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Diagnostic implications 
of ubiquitination‑related gene 
signatures in Alzheimer’s disease
Fei Xu 1,6, Wei Gao 2,3,6, Miao Zhang 3*, Fuyue Zhang 3, XiaoFei Sun 2, Bao Wu 4, Yali Liu 5, 
Xue Li 3 & Honglin Li 3*

The purpose of this study was to explore the diagnostic implications of ubiquitination‑related gene 
signatures in Alzheimer’s disease. In this study, we first collected 161 samples from the GEO database 
(including 87 in the AD group and 74 in the normal group). Subsequently, through differential 
expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes 
(DEGs) and 806 Ubiquitin‑related genes (UbRGs). After taking the intersection, we obtained 128 
UbR‑DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR‑DEGs, 
we identified the main molecular functions and biological pathways related to AD. Furthermore, 
through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and 
pathways within both the AD and normal groups. Further, using lasso regression analysis and cross‑
validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we 
constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR‑
DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed 
that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. 
Finally, we constructed a lncRNA‑miRNA‑mRNA (competing endogenous RNA, ceRNA) regulatory 
network for AD based on six RUbR‑DEGs, further elucidating the interaction between UbRGs and 
lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular 
pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted 
therapy in the population.
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Alzheimer’s disease (AD) is a type of dementia which is characterized by continuous cognitive dysfunction and 
behavioral defects that occur in old age and the presenile  period1. The clinical signs are visuospatial impairment, 
apraxia, aphasia, agnosia, memory impairment, abstract thinking and computing impairment, and personality 
and behavior  change2. The occurrence of AD constitutes about 50% to 70% of dementia in old  age3. The associa-
tion of environmental and lifestyle, genetic factors is caused in part by particular genetic alterations that result in 
 AD4. Currently, AD-treated drugs are not available. In clinical practice, combined drug therapy, careful nursing 
and non-drug therapy are often used to decrease symptoms and slow down the disease  development5.

Ubiquitination is a cellular process wherein a low molecular weight protein, ubiquitin mediates the pro-
tein classification within the cell. This process involves a sequence of specialized enzymes that choose tar-
geted protein molecules and facilitate specific modifications. The enzymes involved in ubiquitination such as 
ubiquitin-stimulating enzymes, degrading enzymes, and binding  enzymes6. Ubiquitination takes place a crucial 
part in various aspects of protein biology, such as metabolism, localization, function, degradation and regula-
tion. However, it also participates in the control of cell cycle, apoptosis, multiplication, transfer, differentiation, 
transcriptional regulation, gene expression, damage repair, transmission of signal, inflammation, immunity and 
nearly all vital life  activities7,8. Furthermore, ubiquitination exhibits a strong association with the occurrence 
of tumor and cardiovascular  diseases9,10. Consequently, owing to its significant contributions to the field of 
biochemical research, ubiquitination has emerged as a novel focal point for the investigation and advancement 
of novel pharmaceuticals.
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Many neurodegenerative diseases like AD, are a collection of harmful and associated-prone proteins. These 
associated proteins are found to be ubiquitinated in many neurodegenerative diseases. Even though hazardous 
proteins are instantly deteriorated by proteolytic systems in healthy individuals, any systems perturbation caused 
by genetic differences, lifestyle or aging leads to a collection of hazardous protein composites and the outbreak 
of different diseases like neurodegenerative diseases. The significant targeting signal for proteolytic systems is a 
Ubiquitination. Ubiquitin-conjugating enzyme E2I (Ubc9) ligates small ubiquitin-related modifier (SUMO) to 
target proteins, resulting in changes of their localization, activity, or stability. Sumoylation of amyloid precursor 
protein (APP) was reported to be associated with decreased levels of beta amyloid (Abeta) aggregates, suggesting 
that sumoylation may play a role in the pathogenesis of AD. The association between genetic variations of Ubc9 
gene (UBE2I) and late-onset Alzheimer’s disease. Sporadic Alzheimer’s disease (SAD) is the leading neurode-
generative disease. With the evolution of next-generation DNA sequencing technology, various inherent risk 
factors have been illustrated. Studies have shown that more single nucleotide variants (SNVs) have been found 
in genes that exist on the X chromosome from SAD patients. These variations were validated using the strictest 
method through the Chain termination method. In loci associated ubiquitin pathway (ATXN3L and UBE2NL) 
two of the inherent variants were established and have not already been elucidated as SAD inherent risk factors. 
However, the pathogenesis of AD is not fully  understood11. Therefore, we speculated that ubiquitination-related 
genes (UbRGs) have certain diagnostic significance for AD and are involved in controlling the incidence and 
growth of AD. In this study, we validated our hypothesis through comprehensive bioinformatics analysis to 
further understand the molecular mechanism of AD.

Materials and methods
Sample data acquisition and collation
The Gene Expression Omnibus (GEO) database, established and managed by the National Center for Biotech-
nology Information (NCBI), encompasses a diverse range of gene expression data, including second-generation 
sequencing data, chip sequencing data, single-cell sequencing data, and  more12. We selected and downloaded 
dataset GSE5281 from the GEO database, which included 87 AD samples and 74 normal samples. DEGs are 
processed using the “R” language “limma” package and calculate adjusted P values and | logFC|. For GSE5281 
gene expression profiles, P values < 0.05, and |log (FC)|  > 1were selected as the cutoff  values13.

Differential gene expression analysis between AD and normal groups
First, we input the transcriptome expression matrix and the grouping list of samples into R software. If a gene had 
multiple rows of expression values, its average value was taken, and the expression value was log2-transformed. 
Next, we cited R package limma to calculate the gene expression difference between the AD group and normal 
group through the function Wilcox and obtained the differentially expressed genes (DEGs)14. Finally, the results 
of differential expression analysis were output and visualized via R packages pheatmap and ggplot2. The screening 
conditions were |log2 (fold change, FC)|  > 0.585 and adjusted P-value < 0.0515.

Screening of ubiquitination‑related DEGs (UbR‑DEGs)
Through the above differential expression analysis, we obtained DEGs between groups. Then we read the result 
file of the difference analysis and the list of ubiquitination-related genes (UbRGs) from the database iUUCD 
2.0 (http:// iuucd. biocu ckoo. org/)16 and took the intersection between DEGs and UbRGs to obtain UbR-DEGs. 
Furthermore, we utilized the R package VennDiagram to generate a Venn diagram to visualize the UbR-DEGs17. 
Additionally, we employed the R packages limma and pheatmap to visualize the expression patterns of these 
UbR-DEGs15. Fisher’s exact test is used to analyze the common genes between DEGs and UbRGs. To exclude 
non accidental occurrences, paired t-tests were used. When P < 0.05, it is considered statistically significant.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment anal‑
yses of UbR‑DEGs
The initial step involved the conversion of UbR-DEGs names to R-recognized gene IDs using the R package org.
Hs.eg.db18. Subsequently, we conducted GO enrichment analysis to explore UbR-DEGs and AD-related genes, 
including 27 biological processes (BP), cellular components (CC), and molecular functions (MF). This analysis 
was performed using the R packages cluster Profiler and enrichplot. Following this, the enrich KEGG function 
was employed to identify the key pathways associated with the molecular mechanisms of AD by enriching the 
pathways of UbR-DEGs. The outcomes were then visualized using the R packages enrichplot and  ggplot219,20. A 
significance level of P-value < 0.05 was adopted for statistical significance.

Gene set enrichment analysis (GSEA) between AD and normal groups
GSEA is used to evaluate the distribution trend of genes from a predefined gene set in the gene list ranked with 
phenotypic relevance, to judge its contribution to  phenotype21. We used the R packages limma, org. Hs.eg.db, 
cluster Profiler, and enrichplot to first read and collate the expression parameter information of all transcriptome 
genes and the customized gene set file. We then performed GSEA enrichment analyses (including functional 
and pathway enrichment analyses for AD and normal groups). Finally, we visualized the results by enrichment 
 plots22,23. A P-value less than 0.05 was considered as significant.

Identification of hub genes
First, we read the list file of UbR-DEGs, extracted the expression levels of UbR-DEGs according to the transcrip-
tome gene expression matrix, and obtained the grouping information of samples. The “glmnet” package from R 
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software (version 3.6.3) was used to perform the LASSO Cox regression model analysis. The “lambda.1se” value, 
which was determined by tenfold cross-validation, was set as the lambda for model  fitting24.

Logistic regression model
We divided the GSE5281 dataset into a training set and an independent testing set to construct a logistic regres-
sion model. The samples were classified into 2 types, the control group and the AD sample group. DEG expres-
sion was included as continuous predictive variables, and the sample type was regarded as categorical responsive 
values to establish the logistic regression model by using glm package in R software. The screened variables 
by the stepwise regression method were adopted to reconstruct the model, and the p value of each predictive 
variable was calculated. The variables with p value ≤ 0.05 were chosen for model reconstruction and subsequent 
 analysis25,26. Receiver operating characteristic (ROC) curves for 1, 3, and 5 years were plotted using area under 
the curve (AUC) calculated. Finally, the validation set was utilized to assess predictive accuracy and performance 
of UbR-DEGs the model.

Construction of lncRNA‑miRNA‑mRNA (ceRNA) regulatory network based on RUbR‑DEGs
To determine the interaction between lncRNAs and RUbR-DEGs (mRNAs), we combined lncRNAs and mRNAs 
data with miRNAs data respectively to construct lncRNA-miRNA-mRNA (ceRNA) regulatory networks. First, 
we used TargetScan, miRanda and miRDB databases to predict the target genes (RUbR-DEGs) of miRNAs. If 
RUbR-DEGs were considered to be the target gene of a specified miRNA in the three databases at the same time, 
we would retain the RUbR-DEGs for subsequent  analysis27,28. Then, we used the Perl script to determine the 
interaction between miRNA and lncRNA through the database spongeScan and obtained the network relation-
ship file and node attribute  file29. Finally, we used the software Cytoscape to visualize the interaction between 
lncRNA-miRNA-mRNA and construct the ceRNA regulatory  network30.

Results
GSE5281 dataset clinical characteristics
Transcriptomics data from previously published literature curated in Gene Expression Omnibus (GEO) data-
base was searched for Alzheimer’s disease and only those GEO datasets were selected where the differential 
gene expression analysis could be done by the GEO2R tool for gene expression data. We have analysed the gene 
expression datasets with GSE IDs—GSE5281. Represent the pooled data sets from the brain regions: Entorhinal 
cortex, hippocampus, medial temporal gyrus, posterior cingulate, superior frontal gyrus, and Primary visual 
cortex. Detailed information of age, number, and gender of subjects is provided in Table 1.

Identification of DEGs between AD and normal groups
By conducting differential expression analysis, a total of 3450 DEGs were identified between the AD and normal 
groups. Among these DEGs, 1733 were up-regulated and 1717 were down-regulated, as depicted in Fig. 1a. Fur-
thermore, Fig. 1b displayed a heat map illustrating the top 50 up-regulated and down-regulated DEGs.
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Identification of UbR‑DEGs in AD
A total of 3450 DEGs were identified through differential expression analysis, while 806 UbRGs were obtained 
from the iUUCD 2.0 database. Subsequently, 128 genes were identified as the overlapped genes, referred to as 
UbR-DEGs (Fig. 2a). The number of UbR-DEGs upregulated is 73, and the number of downregulated is 55.The 
differential expression of these UbR-DEGs between the AD and normal groups is depicted in Fig. 2b.

GO and KEGG enrichment of 128 UbR‑DEGs in AD
Through the examination of GO and KEGG enrichment of the above 128 UbR-DEGs, we have identified the 
principal molecular functions and biological pathways of ubiquitination-related signatures to associate with AD. 
As depicted in Fig. 3a, the GO enrichment analysis of these UbR-DEGs revealed that the functions of BP primar-
ily encompass proteasome-mediated ubiquitin-dependent protein catabolic process, protein polyubiquitination, 
protein modification by small protein removal, protein deubiquitination, and protein autoubiquitination, among 
others. The functions of CC were found to be closely linked to the ubiquitin ligase complex, cullin-RING ubiq-
uitin ligase complex, spindle, SCF ubiquitin ligase complex, and sarcomere, among others. The functions of MF 
were predominantly enriched in ubiquitin-like protein or ubiquitin-protein transferase activity, ligase activity, 
and ligase binding, among others. In the KEGG enrichment analysis, the pathways identified by UbR-DEGs 
were primarily focused on Ubiquitin mediated proteolysis, Cell cycle, NOD-like receptor signaling pathway, 
Epstein–Barr virus infection, Shigellosis, Huntington disease, Notch signaling pathway, Viral life cycle-HIV-1, 
TGF-beta signaling pathway, and JAK-STAT signaling pathway, among others (Fig. 3b).

Function and pathway enrichment in AD and normal groups
Through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways 
within both the AD and normal groups. Figure 4a illustrates the detection of significant enrichment in GO func-
tions, specifically Cell–cell junction organization, Epithelial cell development, Positive regulation of vasculature 
development, Regulation of epithelial cell differentiation, and Regulation of vasculature development, within 
the AD group. Conversely, the normal group exhibited significant enrichment in Atp synthesis coupled electron 
transport, Mitochondrial translation, Inner mitochondrial membrane protein complex, Mitochondrial protein-
containing complex, and Organellar ribosome, as depicted in Fig. 4b. Furthermore, Fig. 4c demonstrates that 
within the AD group, the KEGG pathway was significantly enriched in Cytokine cytokine receptor interaction, 
Ecm receptor interaction, Focal adhesion, Notch signaling pathway, and Pathways in cancer. On the other hand, 
the normal group exhibited significant enrichment in Alzheimer’s disease, Huntingtons disease, Oxidative phos-
phorylation, Parkinsons disease, and Proteasome, as shown in Fig. 4d.

Table 1.  GSE5281 dataset.

Total number of samples

Sex Age

Male Female Male Female

AD samples (87) 50 37 68–97 years 70–95 years

Normal samples (74) 53 21 63–85 years 73–102 years

Figure 1.  The volcano plot (a) and heatmap (b) of DEGs expressed between the AD and normal groups. Red 
dots or squares indicate upregulated DEGs; Green dots or blue squares indicate downregulated DEGs.
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Construction and validation of diagnostic models for AD based on six RUbR‑DEGs
The least absolute shrinkage and selection operator (LASSO) regression was used to avoid overfitting and 
screened 6 RUbR-DEGs (KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L) (Fig. 5a,b). The differential 
expression of these RUbR-DEGs across various clinical phenotypes, such as age, gender, and type, was illustrated 
in Fig. 5c. Furthermore, we calculated the risk score for each sample using the risk calculation formula provided 
in the supplementary document (S1_Risk score.xls). In addition, the ROC curve demonstrated that all six RubR-
DEGs exhibited an area under the ROC curve (AUC) exceeding 0.650. and the AUC value of the diagnostic 
model’s parameter risk score equalled 1.000 (Table 2, Fig. 5d), suggesting that the constructed diagnostic model 
possessed exceptional precision and dependability in discerning patients with AD.

The lncRNA‑miRNA‑mRNA (ceRNA) regulatory network based on six RUbR‑DEGs in AD
Using the databases TargetScan, miRanda and miRDB and custom Perl scripts, we obtained 221 mRNA-miRNA 
relationship pairs (see Supplementary document S2_mRNA-miRNA.xls). Then we determined 269 miRNA-
lncRNA relationship pairs using the database spongeScan and Perl script (see Supplementary document S3_
miRNA-lncRNA.xls). Finally, we used the software Cytoscape to construct the lncRNA-miRNA-mRNA (ceRNA) 
regulatory network (Fig. 6), which included 207 lncRNAs, 198 miRNAs, 6 mRNAs (RUbR-DEGs), and 411 
interaction pairs.

Discussion
AD is the most common type of elderly dementia, which can impair patients’ thinking, memory, and independ-
ence, affecting their quality of life, and even leading to  death31,32. The exact cause of AD has not yet been eluci-
dated. Some studies have found that the typical histopathological changes of AD are amyloid protein deposition 
and neuronal fiber tangles in the  brain33, and various theories are attempting to explain this change, including 

Figure 2.  Identification of UbR-DEGs in AD. (a) The Venn diagram of overlapped genes (UbR-DEGs). (b) The 
heatmap of UbR-DEGs expressed between the AD and normal groups. Red squares indicate upregulated genes 
and blue squares indicate downregulated genes.
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β-Amyloid protein waterfall theory, tau protein theory, neurovascular hypothesis,  etc34–36. In the end, the nerve 
cells in the patient’s brain "silently" atrophy or even die, or there are abnormalities in signal transmission between 
cells, leading to cognitive impairments such as memory, language, computation, and  behavior37. Research has 
found that AD is the result of a combination of genes, lifestyle, and environmental factors, partially caused by 
specific genetic  changes4. Ubiquitination of proteins is involved in the development of many diseases, including 
neurodegenerative diseases, such as  AD38,39. Therefore, this study attempts to use comprehensive bioinformat-
ics methods to elucidate the role of UbRGs in AD and their specific molecular functions and construct a risk 
diagnosis model for AD based on RUbR-DEGs.

In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 
in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we 
obtained 3450 DEGs and 806 UbRGs. After taking the intersection, we obtained 128 UbR-DEGs. This indicated 
that these UbR DEGs play a key role in the occurrence and development of AD.

Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the 
main molecular functions and biological pathways related to AD. The GO enrichment analysis revealed that 
the functions are found to be closely linked to protein polyubiquitination, modification, deubiquitination and 
autoubiquitination, the ubiquitin ligase complex, spindle, sarcomere, ubiquitin-like protein or ubiquitin-protein 
transferase activity, ligase activity, and ligase binding, among others. In the KEGG enrichment analysis, the 
pathways identified by UbR-DEGs were primarily focused on Ubiquitin mediated proteolysis, Cell cycle, NOD-
like receptor signaling pathway, Notch signaling pathway, TGF-beta signaling pathway, and JAK-STAT signaling 
pathway, among others. Furthermore, through the utilization of GSEA analysis, we have gained insight into the 
enrichment of functions and pathways within both the AD and normal groups. Among them, GO functions were 
mainly enriched in Cell–cell junction organization, Epithelial cell development, Positive regulation of vasculature 
development, Regulation of epithelial cell differentiation, and Regulation of vasculature development, within 
the AD group. And KEGG pathways were significantly enriched in Cytokine cytokine receptor interaction, Ecm 
receptor interaction, Focal adhesion, Notch signaling pathway, and Pathways in cancer.

Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes 
associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the 
identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. A Gómez Ramos et al.40 
sequenced the Exon group of brain samples from sporadic AD (SAD) patients and normal controls. They found 
more single nucleotide variations (SNV) in the genes on the X chromosome of SAD patients, and verified these 
variants through Sanger sequencing. Two new gene variants were found in the loci related to the ubiquitination 
(UBE2NL and ATXN3L). UBE2NL is another protein related to the ubiquitination-de-ubiquitination process. It 
is also expressed in brain and it participates in parkin-dependent mitophagy, a process that can be dysregulated 
in AD. ATXN3L is a deubiquitinating enzyme expressed in brain and associated with Machado-Joseph disease. 
ATXN3L and UBE2NL were among the genes in the X chromosome showing SNVs present in all the DNA sam-
ples from SAD patients. These two genes are expressed in the brain and they have functions that could be related 
to SAD pathology. We compared the present data with previous loci detected in GWAS studies., We found that 
a SNV at ATXN3L, locus chrx: 13337059, has been already reported (http:// www. gwasc entral. org/). It has been 
found that ubiquitin carboxyl-terminal Hydrolase L1 (UCH-L1) is a kind of deubiquitinating enzyme, which 
plays a regulatory role in proteins that target Proteasome  degradation41. UCH-L1 is highly expressed in neurons 
and has been shown to promote cell viability and maintain neuronal integrity. The expression of UCH-L1 can 

Figure 3.  Bubble plots for GO (a) and KEGG (b) enrichment analyses. The horizontal axis represents the 
number of enriched genes, and the vertical axis displays the name of pathways.

http://www.gwascentral.org/
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salvage synaptic dysfunction and memory deficits in AD model  mice42,43. Wang et al.44 found that the inflamma-
tory stimulator lipopolysaccharide and TNF-α activate NF-κB signaling by inhibiting its transcription leading to 
decreased UCH-L1 gene expression, suggesting that inflammation may impair the normal function of neurons 
through the interaction of NF-κB and UCH-L1. The loss of UCH-L1 activity coupled with the gain of proteinopa-
thy function are linked to neurodegeneration such as Parkinsonism and Alzheimer’s disease. In addition, the ROC 
result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients.

Finally, we constructed a lncRNA-miRNA-mRNA (ceRNA) regulatory network for AD based on six RUbR-
DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. This has important reference 
significance for us to deeply understand the molecular pathogenic mechanism of AD and develop potential 
drug targets.

However, this study also has certain limitations that need to be addressed in future research. For example, 
due to the limitations of database samples, it is mainly based on ubiquitination-related genes, lacking additional 
information on other genes involved in AD, molecular pathways, and how they are more generally related to 
ubiquitin, and lacking additional integrated datasets for extensive gene ontology analysis. In addition, there is 
a lack of subgroup analysis of AD pathological subtypes and more detailed clinical parameters to improve the 
construction of risk diagnosis models. At the same time, more samples need to be collected to confirm our find-
ings through wet experiments.

Figure 4.  Plots of GSEA analysis. GO functional enrichment of AD (a) and normal group (b). KEGG pathway 
enrichment of AD (c) and normal group (d).
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Figure 5.  Screening of six RUbR-DEGs in AD. The deviance profile (a) and coefficient profile (b) of RUbR-
DEGs screened by LASSO regression. (c) A heatmap of six RUbR-DEGs expressions between clinical 
phenotypes. Blue squares indicate deregulated genes; red squares indicate upregulated genes. (d) ROC curves 
of six RUbR-DEGs and Risk score. AUC is the area under the curve. Abscissa, 1-specificity (false positive rate). 
Ordinate, sensitivity (true positive rate).

Table 2.  Six RUbR-DEGs genes and their functions.

Gene name Function Impact AD or neurodegeneration

KLHL21 KLHL21 directly interacts with Aurora B and mediates the ubiquitination of 
Aurora B in vitro

Ubiquitin-dependent regulation of COPII coat size and function. Damage to CNS 
collagen is evident in disease and with aging and has major implications for driv-
ing neurodegeneration through its impact on inflammatory pathways in particular

WDR82 WDR82 is a negative regulator of virus-triggered type I IFNs pathway through 
mediating TRAF3 polyubiquitination status and stability on mitochondria

WDR82 mediates the polyubiquitination state and mitochondrial stability of 
TRAF3. The miR-590-5p inhibited the Traf3/MAPK P38 pathway, which means it 
plays an antiapoptotic role in AD

DTX3L
DTX3L is a multi-domain E3 ubiquitin ligase in which the N-terminus mediates 
protein oligomerisation, a middle D3 domain mediates the interaction with 
PARP9

DTX3L (Deltex E3 ubiquitin ligase 3 L) is an E3 ubiquitin ligase, a member of the 
deltex family. Stress response silencing by an E3 ligase mutated in neurodegenera-
tion

UBTD2 UBTD2 is a ubiquitin (Ub) domain-containing protein first identified from 
dendritic cells and is implicated in the ubiquitination pathway

Six independent studies have shown that UBTD2 overlaps with abnormal DNA 
methylation genes in neurogenesis

CISH CISH, participates within a multi-molecular E3 ubiquitin ligase complex, which 
ubiquitinates target proteins

Promote the E3 ubiquitin ligase to clear β-amyloid and hyperphosphorylated Tau 
by activating the PI3K/Akt signaling pathway in the hippocampus of AD mice, 
which is efficient in ameliorating pathological phenotypes 

ATXN3L ATXN3L is a deubiquitinating enzyme expressed in the brain
ATXN3L was among the genes in the X chromosome showing SNVs present in all 
the DNA samples from SAD patients. The gene is expressed in the brain and they 
have functions that could be related to SAD pathology
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The dataset used and/or analyzed during this study may be granted by contacting the corresponding author.
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