering models of similar quality. We also present a descriptive statistical analysis of the results for both 
datasets in Supplementary Material.

All cf-r models presented in this study utilize real-number coefficients, approximated to rational num-
bers with a precision of 13 digits. This level of precision is necessary to prevent performance degradation. The 
rational approximations are generated using the MATLAB function rats, which truncates continued fraction 
expansions to obtain the rational approximation with the specified precision. The CF coefficients are derived by 
iteratively extracting the integer part of the real number and then calculating the reciprocal of the fractional part.

To identify the most reliable model, we divided the process into a training phase using the training subset 
and a testing phase using the testing subset data available in Dataset 1 (as described in “Databases” section). To 
enhance statistical robustness, we conducted a 10-fold cross-validation with 100 runs per fold. Detailed results 
and statistical analyses are provided in the Supplementary Material.

Dataset 2 served as a valuable resource for assessing the predictive quality of models that exclusively use 
experimentally confirmed values as their training set. These models were employed to predict the 1001 nuclear 
binding energy (NBE) values of AME2020.

Moreover, Dataset 2 facilitated another experiment of particular interest. We aimed to derive a model that 
excelled in predicting NBE values for nuclei with A ≥ 200 while still maintaining strong performance across 
the entire Dataset 2. Instead of selecting the best model based solely on the overall performance on Dataset 2 
(in terms of Mean Squared Error, MSE), we chose the model in the 100 independent runs that demonstrated the 
best fit (lowest MSE) for all nuclides with A ≥ 200 . Additionally, we conducted a 10-fold cross-validation using 
only the experimentally observed values to assess the statistical robustness of our approach.

Results on the different datasets
In this section, we present the results obtained using cf-r with both datasets mentioned earlier. Initially, we 
analyze the results derived from Dataset 1, which comprises the 109 most stable and long-lived nuclides sourced 
from AME2020. This dataset was also used in a prior study (Ref.22).

Next, we delve into the results generated using Dataset 2, which consists of 2531 experimentally observed 
nuclides, as discussed in “Databases” section. We also provide a detailed analysis of results with a focus on 
nuclides with A ≥ 200 . Lastly, we explore the model’s extrapolation capability to predict NBE in the range of 
296 ≤ A ≤ 338.

For Tritium and 254 most stable nuclides (Dataset 1)
According to the methodology and parameters setting previously described for the experiment, we found that 
a depth1 CF expressed below in Eq. (11),

is capable of approximating the NBE of the experimentally observed values of the training subset of Dataset 1 
which contains a reduced number of stable and long-lived nuclides from AME2020. In an attempt to enhance 
our model’s approximation, we performed an extra optimisation step to improve only the model’s coefficients 
and constants. This optimisation was done using the well-known multivariate Newton’s  method38–40 (more 

(11)
B(Z,N)

A
≈ g0(Z,N)+

h0(Z,N)

g1(Z,N)
,
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information in Supplementary Material). The best model achieved after the optimisation reduced the MSE in 
10.45% , from 2.805× 10−3 to 2.519× 10−3 . The optimised model is described below,

where N = A− Z . The model obtained also employs the parity described in Eq. (6), with δ0 = 1 . The residual of 
the approximation using Eq. (12) is presented in Fig. 4, where cf-r is compared to the Thomson-related model 
with parity (Eq. (9)) in Fig. 4a, and also compared with LDM (Eq. (5)) in Fig. 4b.

The cf-r model shows a better approximation and achieves smaller residuals, especially for the lighter 
nuclides, if compared to either the Thomson-related model with parity or LDM.

For 2531 experimentally observed NBE values (Dataset 2)
In our pursuit of obtaining the most reliable model, we adopted a two-phase strategy. During the training phase, 
we utilized empirical data, while the testing phase involved evaluating the model’s performance against estimated 
data, as described in the subsets explanation. Once again, we found that a depth1 CF model expressed in Eq. (11) 
yielded the most effective data-driven approximation for the problem.

Upon analyzing the results of 100 runs, we noted that most models performed better when approximat-
ing heavier nuclides and less effectively when dealing with lighter nuclides. To address this observation, we 
introduce a weighting mechanism for each nuclide in the dataset. This weight acts as a penalization factor 
when calculating the loss function, encouraging the algorithm to obtain better solutions for observations with 
higher weight values assigned. The loss function with this penalization factor, denoted as ℓPen , is calculated as 
ℓPen = (err2 + 1

A × k + 1)4 , where we empirically set k to 50.
The introduction of the ℓPen loss function resulted in a notable improvement in the model’s ability to approxi-

mate lighter nuclides. Additionally, it led to a reduction in the MSE for both experimentally observed values 
(training subset) and estimated values (testing subset).

Furthermore, the maximum absolute residual, a significant metric, decreased from approximately 1.5 MeV 
to around 0.5 MeV in the training subset and from roughly 2 MeV to about 1.25 MeV in the testing subset. A 
more comprehensive statistical analysis of these experiments is available in the Supplementary Material. The 
best model achieved is expressed below,

and the prediction residual of this model can be observed in Fig. 5, where Fig. 5a shows the residual for the 
approximation of the experimentally observed values of NBE and Fig. 5b shows the residual for the approxima-
tion of the estimated values of NBE. We highlight the maximum absolute residual for most of the approxima-
tions of the experimentally observed values are smaller than 0.5 MeV, while the approximation for the estimated 
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Figure 4.  Both plots show the residual of the approximations for the experimentally observed values of 
the training subset of Dataset 1 which contains a reduced number of stable and long-lived nuclides from 
AME2020. Residuals of the approximation using cf-r given by Eq. (12) compared to the Thomson-related 
model with parity (Eq. (9)) in (a), and later compared with LDM (Eq. (5)) in (b). The cf-r model shows a 
better approximation if compared to either the Thomson-related model with parity or LDM, achieving smaller 
residuals, especially for the lighter nuclides.
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values produced larger residuals mostly for nuclides with A < 75 . This can be explained by the fact that most 
of the nuclides with estimated NBE values are located below the nuclides with experimentally observed NBE 
values or in the area known as SHN region, as shown in Fig. 1, turning the approximation task more difficult 
for these nuclides.

Best model for nuclides with A ≥ 200

Due to the enhanced approximation capabilities of cf-r for heavier nuclides, we have undertaken an evaluation 
to identify the best model from among the 100 runs conducted, specifically focusing on cases where A ≥ 200 . 
The optimal approximation is represented by the convergents detailed in Eqs. (14) below,

by substituting Eqs. (14) into Eq. (11), we derive the model. Its performance in approximating NBE for A ≥ 200 
can be observed in Fig. 6. Specifically, Fig. 6a and b display the prediction residuals for the experimentally 
observed (training subset) and estimated values (testing subset) of NBE, respectively. In both plots, it is evident 
that the model’s absolute residuals are consistently smaller than approximately 0.15 MeV for the majority of the 
nuclides. A detailed statistical analysis of the 100 runs conducted for heavier nuclides ( A ≥ 200 ) can be found 
in Supplementary Material.
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Figure 5.  Prediction residual of the best model found represented in Eq. (13) using cf-r for experimentally 
observed values of stable and unstable nuclides (red) used in the training phase and estimated values of unstable 
nuclides (black) used in the testing phase. It is possible to notice that the absolute residual for most of the 
experimentally observed values is smaller than 0.5 MeV, whilst the approximation for the estimated values 
generated larger residuals mostly for nuclides with A < 75 . (a) Residual of experimentally observed values 
(training subset). (b) Residual of estimated values (testing subset).
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Figure 6.  Prediction residual of the best model for the experimentally observed values (red) and estimated 
values (black) of Dataset 2 considering nuclides with A ≥ 200 . It is possible to verify that the model expressed in 
Eq. (14) predicts the binding energy of unstable nuclides with an absolute residual smaller than approximately 
0.15 MeV for both experimentally observed values (training subset) and estimated values (testing subset). The 
heaviest experimentally observed value is at A = 270 , demonstrating the good extrapolation performance 
of our model for heavier nuclides with A > 270 and only estimated values of NBE. (a) Residual of the model 
(described in Eq. (14)) prediction of theexperimentally observed values (red) considering A ≥ 200. (b) Residual 
of the model (described in Eq. (14)) prediction of theestimated values (black) considering A ≥ 200.
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Extrapolation results of Eq. (14) for A > 295

The heaviest element that has been synthesized to date possesses an atomic mass of A = 295 , with Z = 118 and 
N = 177 (as reported  in8). There is substantial evidence suggesting that elements with Z ≥ 100 , belonging to 
the SHN region, exhibit a pronounced dependence on the shell structure of both protons and neutrons. This 
dependence is closely related to the concept of ‘magic numbers’, which are specific values for the numbers of 
protons and neutrons that enhance the stability of nuclei against spontaneous fission.

Recent research, as cited  in41–43, has identified predicted proton magic numbers for elements with Z ≥ 82 as 
82, 98, 100, 102, 106, 108, 114, 116, 120, and 126. Similarly, predicted neutron magic numbers for elements with 
N ≥ 126 include 126, 148, 152, 154, 160, 162, 172, 176, 178, 180, 182, 184, and 200. It is anticipated that nuclei 
with nucleon count closely matching these magic numbers exhibit heightened stability.

As previously demonstrated, our data-driven technique provides both lower and upper analytical bounds 
to B(A, Z) (see Supplementary Material), with the two bounds converging at A ≈ 337.725. To assess whether 
the model described in Eq. (14) aligns with the predictions of these lower and upper bounds, we conducted an 
extrapolation study to explore the upper limits of nuclear mass. To perform this extrapolation, we leveraged Eq. 
(14), which requires both the atomic mass and atomic number. We selected values for the atomic number within 
the range of 114 ≤ Z ≤ 126 from the sequence of proton magic numbers mentioned earlier. This allowed us to 
create plausible combinations of protons and neutrons, thereby assessing the model’s extrapolation capability in 
the range of 296 ≤ A ≤ 338 . The results, as depicted in Fig. 7, confirm that the out-of-domain predictions using 
Eq. (14) converge to the point where the upper and lower bounds intersect, occurring at A ≈ 337.72.

Conclusion
In this study, we introduced a data-driven approach, Continued Fraction Regression (cf-r), to model nuclear 
binding energy (B(A, Z)) for atomic nuclei. Our method, equipped with a customized loss function and an 
analytic continued fraction representation, has proven to be a powerful tool for approximating nuclear binding 
energies with remarkable precision. One of the significant contributions of our work is the comparison of our 
data-driven model with traditional models like the Liquid Drop Model and the exploration of its applicability 
for a wide range of nuclides. Furthermore, the value of our models does not lie in quantitative calculations of 
nuclear binding energies, but lies, in our opinion, in qualitative results comparable with traditional models. We 
might try to deduce the dependence of the nuclear binding energy on the nucleonic properties, like—to a first 
degree of approximation—the number of neutrons and protons. Still, all these conclusions should be considered 
tentative only. Notably, we outperformed the Liquid Drop Model, particularly excelling in the regime of nuclides 
with A < 20 . This underscores the potential of symbolic and continued fraction regression as an alternative 
representation for machine learning problems. Our model’s versatility and accuracy are further highlighted by 
its ability to provide precise predictions for nuclides with A ≥ 200 , achieving residuals consistently below 0.15 
MeV. This capability has implications for a myriad of nuclear physics studies, including the investigation of 
superheavy elements and the determination of magic numbers. Moreover, we demonstrated the extrapolation 
potential of our model, showcasing its convergence with upper and lower bounds as it approaches the nuclear 
mass limit. This validates the accuracy and robustness of our approach and opens new avenues for exploring 
nuclear properties beyond the known boundaries.

The wide array of nuclides, including not only the limited set of roughly 300 stable ones but also approximately 
6000 to 7000 partially or entirely unknown exotic nuclides awaiting synthesis and exploration, offers fertile 
ground for the emergence of new physical phenomena, particularly within specific regions of the nuclide chart. 
These phenomena include halo nuclei (e.g., 113 Li ), neutron-rich nuclei located near the neutron drip line, and 
groundbreaking giant resonance modes observed in heavy nuclei, among others. Similarly, regions neighbouring 

200 210 220 230 240 250 260 270

A

7

7.2

7.4

7.6

7.8

8

B
(A

,Z
)/

A
 (

in
 M

eV
)

Experimentally observed values

CF-R approximation for experimental values

(a)

270 280 290 300 310 320 330 340

A

6

6.5

7

7.5

B
(A

,Z
)/

A
 (

in
 M

eV
)

CF-R approximation

for estimated values

CF-R extrapolation

to unknown nuclei

Upper bound

Lower bound

Crossing point at A  337.72

(b)

Figure 7.  The left plot illustrates the behaviour of the model described in Eq. (14) when exploring the upper 
limits of nuclear mass in the range of 200 ≤ A ≤ 270 (purple). The right plot represents the extrapolation of 
our model to the unknown upper limits of nuclear mass in the range of 296 ≤ A ≤ 338 (green). We included 
the upper (orange) and lower (blue) bounds from Ref.5 (given in Supplementary Material) for A ≤ 338 to 
demonstrate that the model analysed behaves in agreement with the prediction of the lower and upper bounds 
when extrapolated. In the range of 200 ≤ A ≤ 295 , the approximations from Eq. (14) for the experimentally 
observed values of NBE (red) and for the estimated values of NBE (black) are included. It is possible to verify 
that the model converges to the meeting point (pink) of the upper and lower bounds.
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the proton drip line follow a similar pattern. Therefore, we fully acknowledge the difficulty in endorsing the 
notion that a data-driven method of approximation, without regard for underlying physical phenomena, can 
provide accurate assessments of the extreme regions of the nuclide chart based solely on available experimental 
and estimated data. Additionally, the incorporation of estimated nuclides does not reveal the novel physical phe-
nomena unique to exotic regions. It is essential to understand that data-driven machine learning compresses data 
and does not imply the absence of new physics or confine experimental values of B(Z/N) within predetermined 
bounds. Thus, from a physical modelling perspective, the advancement of a highly precise approximation of 
the binding energy per nucleon (B/A) as a function of proton number (Z) and neutron number (N) can enrich 
our understanding of nuclear forces only if each term in the proposed approximation corresponds to a distinct 
physical phenomenon.

In conclusion, our data-driven methodology offers an innovative way to model nuclear binding energies, 
complementing traditional approaches and holding promise for various applications in nuclear physics, as we 
continue to refine and expand it.

Data availability
The datasets generated during and/or analyzed during the current study are available in the public domain and 
was published in the  AME20208, available at https:// www- nds. iaea. org/ amdc/ ame20 20/ mass_1. mas20. txt, and 
from the National Nuclear Data Center Database (NuDat), available at https:// www. nndc. bnl. gov/ nudat3/. We 
have made publicly available the datasets employed in the TuringBot software, Matlab files containing all equa-
tions detailed in this study, and the corresponding plots, as well as spreadsheets with these equations and plots. 
These can be accessed at https:// figsh are. com/ proje cts/ Appro ximat ing_ the_ Nucle ar_ Bindi ng_ Energy_ Using_ 
Analy tic_ Conti nued_ Fract ions/ 202593.
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