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Evaluating distributed‑learning 
on real‑world obstetrics data: 
comparing distributed, centralized 
and local models
João Coutinho‑Almeida 1,3*, Ricardo João Cruz‑Correia 1,2,3 & Pedro Pereira Rodrigues 1,2,3

This study focused on comparing distributed learning models with centralized and local models, 
assessing their efficacy in predicting specific delivery and patient-related outcomes in obstetrics 
using real-world data. The predictions focus on key moments in the obstetric care process, including 
discharge and various stages of hospitalization. Our analysis: using 6 different machine learning 
methods like Decision Trees, Bayesian methods, Stochastic Gradient Descent, K-nearest neighbors, 
AdaBoost, and Multi-layer Perceptron and 19 different variables with various distributions and types, 
revealed that distributed models were at least equal, and often superior, to centralized versions and 
local versions. We also describe thoroughly the preprocessing stage in order to help others implement 
this method in real-world scenarios. The preprocessing steps included cleaning and harmonizing 
missing values, handling missing data and encoding categorical variables with multisite logic. Even 
though the type of machine learning model and the distribution of the outcome variable can impact 
the result, we reached results of 66% being superior to the centralized and local counterpart and 77% 
being better than the centralized with AdaBoost. Our experiments also shed light in the preprocessing 
steps required to implement distributed models in a real-world scenario. Our results advocate for 
distributed learning as a promising tool for applying machine learning in clinical settings, particularly 
when privacy and data security are paramount, thus offering a robust solution for privacy-concerned 
clinical applications.

As the use of Artificial Intelligence (AI) is increasing in the healthcare space1, increased demand for ethical usage 
of personal patient data is occurring as well2. This has been happening both on the governmental side, with sev-
eral regulations passed to protect citizens’ data and personal information (such as GDPR in the EU3 and HIPPA 
in the US4), and on the public side, with an increased concern with continuous data breaches across institutions5. 
So, we are now faced with a dilemma on a compromise between what is possible to do with the available data 
and what should be done regarding patient privacy6. This is the main reason why health institutions implement 
burdensome processes and methodologies for sharing patient data, often costing a great deal of time, money, 
and human resources, seldomly overtaking the ideal time frame for analysing such data. Due to these privacy 
concerns, the traditional method for using data in healthcare is, nowadays, by focusing on data from a single 
institution in order to predict or infer something regarding those patients; this could be understood as local 
learning. This approach has some drawbacks, namely data quantity, data quality and possible class imbalance7, 
never quite raising into its full potential for promoting best healthcare practices8–10 with data sharing between 
institutions. In order to overcome this issue, there are a few, more complex, systems that consolidate data from 
several institutions, so more robust algorithms could be trained. However, this globally centralised consolidation 
of data encompasses a very important data breach hazard.

This is the setting where distributed learning could create a greater impact. A halfway point between local 
and centralised learning is where we train several models, one in each institution (or silo), and where the sole 
information that leaves the premises is a trained model or its metadata. A distributed model is built as the 
aggregation of all the local models, consequently aiming to create a model similar to one globally trained with 
all the data in a centralised server. However, the distributed model never contacted with any data, only the local 
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models did. This provides the opportunity to create better models, improve data protection, reduce training time 
and cost and provide better scaling capabilities11.

While numerous multi-institutional initiatives have successfully established integrated data repositories for 
healthcare research, there remains an incomplete understanding of the performance and scalability of distrib-
uted systems when directly compared to traditional, centralised models. Specifically, the nuanced behaviors of 
these distributed frameworks under real-world data conditions-contrasted against classical models that utilize 
consolidated data-have yet to be fully delineated. This paper aims to critically evaluate the efficacy and suitabil-
ity of distributed mechanisms within the healthcare domain, assessing their potential as viable alternatives to 
conventional machine-learning pipelines. The objectives of this paper include:

•	 Evaluate a distributed model against its local counterparts and against the centralized version;
•	 Describe the preprocessing required to implement distributed learning with real world data;

Theoretical background and related work
Distributed learning12 can be understood as training several models in a different setting and then aggregating 
them as a whole. There are two main branches of these approaches, distinguishable by the existence of a central 
orchestrator server: federated learning where such an entity exists, and peer-to-peer (or swarm)6 learning where 
it does not. Distributed learning can be implemented in various ways, depending on the chosen base algorithm. 
One common method is averaging the weights of models, primarily utilized in federated averaging. Alternatively, 
distributed systems can aggregate individual models into an ensemble, enhancing performance by leveraging the 
strengths of different models12. Even though distributed learning has been receiving a lot of attention recently, 
only some of its concepts have been focused on, mainly distributed-deep learning with a federated learning 
approach13,14. These methods use the strength of neural networks and several algorithms such as federated 
averaging to create distributed models capable of handling complex data like text, sound, or image15. However, 
considering that there are great amounts of information, especially in healthcare, stored as tabular data16–20 and 
that neural networks are often not the best tool for such data structures and often outperformed by boosting algo-
rithms and tree based models21,22, there is a lack of knowledge in the traditional machine learning techniques in a 
distributed manner. This is specially important since tabular data comes mainly from Electronic Health Records 
(EHRs) and this kind of data is often of lower quality, with missing values, and with a high number of categorical 
variables and unstructured/semi-structured variables which make the application of classical machine-learning 
algorithms harder than for example images, which are mainly computer and systematically generated23.

Nevertheless, there have been some health-related distributed machine-learning projects successfully imple-
mented, such as euroCAT​24 which implemented an infrastructure across five clinics in three countries. SVM 
models were used to learn from the data distributed across the five clinics. Each clinic has a connector to the 
outside where only the model’s parameters are passed to the central server which acts as a master deployer 
regarding the model training with the radiation oncology data. Also, ukCAT​25 did similar work, with an added 
centralised database in the middle, but the training being done with a decentralized system. There are also reports 
of a study that introduces “confederated machine learning” for modeling health insurance data that is fragmented 
both horizontally (by individual) and vertically (by data type), without the need for central data consolidation. 
It showcases the method’s efficacy in predicting diseases like diabetes and heart conditions across data silos, 
achieving notable prediction accuracy, thereby advancing federated learning in healthcare by accommodating 
complex data separations and enhancing model training without compromising patient privacy or data security26. 
Distributed initiatives have also been covered in a review by Kirienko et al.27, where we can see very few papers 
have described a distributed learning approach without federation. However, from these, we can highlight the 
works of Wang et al.28 tried to use these approaches to detect re-hospitalization for heart failure and Tuladhar 
et al.12 where they used the distributed approach to detect several diseases like diabetes, heart disease, and mild 
cognitive impairment.

Several studies have examined model evaluation in distributed settings, such as comparing centralized 
and distributed machine learning using the MNIST dataset29. Others have evaluated federated learning on the 
MNIST, MIMIC-III, and PhysioNet ECG datasets, though these studies did not compare federated learning to 
other methodologies30. Tuladhar and colleagues have also investigated healthcare images and various public and 
curated datasets12. Morevoer, none of them address the challenges of using real-world data and how to implement 
these methodologies in live scenarios. Additionally, a scoping review emphasizes the importance of thoroughly 
evaluating distributed and federated models against local models31. To our knowledge, this study is the first to 
evaluate distributed machine learning on such a broad scale with real-world tabular clinical data from nine 
distinct sources, employing various algorithms and outcome variables, and comparing these methods to both 
centralized and local approaches. This evaluation encompasses both federated and peer-to-peer methodologies.

Materials
Clinical data was gathered from nine different Portuguese hospitals regarding obstetric information, pertaining 
to admissions from 2019 to 2020. This originated nine different files representing different sets of patients but 
with the same features associated to them. The software for collecting data was the same in every institution 
(although different versions existed across hospitals) - ObsCare32. The data columns are the same in every hos-
pital’s database. Each hospital was considered a silo and summary statistics of the different silos are reported 
in the Tables 1 and 2. The data dictionary is in Appendix A. The datasets were anonymized and de-identified 
prior to analysis and each hospital was assigned a number to ensure confidentiality. Each dataset represents a 
different hospital, which we will use for this analysis as a isolated silo and the number of patients in each dataset 
is reported in the last row of the Tables 1 and 2. Dataset comprised of patient’s features like age and weight and 
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characteristics as well, like if the patient smoked during pregnancy or had gestational diabetes. The dataset also 
comprises information about the pregnancy like number of weeks, type of birth, bishop score (pre-labor scoring 
system used to predict the success of induction of labor), or if the pregnancy was followed by a specific physician 
in a specific scenario.

This study received Institutional Review Board approval from all hospitals included in this study with the 
following references: Centro Hospitalar São João; 08/2021, Centro Hospitalar Baixo Vouga; 12-03-2021, Unidade 
Local de Saúde de Matosinho; 39/CES/JAS, Hospital da Senhora da Oliveira; 85/2020, Centro Hospitalar Tamega 
Sousa; 43/2020, Centro Hospitalar Vila Nova de Gaia/Espinho; 192/2020, Centro Hospitalar entre Douro e Vouga; 
CA-371/2020-0t_MP/CC, Unidade Local de saúde do Alto Minho; 11/2021. All methods were carried out in 
accordance with relevant guidelines and regulations.

Methods
The section will cover the steps we took for evaluating the models. We first addressed the preprocessing of the 
data, then the training of the models and finally the evaluation of the models. The evaluation was done by com-
paring the performance of the distributed model with the local and centralised models. The performance was 
measured by the AUROC, AUPRC, RMSE and MAE. The results were then compared using a 2-sample T-test.

Table 1.   Silos overview. Each hospital is considered a silo. Categorical columns have the number of categories 
(C) and the percentage of the most frequent (%). Continuous variables have a mean ( µ ) and standard deviation 
( σ ). The first row is the number of patients. Bold rows were used as target (n = 19).

Variable Silo 1 Silo 2 Silo 3 Silo 4 Silo 5 Total

N (total) 8039 8566 4989 2364 18177 80874

Actual type of delivery C (%) 10 (52.6) 3 (51.6) 3 (57.8) 3 (61.8) 9 (61.5) 11 (52.9)

Bishop Score C (%) 15 (98.5) 15 (78.8) 13 (97.4) 16 (86.4) 15 (97.4) 16 (95.3)

Blood group C (%) 9 (39.9) 10 (39.9) 9 (39.3) 11 (37.9) 10 (40.9) 14 (40.5)

Body mass indexµ(σ) 25.2 (8.6) 25.2 (6.2) 25.0 (5.3) 25.0 (8.9) 24.9 (7.8) 25.1 (7.0)

Cervical consistency C (%) 4 (98.6) 4 (83.4) 4 (99.3) 4 (87.4) 4 (97.5) 4 (96.5)

Cervical position C (%) 4 (98.6) 4 (83.3) 4 (99.3) 4 (87.5) 4 (97.6) 4 (96.6)

Delivery type C (%) 6 (43.4) 6 (53.5) 5 (44.4) 7 (52.2) 7 (49.3) 8 (51.3)

Dilatation C (%) 5 (98.5) 5 (83.1) 5 (99.3) 5 (87.2) 5 (97.5) 5 (96.5)

Effacement C (%) 5 (98.6) 5 (83.2) 5 (99.3) 5 (87.2) 5 (97.5) 5 (96.5)

Fetal station C (%) 5 (98.6) 5 (83.3) 5 (99.3) 5 (87.9) 5 (97.5) 5 (96.6)

Followed physician C (%) 3 (99.2) 4 (92.2) 3 (99.1) 3 (94.3) 3 (99.0) 4 (97.9)

Followed physician hospital delivery C (%) 2 (87.6) 2 (75.8) 2 (81.4) 2 (52.2) 2 (71.0) 2 (69.0)

Followed physician primary care C (%) 2 (61.3) 2 (52.8) 2 (78.1) 2 (50.4) 2 (70.4) 2 (67.6)

Followed physician private clinic C (%) 2 (81.8) 2 (85.0) 2 (80.6) 2 (78.8) 2 (73.3) 2 (75.8)

Gestational diabetes C (%) 2 (87.7) 2 (90.0) 2 (90.2) 2 (90.8) 2 (89.8) 2 (89.5)

Induced delivery C (%) 2 (97.8) 2 (83.9) 2 (93.3) 2 (91.9) 2 (98.5) 2 (92.5)

Mother ageµ(σ) 31.1 (5.7) 30.7 (5.6) 31.1 (5.9) 31.1 (6.3) 31.3 (5.6) 31.1 (5.6)

Nr Deliveries forceps C (%) 4 (99.2) 3 (83.3) 4 (94.3) 4 (95.8) 3 (60.1) 5 (82.6)

Nr Deliveries no assistance C (%) 10 (74.7) 9 (60.3) 9 (74.9) 9 (67.3) 11 (45.4) 12 (60.3)

Nr Deliveries vacuum C (%) 5 (90.4) 4 (79.9) 4 (89.0) 4 (93.1) 5 (55.3) 5 (77.4)

Nr of C-sections C (%) 6 (87.9) 6 (72.6) 5 (86.1) 5 (89.5) 6 (62.1) 6 (74.6)

Nr of pregnancies C (%) 11 (40.9) 11 (43.1) 13 (39.1) 12 (38.7) 16 (42.8) 19 (42.1)

Nr of born babies C (%) 10 (44.8) 10 (41.4) 10 (36.9) 10 (42.0) 12 (35.3) 12 (38.8)

Nr of consultationsµ(σ) 7.3 (4.7) 7.0 (6.4) 6.4 (3.9) 5.5 (3.6) 10.5 (5.1) 8.4 (5.1)

Pelvis Adequacy C (%) 4 (95.4) 4 (77.7) 4 (90.1) 3 (96.9) 4 (81.2) 4 (82.6)

Position admission C (%) 5 (88.5) 6 (78.0) 6 (51.8) 3 (95.9) 6 (71.3) 7 (73.1)

Position on delivery C (%) 5 (91.5) 5 (94.4) 5 (94.7) 5 (95.5) 5 (94.3) 5 (93.9)

Pregnancy type C (%) 7 (62.1) 7 (90.5) 7 (85.4) 7 (63.0) 7 (89.2) 7 (85.4)

Robson group C (%) 11 (22.4) 11 (20.1) 10 (23.8) 10 (80.5) 11 (27.7) 11 (24.4)

Rupture amniotic pocket before delivery C (%) 2 (91.1) 2 (93.6) 2 (89.3) 2 (91.6) 2 (84.6) 2 (88.5)

Smoker C (%) 2 (84.4) 2 (85.2) 2 (87.2) 2 (89.7) 2 (87.9) 2 (88.1)

Spontaneous delivery C (%) 2 (70.3) 2 (74.7) 2 (64.8) 2 (64.3) 2 (59.7) 2 (64.9)

Weeks on admission C (%) 38.1 (3.5) 38.8 (2.2) 38.9 (1.6) 38.8 (2.4) 38.6 (2.1) 38.7 (2.2)

Weeks on deliveryµ(σ) 38.5 (2.8) 38.9 (2.0) 39.1 (1.7) 39.0 (2.3) 38.9 (2.0) 38.9 (2.0)

Weight on admission µ(σ) 81.4 (14.9) 79.5 (14.5) 78.0 (15.2) 79.6 (16.3) 78.3 (14.2) 78.8 (14.5)

Weight start of pregnancy µ(σ) 66.4 (14.4) 66.1 (13.5) 65.5 (14.1) 65.5 (14.1) 65.5 (14.4) 66.0 (14.1)
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Preprocessing
The initial dataset underwent preprocessing by eliminating attributes that were missing more than 90% of their 
data across all storage units (or silo). We standardized the representation of missing values, which varied widely, 
including representations such as “-1” “missing” or simply blank spaces. For imputation, we utilized the mean for 
continuous variables (calculated within site) and introduced a special category (NULLIMP) for categorical vari-
ables. We converted all categories into numerical values based on a predefined mapping that covered all potential 
categories across the datasets. Although this approach introduces an ordinal relationship and potential bias is 
created among features, we disregarded this concern because the methodology was uniformly applied across all 
datasets intended for training local, distributed and centralised. These preprocessing tasks were executed once 
for each dataset and silo.

However, in the context of training classification models, it is crucial that all classes of the target variable 
are known at the time of training and are represented in each split of the cross-validation process. To address 
this, we employed SMOTE33 to up-sampled low-frequency target classes. We established a threshold of n<25 for 
low-frequency variables to ensure that each cross-validation split contained at least two instances of the class-
although a minimum of 10 instances (10 splits) might suffice, we opted for 25 to mitigate potential distribution 
issues and have at least two examples of the class in each split. Additionally, we created dummy rows for missing 

Table 2.   Silos overview part 2. Each hospital is considered a silo. Categorical columns have the number 
of categories (C) and the percentage of the most frequent (%). Continuous variables have a mean ( µ ) and 
standard deviation ( σ ). Abbreviation meaning in the “Appendix”. The first row is the number of patients. 
Bold rows were used as target (n = 19).

Variable Silo 6 Silo 7 Silo 8 Silo 9 Total

N (total) 12002 8258 6693 11786 80874

Actual type of delivery C (%) 10 (63.8) 0 (100) 10 (50.1) 9 (64.6) 11 (52.9)

Bishop Score C (%) 14 (99.3) 15 (97.9) 14 (99.2) 15 (95.0) 16 (95.3)

Blood group C (%) 13 (41.6) 10 (39.2) 10 (40.1) 10 (41.7) 14 (40.4)

Body mass indexµ(σ) 24.9 (5.1) 24.9 (7.0) 24.8 (8.0) 25.7 (5.6) 25.1 (7.0)

Cervical Consistency C (%) 4 (99.5) 4 (99.7) 4 (99.5) 4 (96.9) 4 (96.5)

Cervical Position C (%) 4 (99.5) 4 (99.7) 4 (99.5) 4 (96.9) 4 (96.5)

Delivery type C (%) 6 (54.3) 5 (52.1) 5 (47.8) 5 (59.0) 8 (51.3)

Dilatation C (%) 5 (99.5) 5 (99.7) 5 (99.5) 5 (96.9) 5 (96.5)

Effacement C (%) 5 (99.5) 5 (99.7) 5 (99.5) 5 (96.9) 5 (96.5)

Fetal station C (%) 5 (99.5) 5 (99.7) 5 (99.5) 5 (96.9) 5 (96.6)

Followed physician C (%) 3 (96.9) 3 (99.4) 3 (97.8) 3 (99.2) 4 (97.8)

Followed physician hospital delivery C (%) 2 (62.1) 2 (63.2) 2 (69.4) 2 (83.1) 2 (69.0)

Followed physician primary care C (%) 2 (53.1) 2 (86.7) 2 (63.1) 2 (87.3) 2 (67.6)

Followed physician private clinic C (%) 2 (68.2) 2 (73.5) 2 (71.0) 2 (78.1) 2 (75.8)

Gestational diabetes C (%) 2 (92.2) 2 (88.2) 2 (89.9) 2 (86.8) 2 (89.5)

Induced delivery C (%) 2 (91.9) 2 (85.9) 2 (87.4) 2 (93.9) 2 (92.5)

Mother age µ(σ) 31.3 (5.2) 31.4 (5.4) 31.5 (5.6) 30.1 (5.6) 31.1 (5.6)

Nr deliveries forceps C (%) 4 (82.0) 4 (86.0) 3 (94.0) 4 (89.3) 5 (82.6)

Nr deliveries no assistance C (%) 8 (58.8) 9 (61.2) 10 (68.9) 9 (61.5) 12 (60.3)

Nr deliveries vacuum C (%) 4 (78.9) 4 (81.6) 4 (88.0) 5 (82.3) 5 (77.4)

Nr of C-sections C (%) 6 (69.1) 6 (74.5) 5 (85.5) 6 (77.8) 6 (74.6)

Nr of pregnancies C (%) 13 (44.2) 9 (42.9) 11 (42.0) 13 (40.2) 19 (42.1)

Nr of born babies C (%) 9 (38.4) 9 (42.6) 10 (41.2) 10 (43.2) 12 (38.8)

Nr of consultationsµ(σ) 6.8 (4.0) 7.7 (3.2) 9.3 (4.5) 8.9 (5.5) 8.4 (5.1)

Pelvis Adequacy C (%) 4 (89.6) 4 (52.9) 3 (93.1) 4 (81.5) 4 (82.6)

Position admission C (%) 6 (84.5) 7 (61.3) 5 (89.2) 4 (74.2) 7 (73.1)

Position on delivery C (%) 5 (93.0) 5 (93.6) 5 (94.8) 5 (94.2) 5 (93.9)

Pregnancy type C (%) 7 (88.0) 7 (85.4) 7 (86.0) 7 (92.9) 7 (85.4)

Robson group C (%) 11 (27.2) 11 (24.7) 11 (21.4) 11 (26.7) 11 (24.4)

Rupture amniotic pocket before delivery C (%) 2 (85.0) 2 (84.4) 2 (89.9) 2 (93.8) 2 (88.5)

Smoker C (%) 2 (91.0) 2 (90.7) 2 (85.5) 2 (89.9) 2 (88.1)

Spontaneous delivery C (%) 2 (64.9) 2 (64.0) 2 (64.7) 2 (62.9) 2 (64.9)

Weeks on admission µ(σ) 38.7 (1.8) 39.0 (2.0) 38.6 (2.1) 38.8 (1.9) 38.7 (2.2)

Weeks on deliveryµ(σ) 38.8 (1.8) 39.2 (1.7) 38.7 (2.0) 39.0 (1.6) 38.9 (2.0)

Weeks on admissionµ(σ) 77.7 (13.4) 79.2 (14.7) 76.7 (13.0) 83.1 (15.2) 78.8 (14.5)

Weight start of pregnancyµ(σ) 65.6 (13.5) 66.0 (13.7) 65.6 (14.1) 67.4 (14.6) 66.0 (14.1)
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target classes by imputing the mean for continuous variables and the mode for categorical variables (calculated 
within site). The necessity for up-sampling and missing variable creation was evaluated and applied as needed 
for each training session and for each target, considering that each session’s split could result in a training set 
lacking instances of low-frequency classes.

All procedures were coded in python 3.9.7 with the usage of the scikit-learn library34 and mlxtend library35.

Model training
To avoid pitfalls of inductive bias from a certain learning strategy, we learned six different models (i) Decision 
Trees, (ii) Bayesian methods, (iii) a logistic regression model with Stochastic Gradient Descent, (iv) K-nearest 
neighbours, (v) AdaBoost and (vi) Multi-layer Perceptron. The decision was to create diversity in the models 
used, in order to assess if the training methodology could have an impact on distributed model creation. The 
distributed model was an ensemble of models from each silo on a weighted soft-voting basis. The weights 
were defined by weighted averages of the scores each model obtained in the training set. Then the final result 
is obtained by creating a weighted average of the class predictions for classification and a weighted average for 
regression. A model like this can be implemented with peer-to-peer or federated approaches. Nineteen features 
were used as target outcomes. These features were selected by filtering by the percentage of null values (below 
50%). This choice was related to maintaining a equilibrium between having a wide range of variables to test how 
the target variables affects the outcome and having target variables that did go through an harsh imputation 
mechanism. For categorical outcomes, thirteen were selected (AA—Baby’s Position on Admission (like vertex, 
cephalic or transverse); ANP—Baby’s Position on Delivery (like vertex, cephalic or transverse); AGESTA—Num-
ber of Pregnancies; APARA—Number of born babies; GS—Blood Group; GR—Robson Group, which is a system 
used to categorize all women giving birth into ten groups based on characteristics that are clinically relevant to the 
outcome of delivery; TG—Pregnancy Type (like spontaneous or In vitro fertilisation); TP—Delivery Type (like 
vaginal or C-section); TPEE—if the delivery was spontaneous, meaning that no induction was needed; TPNP—
Actual Type of Delivery, or the actual delivery method; V—if the mother was followed by physician; VCS—if 
the mother was followed by a physician in primary care; VNH—if the mother was followed by a physician in 
the same hospital of the delivery;). For continuous variables, six were selected (IA—Mother’s Age; IGA—Weeks 
on Admission; IMC—Body Mass Index ; NRCPN—Number of consultations; PI—Weight of the mother at the 
start of pregnancy; SGP—number of weeks on Delivery). Given the wide range of different variables, there is 
the potential of using the predictions of the models in the whole pregnancy process. More information about 
the variables can be seen in Tables 1 and 2. Local models were built with each silo’s data. The centralised model 
was trained with a training dataset from all the silos combined.

Model performance evaluation
All models were built for a certain outcome variable with a repeated cross-validation (2 times and 10 splits 
each) and then compared, over ten stochastic runs, with evaluation being performed on a test set held out from 
each silo. By performing cross-validation twice, we aimed to generate a more robust estimation of the model’s 
performance metrics by averaging the results over two separate runs, each partitioning the data differently. This 
approach is particularly useful in scenarios where data is limited or highly variable, as it provides a clearer insight 
into the model’s expected performance in unseen data scenarios. The metrics used for classification models were 
Weighted Area Under the Receiver Operating Characteristic Curve (AUROC) computed as One-versus-Rest, 
Weighted Area Under the Precision-Recall Curve (AUPRC). The metrics for regression models were Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE). The algorithm is shown in the Algorithm 1. This ren-
dered over 1000 different combinations. When a variable was used as outcome to predict, all others were used 
as predictors.

Pre-process all silos (null standardization, imputation, encoding);
for target in target list do

for n in 10 repetitions do
for silo in imputed silos do

Train-Test Split (80:20);
check for low frequency or nonexistent labels in train set ;
train local model with hyper-parameter tuning with 2x10 repeated CV ;
define weights based on scores in the train set (weighted average for predicting the value) for the distributed
model;

Create distributed (ensemble of all models) model with weights;
predict local on the test set;
predict distributed on the test set;

Create a centralised model with all the data with a 2x10 repeated CV ;
Test the centralised model on the test set;

Algorithm 1.   Creation and evaluation of the three different models. We first preprocessed data. Then for each 
target, we created a distributed and centralised model. Then, over ten repetitions per silo, we created a new train 
and test set and local model and tested the centralised, distributed and local on this test set.
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After all the data was collected, we used the standard independent 2-sample T-test to check if the differences 
were significant with a α of 0.05. First, we compared the overall performance of the distributed model vs their 
centralised and local counterpart. We also compared every distributed model per algorithm and sequentially 
the centralised and correspondent local model across all algorithms and repetitions and outcome variables with 
2-sample T-test as well.

Results
Table 3 shows the aggregated metrics for AUROC, AUPRC, RMSE and MAE for distributed, centralised and local 
models predicting capabilities on each silo. The data refers to the mean of the metric values for all columns tested 
as targets for all methods and all silos. We also calculated the 95% confidence interval for each model (local and 
distributed per silo) in order to assess how well the distributed model would work as opposed to the local one 
per silo. We also calculated the p Value for the means of the distributed vs centralised and distributed vs local.

Table 4 shows all iterations of the tests and how the distributed model compared with the centralised and 
the local for each silo, target variable, repetition and machine learning model like described in Algorithm 1. The 
rows describe the relationship of the distributed and the centralized and the columns the relationship between 
the distributed model and the corresponding local model.

Figure 1 shows the AUROC of each algorithm and silo on the Y axis and target variable and type of model 
on the X. The color bar refers to the value of the AUROC. Blue being lower values and red bigger values. The 
same type of graph was created for regression, where the Fig. 2 shows the MAE for each silo and algorithm and 
target variable and type of model.

Discussion
A significant finding is that nearly 59% of distributed models demonstrated comparable, if not superior, per-
formance relative to their centralized counterparts (Table 4 last column, first two values for each algorithm). 
From these, 41.9% were also better or equal to the local model. Using the best-performing algorithm (SGD), 
we observe a 77.2% improvement in distributed settings compared to centralized, and a 66% improvement over 
both centralized and local models. This outcome underlines the potential of distributed models to offer reliable 
inference capabilities that match those of traditional centralized models, without sacrificing predictive accuracy. 
Furthermore, the adoption of distributed models enhances privacy for data owners, presenting a compelling 
case for their broader application in data-sensitive environments. Overall, our results suggest that it is possible 
to implement a distributed model without significantly losing information. Our analysis suggests that SGD, 
Adaboost and Naive Bayes approaches are suitable for such distributed approached with tabular data. In contrast, 
MLPerceptron, Decision Trees and KNN do not seem to be a good approach for such use cases.

However, there are still issues to be addressed. This methodology presents hurdles regarding categorical 
class handling. Firstly, all classes should be known first-hand and should be given to each model even if that silo 
in particular has no cases of that class. Secondly, low-frequency classes are also an issue to be addressed, since 
training the model with cross-validation will raise problems because each split should have all classes present. 
Our approach relied on sample creation for low and non-existent target classes. However, this approach is adding 
information to the model that is not originally there. The way we chose for minimising this issue was by creating 
dummy variables with median and mode imputations based only on the information in the dataset. Neverthe-
less, non-existent classes are impossible to address without prior information. These class problems could be 
partially tackled in production by implementing data management and governance procedures, namely data 
dictionaries. Still on data preprocessing, we applied ordinal encoding to the variables which will create a natural 
hierarchy between variables. One solution for this is to create binary columns for each class in each column. 
This will remove the hierarchy between classes but increase variable numbers and training time considerably.

Another issue to consider is the path adopted to build the distributed model. In this case, it was decided to 
develop an ensemble of models with voting. However, other methods could have been employed, like param-
eter averaging, that should be tested as well. In particular, the usage of more robust neural networks could be 
assessed as well. We chose not to test state-of-the-art neural networks since the data volume was low for that 
use case and several papers have already demonstrated that neural networks are not the most suitable tool for 
tabular data36,37. We chose to add MLPerceptron as a baseline for comparison with the remaining algorithms. 
The results show us that the performance was below the other algorithms, but in this concrete case, the prob-
lem may reside in the architecture chosen and hyperparameters used in the Cross-validation which may have 
lead to underfitting. Despite this, a precise and thorough demonstration of this use case would be important to 
consider such scenarios.

Furthermore, the algorithm underlying the distributed model is of importance as well for its performance 
versus the centralised model. Figs. 1 and 2 and Table 4 show us that Decision trees and K-nearest neighbours 
implemented in a centralised manner are consistently better than the distributed counterpart. This is specially 
notorious in the case of the decision trees. We believe this may be related to way the algorithm is implemented. 
A centralised version may be able to create optimal splits in the data, while the distributed version may not be 
able to do so. This is a topic that should be further explored.

Even though this improvement may have a relationship to the target variable (i.e. Fig. 2 for IA and IGA vari-
ables), it is still an important fact to take into account when implementing such architectures. The performance 
of the models is also interesting to catch differences in silos. See silo 6 for TPNP (Fig. 1) where silo 6 consistently 
behaves differently than the rest. Checking performance data regarding regression tasks, we can see a drop in 
performance for PI and IA. While the explanation for the performance of IA can be explained by the average value 
of it which is 66, which is the highest average in the dataset. This means that the model will have a harder time 
predicting these values, being also true for the distributed model. This is a topic that should be further explored.
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As for implementation, specially preprocessing, we found that having the description of data across silos 
is vital since we might need to convert and encode data. This is a step that should be taken into account when 
implementing such a system. This might be easier to implement in a federated manner, where a central orchestra-
tor could take care of this. If an implementation like peer-to-peer is implemented, the metadata should also be 
shared or defined a priori. Other important issue is related with absence of data and missing values and catego-
ries. Most machine learning models expect a specific size of input data. This is a problem when we have missing 
values or categories that are not present in the training set. Our approach was to handle it with synthetic data 
generation which may suffice for most scenarios. Regarding the prediction capability as a whole, we found that 
this data is suitable to apply machine-learning models in order to predict several clinical outcomes, with very 
good results for several target variables.

Conclusion
This study represents a comprehensive evaluation of distributed machine learning using real-world tabular 
obstetrics data from nine distinct sources on such a significant scale. It encompasses a variety of algorithms and 
outcome variables, comparing these to both centralized and local approaches. Our work demonstrated the per-
formance of distributed models using real-world data by comparing their performance with that of local models, 
which are trained with data from individual silos, and centralized models, which utilize data from all silos. The 
findings reveal that an ensemble of models, essentially a distributed model as investigated in this study, can cap-
ture the nuances of the data, achieving performance comparable to a model constructed with comprehensive data. 
Although the performance of these models is shaped by factors such as the inherent characteristics of the target 
variables and the data distribution across different silos, we are now fairly confident that distributed learning 
represents a significant advancement. Particularly, if a distributed model can match or surpass the performance 
of a centralized model, this is notably beneficial. Such an outcome underscores the value of distributed models 
as they not only maintain, but potentially enhance, predictive accuracy while offering a higher degree of data 
privacy compared to centralized systems. This balance of privacy with efficiency is especially crucial in fields 
where data sensitivity is paramount, making distributed learning an appealing option when evaluated against 
both centralized and local models. Considering the robust performance metrics observed, with AUROC/AUPRC 
scores exceeding 80% and MAE maintained below 1, further investigation into distributed models is warranted. 
Specifically, we aim to develop distributed models for predicting clinical outcomes, such as delivery type or 
Robson Group classifications, which hold significant potential for real-world clinical application like reducing 
unnecessary Cesarean Sections or accelerating diagnosis. Our findings highlight that distributed learning not 
only advances data privacy while maintains high prediction accuracy, promising substantial benefits for clinical 
practices.

Table 3.   Comparison of the distributed model with the centralised model and with the local model (mean for 
all model and all columns). 2-sample T-test for the means was used as hypothesis test. Bold for P value below 
0.05. AUPRC and AUROC for categorical target variable and RMSE and MAE for continuous target variable.

M SD 95% CI P

AUPRC

distributed 0.691 0.216 (0.686, 0.696) –

Centralised 0.706 0.225 (0.701, 0.711) 1.10e−17

Local 0.659 0.220 (0.654, 0.665) 4.71e−05

AUROC

Distributed 0.723 0.182 (0.718, 0.727) –

Centralised 0.729 0.180 (0.725, 0.734) 2.98e−26

Local 0.692 0.164 (0.688, 0.695) 2.48e−02

MAE

Distributed 2.370 1.608 (2.315, 2.425) –

Centralised 2.365 1.923 (2.298, 2.431) 2.23e−04

Local 2.527 1.799 (2.465, 2.589) 9.01e−01

RMSE

Distributed 21.171 46.078 (19.584, 22.757) –

Centralised 19.839 28.645 (18.853, 20.826) 2.92e−02

Local 23.771 49.776 (22.057, 25.485) 1.63e−01
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Figure 1.   Heatmap of classification algorithm and silo vs target variable and model type. Value is the AUROC 
mean of all 10 experiments. Y axis is the algorithm and silo. X axis is target variable and method. AA position 
admission, ANP position on delivery, AGESTA nr of pregnancies, APARA​ nr of born babies, GS blood group, 
GR Robson group, TG pregnancy type, TP delivery type, TPEE spontaneous delivery, TPNP actual type of 
delivery, V followed physician, VCS followed physician primary care, VNH followed physician hospital delivery.
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Figure 2.   Heatmap of regression algorithm and silo vs target variable and model type. Value is the MAE mean 
of all 10 experiments. The y axis is the algorithm and silo. X axis is target variable and method. IA mother age, 
IGA weeks on admission, IMC BMI, NRCPN nr of consultations, PI weight start of pregnancy, SGP weeks on 
delivery.
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Data availability
The data that support the findings of this study are available from the source hospitals but restrictions apply to 
the availability of these data, which were used under license for the current study, and so are not publicly avail-
able. Data are however available from the authors upon reasonable request and with permission of the hospitals 
ethics committee and privacy officers. The code used to generate the results and graphics is available here: https://​
github.​com/​joofio/​Evalu​ating-​distr​ibuted-​learn​ing-​algor​ithms-​on-​real-​world-​healt​hcare-​data.

A: Data dictionary

Initial Description

IA Mother age

GS Blood group

PI Weight at the beginning of pregnancy

PAI Weight on admission

IMC BMI

CIG If smoker during pregnancy

APARA​ Number of previously born babies

AGESTA Number of pregnancies

EA Number of previous eutocic deliveries with no assistance

VA Number of previous eutocic deliveries with help of vacuum extraction

FA Number of previous eutocic deliveries with help of forceps

CA Number of previous C-sections

TG Pregnancy type (spontaneous, in vitro fertilisation...)

V If the pregnancy was accompanied by physician

NRCPN Number of prenatal consultations

VH If the pregnancy was accompanied by a physician in a hospital

VP If the pregnancy was accompanied by a physician in a private clinic

VCS If the pregnancy was accompanied by a physician in a primary care facility

VNH If the pregnancy was accompanied by a physician in the hospital the delivery was made

B Pelvis adequacy

Table 4.   Model comparison: distributed versus centralised and local for every test. Each cell is the total of 
distributed model when compared with centralised model (row) and local model (column) across different 
silos and outcome variable. (> for better, = for non significance and < for worse). The first example is 72 which 
means that 72 iterations of the distributed SGD was better than the centralised and local. Comparison was 
done with 2-sample T-test with a α of 0.05 (% in parenthesis). SGD stochastic gradient descent, NN neural 
network, KNN K-nearest neighbors, ADA AdaBoost, NB naive Bayes, DT decision tree.

Distributed > local Distributed = local Distributed < local Row total

SGD

Distributed > centralised 72 (7.0) 14 (1.4) 9 (0.8) 95 (9.3)

Distributed = centralised 14 (1.4) 17 (1.7) 6 (0.6) 37 (3.6)

Distributed < centralised 11 (1.1) 11 (1.1) 17 (1.7) 39 (3.8)

NN

Distributed > centralised 44 (4.3) 44 (4.3) 7 (0.7) 95 (9.3)

Distributed = centralised 2 (0.2) 33 (3.2) 2 (0.2) 37 (3.6)

Distributed < centralised 0 (0) 17 (1.7) 22 (2.1) 39 (3.8)

KNN

Distributed > centralised 16 (1.6) 0 (0) 1 (0.1) 17 (1.7)

Distributed = centralised 10 (1) 2 (0.2) 1 (0.1) 13 (1.3)

Distributed < centralised 72 (7) 28 (2.7) 41 (4) 141 (13.7)

ADA

Distributed > centralised 64 (6.2) 25 (2.4) 22 (2.1) 111 (10.8)

Distributed = centralised 5 (0.5) 12 (1.2) 10 (1) 27(2.6)

Distributed < centralised 10 (1) 6 (0.6) 17 (1.7) 33 (3.2)

NB

Distributed > centralised 51 (5) 19 (1.9) 34 (3.3) 104 (10.1)

Distributed = centralised 5 (0.5) 19 (1.9) 12 (1.2) 36 (3.5)

Distributed < centralised 3 (0.3) 4 (0.4) 24 (2.3) 31 (3)

 DT

Distributed > centralised 27 (2.6) 0 (0) 1 (0.1) 28 (2.7)

Distributed = centralised 8 (0.8) 0 (0) 0 (0) 8 (0.8)

Distributed < centralised 97 (9.5) 12 (1.2) 26 (2.5) 135 (13.2)

Total 511 (49.8) 263 (25.6) 252 (24.6) 1026 (100)

https://github.com/joofio/Evaluating-distributed-learning-algorithms-on-real-world-healthcare-data
https://github.com/joofio/Evaluating-distributed-learning-algorithms-on-real-world-healthcare-data
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Initial Description

AA Baby’s position on admission

BS Bishop score

BC Bishop score cervical consistency

BDE Bishop score fetal station

BDI Bishop score dilatation

BE Bishop score effacement

BP Bishop score cervical position

IGA Number of weeks on admission

TPEE If the delivery was spontaneous

TPEI If the delivery was induced

RPM If there was a rupture of the amniotic pocket before delivery began

DG Gestational diabetes

TP Delivery type

ANP Baby’s position on delivery

TPNP Actual type of delivery

SGP Pregnancy weeks on delivery

GR Robson group
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