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Classification performance 
assessment for imbalanced 
multiclass data
Jesús S. Aguilar‑Ruiz 1,3* & Marcin Michalak 2,3

The evaluation of diagnostic systems is pivotal for ensuring the deployment of high‑quality solutions, 
especially given the pronounced context‑sensitivity of certain systems, particularly in fields such as 
biomedicine. Of notable importance are predictive models where the target variable can encompass 
multiple values (multiclass), especially when these classes exhibit substantial frequency disparities 
(imbalance). In this study, we introduce the Imbalanced Multiclass Classification Performance (IMCP) 
curve, specifically designed for multiclass datasets (unlike the ROC curve), and characterized by its 
resilience to class distribution variations (in contrast to accuracy or F β‑score). Moreover, the IMCP 
curve facilitates individual performance assessment for each class within the diagnostic system, 
shedding light on the confidence associated with each prediction—an aspect of particular significance 
in medical diagnosis. Empirical experiments conducted with real‑world data in a multiclass context 
(involving 35 types of tumors) featuring a high level of imbalance demonstrate that both the IMCP 
curve and the area under the IMCP curve serve as excellent indicators of classification quality.

Measuring the accuracy of diagnostic  systems1 is an old challenge. In general, a suitable measure of performance 
must be independent of event frequencies and decision criteria. In machine learning, the classification task deals 
with assigning a class label to a given observation. To do that, a classification model has been previously learned 
with training data. On many occasions, the distribution of samples in known classes is skewed, i.e. the proportion 
of examples that belong to each class is unequal. Class distribution refers to the relative frequency of examples 
of each class in the dataset, and when these frequencies are not comparable, it is named class imbalance. In the 
recent scientific literature, we find numerous examples of binary class imbalance (breast cancer  prediction2,3; 
cognitive impairment in Parkinson’s  disease4) and multi-class imbalance (31 cancer type  classification5; iden-
tification of Parkinson’s disease  subtypes6; microbiome-based cancer  diagnostics7; prostate cancer  detection8; 
dementia subtype  prediction9; Gleason grading of prostate  cancer10; severity of COVID-19  pneumonia11; faecal 
microbiome-based multi-class disease  diagnosis12).

Class imbalance is another challenge for classification assessment, as most of the evaluation metrics are 
sensitive to data distribution, i.e. to class sizes. Let D be a dataset with n samples and two classes (Positive and 
Negative). The confusion matrix is represented by a 2× 2 matrix with True Positives (TP), False Negatives (FN), 
False Positives (FP), and True Negatives (TN), as illustrated in Fig. 1 (left: Confusion Matrix). The sum of all 
positives (negatives) is P (N). The matrix can be normalized by dividing by the number of samples n = P+N , 
and all the values can be expressed in terms of the True Positive Rate (TPR), the False Positive Rate (FPR) and 
the proportion of positives ( π ), as shown in Fig. 1 (right: Normalized Confusion Matrix). Thus, the sum of all 
positives is nπ , and of all negatives is n(1− π) . Both sensitivity (TPR) and specificity ( 1− FPR ) are not influ-
enced by class distribution ( π ). However, the accuracy measure contains π in its mathematical expression, i.e. it 
is highly dependent on class bias, so it is exclusively valid for balanced datasets. Despite the uselessness of accu-
racy for imbalanced  data13, it is still the most popular evaluation measure for classification. Precision, another 
well–known measure that calculates the ratio between true positive predictions and all the positive predictions, 
is also sensitive to class skew (expressed in function of the normalized confusion matrix, it also includes π ), 
and thus F β–score14,15, which combines precision and sensitivity, also has the same drawback. Therefore, any 
measure without the presence of π , like the geometric mean between sensitivity and specificity (G-measure)16, 
is not influenced by the imbalance between the classes.

In order to mitigate imbalance in datasets two main techniques are approached: under-sampling and over-
sampling. Under-sampling17–20 means reducing the size of the data to equal the size of the minority (lowest 
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frequency) class, which is never recommended as it loses information for training the classifier. Instead, over-
sampling attempts to match the size of all classes to that of the most frequent class, so it does not lose information 
but it has to generate new samples for the underrepresented classes. This generation can be natural (copies of 
existing samples) or synthetic (completely new samples from the existing ones). The application of any resampling 
technique would likely lead to different classification performance, trying to improve the performance before 
resampling. However, resampling techniques are only focused on the training phase, when the classification 
model learns. During the testing phase the imbalance will still be present, so the performance metrics must be 
able to manage it properly. For instance, it would not be correct to apply resampling before cross-validation; the 
right method would be applying cross-validation and for each training set apply resampling, keeping the test 
set with the original class distribution. Somehow, modifying the class distribution for the test phase would be 
equivalent to altering the reality that the classifier is going to face and, therefore, the performance results would 
be adulterated.

Among the best known sampling techniques,  SMOTE21 has gained popularity. It generates new minority 
class objects as weighted average of closest neighbors (from the same minority class), and the results during the 
training phase support its good acceptance in the scientific  community22–26. Nevertheless, the performance of 
the classifier—even with better quality learning due to training balance—still depends on the imbalance of the 
test set. Consequently, classification performance measures should not be sensitive to class bias.

The ROC  curve27–29 represents the relation between the FPR and the TPR, and illustrates the diagnostic ability 
of a binary classifier as its discrimination threshold is varied from the confusion matrix. The curve shows a solid 
idea of the behavior of a classifier and allows to compare several classifiers in one image for the same dataset. 
Most importantly, the ROC curve, unlike the accuracy or F-measure, only depends on the FPR and TPR, which 
are not class biased. Given its usefulness, the ROC curve has been used in many  works30–34, although it has an 
enormous limitation: it can only be used in binary contexts, i.e. two-class datasets. In case of multi-class datasets, 
the most common approach is to represent the class of interest (positive) against the others (negative), but it does 
not contribute to understanding the global performance of the classifier. In case of equal importance of classes, 
the smoothed solution named macro-average is to average all the ROC curves (one-versus-rest for each class), 
but this compromises its natural insensitivity to class skew. On the contrary, the micro-average approach takes 
into account the proportion of every class (aggregating the contributions of all classes), given more importance 
to larger classes and, therefore, assigning greater values when the largest class performs better. However when 
the imbalance is significant, both approaches lead to very different curves with refutable interpretations.

The ROC curve has been proven that is an excellent measure of classification  performance35,36, as it conveys 
more information than many scoring metrics by visualizing the performance of the classifier by a curve instead 
of providing a single scalar value. However, the ROC curve also provides a comparable measure of performance: 
the area under the ROC curve (AU(ROC)). There exist approaches for the AU(ROC) in the context of multi-
class classification, based on averaging pairwise comparison of  classes37 or on the use of K-dimensional space 
to compute the volume of the ROC  surface38–41, being K the number of class labels. However, none of these 
approaches provide a graphical representation.

In general, when the binary case (positive and negative) is extended to the multi-class case, the class imbalance 
becomes more prominent. Recently, the Multi-class Classification Performance (MCP) curve solved the problem 
of showing in a single curve the performance of multi-class datasets for any  classifier42. However, the MCP curve 
is also sensitive to class bias. In this work, we introduce the Imbalanced Multi-class Classification Performance 
(IMCP) curve, as a graphical representation of the performance of the classifier, which is independent of the class 
distribution, and also the Area Under the IMCP curve (AU(IMCP)), as a scalar measure of prediction quality. 
Results show the usefulness of both the IMCP curve and the AU(IMCP), firstly with synthetic data to highlight 
the features of the IMCP curve when analyzing data with class imbalance, and secondly with real–world data to 
provide an example in which common performance metrics fail at determining the quality of classifiers.

Rationale
The hypothesis is that a consistent assessment metric should calculate classification performance independently 
of the distribution of the K classes, so that overrepresented classes have no further impact on performance results. 
To show the impact of the degree of imbalance on classification performance, four synthetic 3-class datasets have 
been generated, using exactly the same generating functions for each dataset, but varying the distribution of 
classes exponentially. Figure 2 (left) shows the four datasets, denoted by the letters A, B, C, and D. The datasets 
have two variables—to simplify visualization on the X and Y axes—and three classes, denoted by the colors blue, 
red and yellow.

Figure 1.  Confusion matrix as a function of true positive rate (TPR), false positive rate (FPR) and the positive 
class ratio ( π).
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To provide different degrees of imbalance an exponential methodology supported by a base and a generator 
has been designed. The number of samples of each dataset is obtained by multiplying the base by the generator, 
which is based on the tuple (1, 2, 3) raised to an exponent e that controls the degree of imbalance. The base has 
been set to 100, and the exponent takes the values 0 (dataset A), 2 (dataset B), 4 (dataset C), and 6 (dataset D). 
Figure 2 (right) shows the distribution of the tuples for the values of the exponent. To generate the values of each 
variable a normal distribution has been used, X,Y ∼ N(µ, σ 2) , locating the centers at (0,0), (10,0) and (5,5), 
for blue, red and yellow classes, respectively, and slightly varying the deviations from 1 to 3 to make the shapes 
somewhat different (ellipses). This method is very reproducible and extensive to more classes, as there is only 
need to define the base and the exponent for setting the number of examples for each dataset.

The entropy of each dataset is a good indicator of the class imbalance, ranging from 1 (dataset A: zero imbal-
ance) to 0.264 (dataset D: huge imbalance). The worst case is when e = 6 , which provides an imbalance of 0.13% 
(blue), 8.06% (red), and 91.81% (yellow), visible in Fig. 2 (dataset D). Also, a stratified 10-fold cross-validation 
was used to compute the accuracy of two well–known techniques: Naïve-Bayes (NB) and Random Forests (RF), 
which have been chosen to facilitate replicability. These results are also shown in Fig. 2 (lower right corner), and 
as expected, the accuracy of both methods increases as the imbalance becomes greater (or entropy smaller). In 
short, there has been an unfair relative improvement in accuracy of 3.8% and 4.6% due to an imbalance for NB 
and RF, respectively, when transitioning from dataset A to D.

The impact of imbalance on classification performance is obvious when metrics sensitive to class bias are 
used. To avoid that negative impact, a novel method is introduced: the Imbalanced Multi-class Classification 
Performance (IMCP) curve. The IMCP curve is based on the MCP  curve42, which was introduced to deal 
with multi-class datasets, unlike the ROC curve, which can only visualize the performance of binary (2-class) 
datasets. While the IMCP curve will be described in detail in the next section, Fig. 3 displays the results for the 
datasets outlined in Fig. 2. These results indicate that the increasing imbalance negatively impacts the classifier’s 
performance, in contrast to accuracy, which actually benefits from the heightened imbalance. In summary, as 
class imbalance increases, the results of the IMCP curve worsen for both NB and RF. This decline is also evident 
in the area under the IMCP curve, indicated at the lower left corner of each graph. This is in contrast to the 
accuracy depicted in Fig. 2, which exhibits remarkable sensitivity to class imbalance. In summary, classifiers 
that are trained with progressively higher degrees of class imbalance and then tested under the same imbalanced 
conditions tend to display a misleading increase in classification accuracy. However, when observing the IMCP 
curve and its corresponding AU(IMCP) under these identical conditions, a decreasing trend becomes apparent. 
This suggests that the latter metric more accurately captures the diminishing ability to correctly identify samples 
from the less frequent classes.

Figure 2.  Samples with different distribution of classes.
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Method
For the sake of clarity, the method has been organized into five steps, as depicted in Fig.  4. Let 
D = {ei | e = (x, y), x ∈ X

m, y ∈ Y, i = 1, 2, . . . , n} be a dataset with n samples, which belong to a m-dimen-
sional feature space and have a corresponding outcome y in the space Y . When | Y|= 2 we say that it is a 2-class 
(binary) classification problem; otherwise, when | Y|> 2 , we say that it is a multi–class classification problem. 
For simplicity, let us assume that Y = {1, 2, . . . ,K} (set of class labels).

The first step is a common evaluation of classifiers by means of any validation technique. In this case, it is 
visualized a hold-out, but it should ideally be a stratified �-fold cross-validation (commonly, � = 10 ), which 
would provide test results of the same size that the original dataset.

The second step provides two matrices: the prediction probability and the true probability matrices. The 
true probability of sample ei , denoted by t(ei) , can be encoded as a K-dimensional one-hot vector, in which all 
the values are 0 except for one 1 at the position k, that satisfies yi = k (following the indicator function, for all k, 
t(ei)k = 1yi=k ), being k ∈ Y . The true probability matrix is in fact the binarization of the target variable (class). 
Consequently, the sum of all the values of the vector is 1. The prediction probability of sample ei , denoted by p(ei) , 
is also a K-dimensional vector, whose values are provided by the classifier as output probabilities of belonging to 
class k ∈ Y . Most classification techniques (e.g. Naïve-Bayes, Decision Trees, Random Forests, Neural Networks, 
etc.) automatically provide the prediction probability vector for each test sample. This vector contains the prob-
abilities that the test sample belongs to each class, so assuming there are K classes, the dimensionality is K, and 

Figure 3.  Evolution of the IMCP curve with increasing class imbalance for Naïve-Bayes (left) and Random 
Forests (right) classifiers, maintaining the data distributions. Class proportions of datasets A, B, C, and D are 
described in Fig. 2.

Figure 4.  Description of the methodology for any classifier: from data to the IMCP curve.
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the sum of all the probabilities is 1. From these two matrices that contain the prediction and true probabilities 
of each test sample, we could apply probability distribution distances in order to know how far is the prediction 
probability from the true probability.

The third step calculates two values for each test sample, located at columns � and � in matrix M : � is associ-
ated with the X-axis and � with the Y-axis. Column � calculates the width δi associated to each test sample ei in 
the X-axis, that depends on the class distribution (examples belonging to overrepresented class will have smaller 
values). The sum of all δi is 1, but the sum of all δi associated with each class is the same, i.e., it is exactly 1K  , being 
K the number of classes. In order to observe the quality of the classifier prediction, a distance function d between 
the two discrete probability distributions must be applied to each sample e ∈ D . Let d be a distance function 
between two distributions t and p, such as d : {0, 1}K × [0, 1]K → [0, 1] . The Hellinger  distance43,44 is a metric 
oriented to probability distributions, and has been chosen due to its interesting  properties42. Let P = [p1, . . . , pK ] 
and Q = [q1, . . . , qK ] be two discrete probability distributions, the Hellinger distance is defined as:

Column � first calculates the Hellinger distance H(p(ei), t(ei)) between the prediction probability and the true 
probability of each sample ei . If the distance between the true probability t(ei) and the prediction probability 
p(ei) of a sample ei is close to 0, then the classifier is making a good prediction for ei ; otherwise, when it is close 
to 1, the prediction is bad. Good or bad predictions are not necessarily correct and incorrect, respectively. The 
distance is a quality measure of the classification performance, so it would be possible to provide at the same 
time a not small distance associated with a correct prediction (e.g., for a 3-class problem, when t=[1,0,0] and 
p=[0.35,0.33,0.32], H(t,p)=0.639—very high value—and the prediction is correct). This fact provides interesting 
insights to address the uncertainty of classifiers, since even when they correctly assign the class the value of the 
highest probability might not be far from the others.

The distance value is very important because it informs about how far the prediction is from the true obser-
vation for each sample. The value ϕi = 1−H(p(ei), t(ei)) can be interpreted as the probability that the classifier 
correctly assigns the observed class label to the test sample ei . If ϕi is zero, then the distance H between prediction 
and true probabilities is maximum (one). On the contrary, if ϕi is one, then the distance H is zero, which means 
that prediction and true probabilities are equal, i.e., the prediction probability vector is a one–hot vector similar 
to the true probability vector.

The fourth step prepares the values of columns � and � to be visualized as X-axis and Y-axis, respectively. 
First, the matrix M is increasingly sorted according to column � , providing �′ . Once obtained the matrix 
M

′ = (�′,�′) , the AU(IMCP) can be easily calculated following the expression provided in Fig 4 (Step 4).
The new values in the �′ column are then used to calculate the values for X-axis of the IMCP curve, while 

the values of Y-axis are the same as in �′.
The fifth step draws the points of the (X, Y) matrix in the unit square, as well as visualizes the area under the 

IMCP curve. The first point ( x = 0 ) and the last point ( x = 1 ) retain the first and last values of the �′ column, 
i.e. these will be the points (0,ϕ1) and (1,ϕn).

In order to highlight the influence of the class distribution in the dataset, Fig. 5 shows a synthetic example 
in which the importance of each class is balanced, while varying proportionally the importance of each sample. 
The role of δ′ , ϕ′ , x and y in the method is illustrated in Fig. 5 (e.g., for position i = 12 in (X, Y)).

The features of the IMCP curve provide interesting aspects related to the interpretability and explainability 
of predictive models:

• Upper bound: the ideal classifier should display the function y = 1 , that has AU(IMCP) = 1 , which means 
that for each test sample the distance between prediction probability and true probability is zero, i.e. the 
probability of assigning the true class is always one.

• Lower bound: the worst case is the function y = 0 , which has AU(IMCP) = 0 , which means that for each 
test sample the prediction probability assigned to the true class is zero.

• Correct classification threshold ( η ): the Hellinger distance can be expressed as a function of the symmet-
ric Bhattacharyya coefficient (BC)45, where BC(P,Q) =

∑K
j=1

√
pjqj  and H(P,Q) =

√
1− BC(P,Q) ; if 

BC >
√
0.5 then the predicted class will be the true class. Therefore, if ϕ > 1− η = 1−

√

1−
√
0.5 = 0.459 

then the test sample will be correctly satisfied (the opposite is not true).
• Incorrect classification threshold ( θ ): the threshold for a correct prediction for a K-classification problem 

( K > 1 ) is θ =
√

1− 1√
K

 . Therefore, if ϕ < 1− θ then the test sample will not be correctly classified.
• Uncertainty: correct and incorrect classification can be defined in terms of the ϕ values. However, there is an 

interval of uncertainty [1− θ , 1− η] in which all the prediction probabilities for each class are below 0.5, so 
the difference between the best and the second best values could be very close to zero.

For the ROC curve, only curves above the diagonal line joining the points (0,0) and (1,1) make sense (better 
than random), since below this it is interpreted as “worse than random”. The IMCP curve uses completely the 
domain of X and Y, i.e., the unit square. Therefore, neither the ROC and the IMCP curves, nor the areas under 
such curves, are comparable.

The potential of the approach and its features will be discussed in detail in the case of study.
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A case of study: tumor type prediction
To showcase the impact of imbalance on multi-class datasets, recent leading research on cancer prediction has 
been  selected46. The work focus on the application of several machine learning techniques to predict the tumor 
tissue of origin in cases of advanced-stage metastatic tumors. This is a very important issue as a significant num-
ber of patients have no conclusive diagnoses (typically via histopathology), and they suffer from very limited 
therapeutic options as primary cancer type classification is a key factor in guiding treatment decisions.

The original dataset collects information from a wide range of molecular methods, and includes 4131 features 
extracted for classifying 35 cancer types based on driver/passenger and simple/complex mutations. A total of 
6756 samples from the Hartwig Medical Foundation (metastatic tumors) and the Pan-Cancer Analysis of Whole 
Genomes consortium (primary tumors) were gathered. Univariate feature selection was performed to provide 
463 variables, and 48 new features were generated for regional mutational density profiles by means of non-
negative matrix factorization. In summary, the dataset used henceforth has 6756 samples, 511 features, and a 
target variable (tumor type) with 35 possible discrete values (biliary, breast, cervix, liver, pancreas, thyroid, etc.).

The multi-class nature of the dataset limits the use of some classification performance measures (e.g., the 
ROC curve), and its large imbalance impacts the results. Out of the 35 tumor types, the most frequent is Breast, 
with 996 samples (14.7%), and the least frequent is Skin_Carcinoma, with 25 samples (0.4%). The seven most 
frequent tumors account for more than 58%, and the seven least frequent tumors do not together reach 3.5%. 
In fact, 16 tumor types have less than 1% of the total, and 23 tumor types have less than they should to become 
a balanced dataset (2.86%).

It is important to note that the aim of this research is not to analyze the methodology proposed  in46, but to 
show that, in general, good accuracy, precision, or sensitivity results for imbalanced multi-class datasets should 
be studied in more depth because they could lead to optimistic conclusions. In this study, the random forest (RF) 
technique with default parameters was chosen, as  in46. However, isotonic regression to calibrate the probabilities 
produced by the RF ensemble was not necessary, as the one-versus-rest strategy to discriminate one cancer type 
versus other cancer types transforms the multi-class classification into multiple binary classifications, which is 
inappropriate for evidencing weaknesses in imbalanced multi-class classification performance measures.

Stratified 10-fold cross-validation was used to compute several classification performance measures. The 
accuracy, which has been shown to be class-biased, was 0.924, which would indicate that the diagnostic system is 
of sufficient quality. However, an analysis of the confusion matrix revealed that for 12 tumor types the precision 
(also class skewed) was less than 0.90 (for the tumor type Sarcoma_Other was 0.68), and for 13 tumor types the 
sensitivity was less than 0.90 (for the tumor type Lung_SmallCell was 0.32). In tumor prediction, which guides 
subsequent medical treatments, some of these low precision and sensitivity values are not acceptable.

More revealing than accuracy, precision or sensitivity, is the IMCP curve (Fig. 6a), which is based on the 
diagnostic system’s ability to make predictions based on the probability that the prediction is close to reality, i.e., 
that it does not exhibit uncertainty that has to be decided by some voting method. While a perfect diagnostic 
system would achieve an area under the IMCP curve of 1, the system based on RF covers only 57.8% of the ideal 
classification performance. The IMCP curve measures, in essence, how close these values are to 1, i.e. to assigning 
a cancer type with a probability close to 1. The larger the area under the IMCP curve, the lower the uncertainty 
of the predictive system. Therefore, what appeared to be a sound diagnostic system (accuracy = 0.924 ) may not 
be so reliable (AU(IMCP)= 0.578).

Figure 5.  The IMCP curve for a simple example with three imbalanced classes (2 samples of class A, 5 of class 
B, and 12 of class C.
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The incorrect ( θ ) and correct ( η ) classification thresholds provide the landscape of certainty for the dataset: 
[0, 0.088) for incorrect classifications (72 samples: 1.06%), [0.088, 0.459] for uncertainty (1023 samples: 15.14%), 
and (0.459, 1] for correct classifications (5661 samples: 83.79%). These values, related to the percentage of 
samples, are very illustrative because are delimiting the proportion of samples that could be correctly classified 
( [83.79%, 98.93%] ). However, confidence in prediction can vary substantially. This fact is of extreme importance 
in some predictive systems, such as in the case of tumor diagnosis.

The IMCP curve also allows to analyze in depth the behavior of the classifier for each class, which is very 
useful for experts, as they could re-evaluate the prediction provided by the system, and possibly supplement it 
with other factors in case of low reliability. To explain the nature of the predictions, Fig. 6b illustrates the best 
(Skin_Melanoma) and the worst (Biliary) classification performances in a graph showing all samples for only 
both classes, in green and red, respectively (the same values displayed in the IMCP curve in Fig. 6a). Most of the 
predictions for Skin_Melanoma are above 1− η within the green area (correct classification). However, most of 
the predictions for Biliary are between 1− θ and 1− η , within the yellow area (uncertainty). This means that most 
of the predictions were unreliable, in the sense that the classifier could assign to other tumor types prediction 
probabilities lower but very close to the predicted tumor.

The values of ϕ′ for each class are also depicted in box-plots, illustrating that the medians are 0.26 (Biliary) 
and 0.91 (Skin_Melanoma). The Q3 value for Biliary (0.34) indicates that 75% of the predictions are extremely 
low. In contrast, the Q1 value for Skin_Melanoma (0.83) indicates that 75% of the predictions are excellent. In 
summary, the reliability of the diagnostic system is not similar for all the tumor types. The expert may have high 
confidence in a prediction for Skin_Melanoma, but very low confidence in a prediction of Biliary.

In total, 7 out of 37 tumor types had medians below 1− η (more than 50% of samples under the correct 
classification threshold), and only 19 out of 35 had the Q1 value above 1− η (more than 75% of samples over 
the correct classification threshold). An overall conditional classification performance approach is depicted in 
Fig. 7, in which it is easy to detect the diagnostic ability of the system for each type of tumor. The information 
provided by the figure is very valuable from a diagnostic system quality perspective, as it not only highlights the 
tumor types for which the system is reliable but also identifies the tumor types for which predictions should be 
examined more carefully by experts in the field. In addition, the conditional classification performance results 
identify to which classes greater efforts should be applied, from a data analytics perspective, to improve the 
quality of predictions.

In summary, a thorough analysis of the quality of the diagnostic system, in principle with excellent indicators 
(accuracy = 0.924, average precision = 0.908, average sensitivity = 0.866, mean F 1-score = 0.877), reveals that 
these measures are very sensitive to imbalance, as the classification performance provided by the area under the 
IMCP curve is 0.578, mainly due to low confidence on predictions for some tumor types.

The analysis performed with this dataset is extensible to any dataset. It extracts interesting aspects about the 
overall quality of the diagnostic system and also about the classification performance for each class. The method 
is useful for multi-class datasets, and especially suitable for more than two classes (where the ROC curve is not 
applicable). Furthermore, it is insensitive to class imbalance, which adds further benefit to the examination of 
the performance of predictive systems.

Figure 6.  The IMCP curves for the tumor dataset.
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Conclusion
Classification models are designed to predict unseen events from what has been learned during training. The 
quality of the model indicates how good the prediction would be in the future, and can be measured in different 
ways. Several important performance measures are not valid for multi-class datasets (e.g., the ROC curve), and 
many of them fail at analyzing imbalanced datasets (e.g., the accuracy or the F β-score). The aim of this work is 
to provide a novel method, named the IMCP curve, that graphically represents the classification performance 
for both multi-class and imbalanced datasets. The usefulness is broad, particularly in biomedicine, as most of 
the gene expression datasets are imbalanced (e.g., proportion of cancerous versus healthy samples) and many of 
them include more than two target-categories (e.g., subtypes of tumors).

The IMCP reveals that some quality measures could be optimistic, as they provide overall values of classifica-
tion performance of the diagnostic system without taking into account the class bias. Moreover, the approach 
facilitates an in-depth conditional analysis of the diagnostic system, firstly by identifying which classes perform 
better (high confidence), and secondly by allowing further research on specific target classes that perform worse 
(high risk).

The promising scenario opened by the IMCP curve requires further analysis and study of the properties in 
relation to the most commonly used metrics in the scientific literature, since prediction probabilities have much 
more potential than the confusion matrix.

Data availability
The datasets used in the “Rationale” section are publicly available at https:// github. com/ adaa- polsl/ imcp/ tree/ 
main/ tests with the following names: Dataset A: A _exp-0.base-100.csv Dataset B: B _exp-2.base-100.csv Dataset 
C: C _exp-4.base-100.csv Dataset D: D _exp-6.base-100.csv. A “Case study” data are taken from: Nguyen et al.46. 
This dataset is public, as indicated in the “Data availability” section of the aforementioned reference and is freely 
accessible for academic purposes (Supplementary Information). To generate the IMCP curves, all experiments 
used the Python package publicly available at https:// github. com/ adaa- polsl/ imcp.
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