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Establishment and validation 
of an artificial intelligence‑based 
model for real‑time detection 
and classification of colorectal 
adenoma
Luqing Zhao 1,4, Nan Wang 2,4, Xihan Zhu 1, Zhenyu Wu 1, Aihua Shen 1, Lihong Zhang 3, 
Ruixin Wang 1, Dianpeng Wang 2* & Shengsheng Zhang 1*

Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed 
to develop a computational model for real-time detection and classification of colorectal adenoma. 
Computationally constrained background based on real-time detection, we propose an improved 
adaptive lightweight ensemble model for real-time detection and classification of adenomas and 
other polyps. Firstly, we devised an adaptive lightweight network modification and effective training 
strategy to diminish the computational requirements for real-time detection. Secondly, by integrating 
the adaptive lightweight YOLOv4 with the single shot multibox detector network, we established the 
adaptive small object detection ensemble (ASODE) model, which enhances the precision of detecting 
target polyps without significantly increasing the model’s memory footprint. We conducted simulated 
training using clinical colonoscopy images and videos to validate the method’s performance, 
extracting features from 1148 polyps and employing a confidence threshold of 0.5 to filter out low-
confidence sample predictions. Finally, compared to state-of-the-art models, our ASODE model 
demonstrated superior performance. In the test set, the sensitivity of images and videos reached 
87.96% and 92.31%, respectively. Additionally, the ASODE model achieved an accuracy of 92.70% 
for adenoma detection with a false positive rate of 8.18%. Training results indicate the effectiveness 
of our method in classifying small polyps. Our model exhibits remarkable performance in real-time 
detection of colorectal adenomas, serving as a reliable tool for assisting endoscopists.

Keywords  Adaptive computer-aided diagnostic, Colorectal adenoma, Artificial intelligence, ASODE model, 
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Colorectal cancer (CRC) is one of the most common types of cancer and accounts for approximately 9.4% of 
cancer-related mortality worldwide, the incidence and mortality of CRC in the world ranked third and second, 
respectively, in 20201,2 Adenoma is a precursor to colorectal cancer, and the development of adenoma into cancer 
is a common mechanism. Adenomas are frequent neoplasm found during colonoscopic screening. Detection 
and removal of adenomas through colonoscopy would be beneficial in preventing the development of CRCs 
and reducing cancer-related mortality3,4. The adenoma detection rate (ADR) is a well-established indicator for 
evaluating the capability of screening colonoscopies to detect adenomas. Theoretically, a higher ADR is more 
conducive to the early prevention of CRC​5. Indeed, a 1.0% increase in ADR has been associated with a 3.0% 
decrease in interval CRCs6. However, most polyps detected during colorectal screening are diminutive in size 
(< 5 mm), and may therefore be easily missed by endoscopists. Recent studies have demonstrated a high degree 
of accuracy in detecting colorectal polyps by leveraging artificial intelligence (AI)-based models7,8.
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Computer-aided diagnosis (CAD) technology can be separated into two categories: polyp detection and 
polyp classification based on the purpose of the application9–11. Some studies have adopted a binary classification 
method for polyp detection based on the presence or absence of polyps, achieving high sensitivity, which is a 
desired outcome12,13. Additionally, researchers have analyzed the statistical significance of characteristics such as 
the size, type, and location of polyps after detection through deep learning, further enhancing the understand-
ing and accuracy of polyp detection methodologies14. For example, Rodriguez-Diaz et al. shown that the CAD 
model is capable of accurately distinguishing neoplastic from non-neoplastic polyps and provides a histology 
map of the spatial distribution of localized histologic predictions along the delineated polyp surface15. In addi-
tion, several studies have shown that appropriate polyp classification models can help endoscopists improve 
the ADR16,17. Ultimately, we believe that merely detecting the presence of polyps still falls short in practical 
applications. Appropriate classification could provide additional assistance to physicians in their assessments. 
Otherwise, a pathological examination is still required to determine whether the detected polyps are adenomas 
or other types of tumors.

Building on the success of AI-based models in achieving high accuracy for colorectal polyp detection, the 
next step involves refining these technologies to further enhance their diagnostic capabilities. Models such as the 
convolutional neural network (CNN) and You Only Look Once (YOLO) are trained on large and hard-to-obtain 
datasets and achieve a sensitivity above 90% and false positive rate (FPR) below 10%18,19. Sensitivity measures the 
ability of the model to correctly detect adenomas, and a good polyp classification model should have a sensitivity 
close to 1. The diagnosis of non-adenomatous polyps as adenomas increases the FPR. Indeed, increased sensitivity 
comes at the cost of increased FPR. False positive (FP) cases result in patients undergoing unnecessary surgery 
and are a burden on public health resources20. Research has achieved improvements in detection accuracy and 
real-time performance by integrating CSPNet, the Mish activation function, DIoU loss, and transformer blocks 
into the YOLOv4 architecture, and optimizing with data augmentation and ensemble learning21. Further research 
has embedded the internal structure of CSPNet into ResNet as the backbone network module for YOLOv3 and 
YOLOv4, providing a richer combination of gradients to enhance detection performance22. These modular 
enhancements provide a wealth of ideas for improving model quality. Additionally, incorporating the concept 
of ensembles into variants of the YOLO model opens up greater possibilities for enhancing model performance. 
For instance, integrating ResNet, GoogLeNet, and Xception into a powerful model for predicting from video 
frames extracted from colonoscopies significantly enhances the performance of CAD-based real-time polyp 
detection systems23. Such models trained on competition datasets or continuously acquired images have desir-
able classification results. However, we have shown that without specialized transfer learning, the performance of 
the same model on real hospital datasets may be substantially reduced. In addition, the limitations of computer 
performance make it impossible to train complex models.

Building on previous achievements and the potential of AI-based real-time detection and the shortcomings 
of existing research, this paper aims to further enhance the technical feasibility in this field. Our innovation 
encompasses four aspects. Firstly, we introduce an adaptive lightweight network modification and an effective 
training strategy that reduces the demand for computational resources in real-time detection. This approach 
overcomes the limitations of computer resources, allowing for predictions on low-performance devices with lim-
ited memory. Secondly, building on the lightweight network, we integrate the adaptive lightweight YOLOv4 with 
the SSD network to form an adaptive small object detection ensemble model (ASODE model), which improves 
the accuracy of target polyp detection without significantly increasing model memory. Thirdly, we extensively 
compare our model with the state-of-the-art YOLOv7 and YOLOv8 models, as well as the Proposed YOLOv3 
and Proposed YOLOv4 models introduced in the same field, and our ASODE model outperforms these models 
in evaluation metrics. Finally, our model not only visualizes prediction boxes centered on polyps, classifications 
of polyps, and the confidence levels under predicted classifications but also runs at a speed of over 45 frames per 
second on ordinary devices, providing diagnostic assistance for endoscopists during real-time examinations to 
improve the adenoma detection rate (ADR).

Materials and methods
Dataset and preprocessing
Colonoscopy images were obtained from the Digestive Disease Center of Beijing Hospital of Traditional Chinese 
Medicine, Capital Medical University using an EVIS LUCERA CF-HQ290I endoscopy system (Olympus Optical 
Co, Ltd.) Polyp images were subjected to binary classification and separated into two groups containing either all 
clinically classified adenomas or other types of polyps, including hyperplastic and inflammatory polyp, etc. Our 
rationale for using binary classification was based on two factors. First, from a pathological perspective, since 
adenoma is a high-risk factor for CRC, our main goal was to distinguish adenomas from other types of polyps. 
Second, our previous model showed that multi-classification of polyps reduced sensitivity. The specific reasons 
and visualization results can be viewed in Supplementary Fig. S1.

The entire datasets were captured and labeled by endoscopist blinded to the subjects, which contains 1436 
images and 25 videos. We divide all image datasets into training, validation, and test sets. The test set accounts for 
one fifth of all images, with the remaining images divided into a ratio of 9:1 for training and testing sets. Images 
were categorized into white light imaging (WLI) and narrow band imaging (NBI) depending on the lens type, 
with a resolution of 566 × 478. Videos were obtained by NBI imaging with a resolution of 720 × 576, and 50.04 
frames per second. All datasets were preprocessed identically before being passed to the model. First, we scaled 
the images to a fixed size of 416 × 416. Then, normalization of the whole image was performed. These operations 
were performed automatically before the picture was passed into the model, thereby allowing application of the 
same model to data from different sources without further adjustment. Several raw colonoscopy images from 
the dataset are shown in Supplementary Fig. S2.
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Adaptive lightweight YOLOv4
The YOLOv4 model was proposed by Alexey et al. Similar to the YOLO family, the YOLOv4 algorithm innova-
tively treats object recognition as a regression problem, focusing on the probability of each object appearing in 
segmentation frames within an image. YOLOv4’s output includes the probability, center coordinates, and box 
size for each detected object. Because the entire detection pipeline comprises a single network, it allows for the 
direct end-to-end optimization of detection performance. Compared to two-stage object detection algorithms, 
optimizing the network structure is more straightforward with YOLOv4. The design of YOLO achieves efficient 
object detection, offering a new paradigm for single-stage object detection methodologies. Although single-stage 
detection is faster, it may exhibit a slight decrease in accuracy.

The real-time application success of the YOLOv4 model has been enhanced by the improvement of several 
YOLOv4 algorithms that have reduced the computational cost, improved the accuracy, and reduced the inference 
time24. Compared with previous one-stage networks, YOLOv4 achieves a balance between speed and precision. 
However, adjusting the YOLOv4 backbone network and increasing or decreasing the number of convolutional 
layers only serves to improve the predictive ability of a specific dataset25. In addition, the inference time of the 
model is constrained by the number of parameters and device memory. Thus, based on the structure of the 
YOLOv4 network, we have proposed a strategy that reduces the number of parameters without reducing the 
network accuracy.

We utilized depthwise separable convolutions to reduce the number of standard convolutions. Unlike standard 
convolutions, depthwise separable convolutions operate in two steps. In the first step, a 3 × 3 convolution with 
a depth of one was applied to each channel of the input feature map. We regarded the output feature map as a 
whole, and the following convolutions were operated on the whole. Next, a 1 × 1 convolution was performed on 
the feature map with a convolution kernel equal to the number of output channels, and a convolution kernel 
depth equal to the input feature map26. The application of depthwise separable convolutions reduced the required 
parameters of the original convolutions by more than eight times, with only a slight decrease in accuracy. From 
the lightweight perspective of the model, we replaced all 3 × 3 standard convolutions in the backbone network 
and path aggregation network (PANet) with depthwise separable convolutions. Next, we replaced the path 
aggregation network (CSPNet) structure in the backbone network with an inverted residual structure. Inverted 
residuals divide the input feature map into two branches. One branch generates convolution layers on the input, 
then directly stacks it with the other branch. Inverted residuals are different from the residual network of CSPNet, 
and multiply the input feature map. The expansion factor determines the degree of feature map extraction. Here, 
we adopted the same parameter settings described in the MobileNetv2 convolutional neural network, which were 
our requirements for model stability. The convolution layers of inverted residuals were replaced by depthwise 
separable convolutions. Next, the same value as the expansion factor was used for dimensionality reduction. 
Finally, the manipulated branch was stacked with the branch representing the residual. The improved structure 
enriches the gradient information in the network output. The input and output of the inverted residual structure 
are referred to as bottlenecks. Since the internal convolutions are one-time tensors, then the total memory occu-
pied by the network training is only determined by the bottleneck. We chose this structure to improve memory 
efficiency while slightly improving accuracy.

Restricting the upper boundary of the activation function allows the network to have good numerical reso-
lution even when the accuracy of mobile devices is low. We replaced the unbounded Mish activation function 
adopted by YOLOv4 backbone with ReLU6 activation function. In addition, we removed the last activation func-
tion of the inverted residual body. Previous studies have shown that ReLU6 activation after depthwise separable 
convolution operation results in information loss27.

NetAdapt is an automated approach to network optimization that progressively reduces the resource con-
sumption of pre-trained networks while ensuring maximum accuracy28. A key advantage of using NetAdapt is 
that it can automatically pre-train deep neural networks for mobile platforms, depending on different resource 
budgets. NetAdapt constructs a hierarchical lookup table and measures the resource consumption of each layer in 
advance to determine the number of convolutional kernels and channels reserved in a given resource-constrained 
layer.

Our work significantly enhances YOLOv4’s efficiency for real-time detection by firstly employing depthwise 
separable convolutions, reducing computational load while maintaining accuracy. Secondly, we optimized the 
model’s structure with an inverted residual mechanism, improving memory efficiency and gradient richness. 
Thirdly, we adopted the ReLU6 activation function for better performance on low-precision devices. Finally, 
we utilized NetAdapt for automated, resource-aware network optimization, ensuring optimal accuracy within 
resource constraints. These innovations collectively streamline YOLOv4 for practical, efficient, and accurate 
real-time applications.

Single shot multibox detector (SSD)
Single shot multibox detector (SSD) is a popular and powerful target detection network29. We applied VGG-16 
in the initial basic network to improve the performance of predicting polyps smaller than 5 mm. The SSD model 
encapsulates localization and detection in the forward operation of the network, thereby significantly improving 
the training speed of the network.

VGG-16 serves as the backbone network in the single shot multibox detector (SSD) model, playing a crucial 
role in feature extraction for efficient object detection. As the backbone, VGG-16 is responsible for processing 
input images and extracting hierarchical features of varying scales. The network’s deep architecture, consisting 
of 13 convolutional layers with small 3 × 3 kernels, allows it to capture intricate details in the input images. In the 
context of SSD, these features are essential for detecting objects of different sizes. The uniformity of VGG-16’s 
structure aids in the extraction of high-level semantic information, contributing to a more robust representation 
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of the input scene. The features obtained from VGG-16 are then used in multiple layers of the SSD model to 
generate predictions for object classes and bounding box coordinates. This integration leverages the strengths of 
VGG-16, facilitating accurate and efficient object detection across various scales within a single pass.

Ensemble learning
In clinical practice, most colorectal polyps are less than 5 mm. When small polyps are not detected and magni-
fied during colonoscopy, the possibility of missed diagnosis increases. Such issues may be addressed through 
the development of models that improve the ability to detect small polyps, for example, by drawing prediction 
boxes as soon as the camera “flies by”. Ensemble learning allows both the lightweight network and small object 
detection ability to be taken into account30.

The single shot multibox detector (SSD) excels at detecting small objects, largely thanks to its data process-
ing and transformation capabilities. Considering its rapid detection and deep feature extraction abilities, we 
integrated these strengths with those of the adaptive lightweight YOLOv4 to mitigate its minor shortcomings, 
achieving a balance between training speed and accuracy. For ease of understanding, we have named this inte-
grated model the adaptive small object detection ensemble model (ASODE model).

The ASODE model was trained by the AdaBoost algorithm, then the model predictions were combined 
using the soft voting method. Soft voting enhances the accuracy and robustness of the ASODE model by assign-
ing greater weight to more reliable models, thus leveraging the collective information from multiple models to 
improve overall performance and generalization capability. It ensures the integration of predictions from multiple 
base models based on the probability or confidence scores for each class, guaranteeing that the final prediction 
takes into account the confidence level of each model.

The architectural framework of our model segment has been meticulously crafted, marking a pivotal juncture 
where we transition to delineate the comprehensive operational methodology of the model, as illustrated in Fig. 1.

Initially, in pursuit of constructing a robust dataset, we embarked on collecting authentic colonoscopy imagery 
from patients potentially afflicted with colorectal polyps. This raw data underwent a rigorous process of scaling 
and augmentation, ensuring a rich dataset poised for deep learning.

Subsequently, these processed images are introduced into the ASODE model, a sophisticated amalgamation 
of adaptive lightweight YOLOv4 and SSD, designed for optimal efficiency and accuracy. The detailed structure 
of Adaptive lightweight YOLOv4 is shown in Fig. 2A. To refine the model’s discernment capabilities further, the 
images undergo a deep learning training phase. This phase leverages three stringent feature extraction thresh-
olds to ensure the preservation of only the most relevant prediction boxes, thereby filtering out any potentially 
misleading data.

Ultimately, the process generates a prediction box for each target, each meticulously classified and assigned a 
probability score. These are then seamlessly superimposed onto the original images, providing an intuitive visual 
representation of the model’s inferences. This end-to-end methodology not only epitomizes the cutting-edge in 
AI-driven diagnostic tools but also significantly enhances the interpretability and applicability of our model in 
real-world clinical settings.

Training techniques
In the polyp detection system, input images were divided into an S × S grid. If the center of the bounding box 
for a detected object fell into a grid cell, then that grid cell was responsible for calculating the classification con-
fidence and predicting the bounding boxes. Define p indicates the polyp that appears in the detection box. Pr

(

p
)

 
represents the probability that a polyp of a specific category exists within the predicted bounding box. IoUtruth

pred  
represents the Intersection over Union (IoU) between the predicted box and the ground truth box. Therefore, 
the confidence(p) on the left side of the equation takes into account both the classification probability of polyps 
and the accuracy of the corresponding bounding box, and the product of the two is the confidence in predicting 

Figure 1.   Visualization process of computer-aided clinical diagnosis.
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the existence of a certain type of polyps in the bounding box. The confidence of an object in the bounding box 
correspond to:

where B is the predicted box and Bgt is the target box. If no polyps were present in the predicted box, then Pr
(

p
)

 
should be zero. Otherwise, the confidence scores were equal to the intersection over union ( IoU  ) between the 
predicted box and the target box according to (2). Bounding box predictions depended on 4 parameters, bx , by , 
bw , and bh , which are defined in (3)–(6) below:

where bx and by are the predicted center coordinates of the bounding box, bw and bh are the predicted width 
and height of the bounding box. Specifically, tx and ty are the network’s output predictions for the center of the 
bounding box relative to the grid cell. They are constrained between 0 and 1 after being processed through the 
sigmoid function σ(·) , ensuring that the center coordinates of the bounding box fall within the current cell. 

(1)confidence
(

p
)

= Pr
(

p
)

× IoUtruth
pred

(2)IoU =

∣

∣

∣

∣

B
⋂

Bgt

B
⋃

Bgt

∣

∣

∣

∣

(3)bx = σ(tx)+ cx

(4)by = σ
(

ty
)

+ cy

(5)bw = pwe
tw

(6)bh = phe
th

Figure 2.   Example of the model training process. (A) Adaptive lightweight YOLOv4. (B) Parameters meaning 
and location of a bounding box. (C) Example of data augmentation.
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cx  and cy  are the top-left coordinates of the cell assigned to the current bounding box. tw and th represents the 
network’s output predictions for the width and height of the bounding box in log scale. pw and ph are the pre-
set anchor dimensions for width and height, used to scale the predicted bounding box based on the network’s 
output. Therefore, the actual width and height are calculated by exponentiating these values and multiplying by 
the corresponding anchor dimensions. This process adjusts the predicted width and height to match the scale 
of objects as they appear in the input images, allowing the model to predict bounding boxes that closely fit the 
objects’ actual sizes. Prediction of the polyp size and location of a bounding box are shown in Fig. 2B.

A non-maximal suppression (NMS) method was used to ensure that each object was surrounded by only 
one prediction box. The highest classification confidence was reserved for each predicted box containing polyps. 
YOLO defined a confidence threshold. If the IoU  between two bounding boxes was greater than the threshold, 
then the lower confidence bounding box was eliminated. If the IoU between two bounding boxes was not greater 
than the threshold, then both bounding boxes were reserved. Thus, no redundant bounding boxes were reserved, 
and the final reserved bounding boxes were the predicted boxes.

At the end of the training process, a loss function was calculated to evaluate the predicted box. Most object 
detection algorithms use the IoU  to determine the degree of overlap between the predicted box and the ground 
target box defined by (7). However, the bounding box regression function should consider three geometric fac-
tors: overlap area, center distance and aspect ratio. CIoU loss function takes into account these factors to produce 
a fast convergence rate, which is formulated by (8).

where 
⇀

b  and ⇀bgt are the center points of the predicted box B and target box Bgt , ρ(·) is the Euclidean distance and 
c is the diagonal distansce between the minimum closure regions of two boxes. A positive trade-off parameter 
is denoted by α , and v quantifies the aspect ratio consistency according to (9) and (10).

where w and h are the width and height of the predicted box, and wgt and hgt are the width and height of the 
target box.

Evaluation metrics
The generalization performance of the model was reflected in the task requirements. We used true positive (TP), 
false negative (FN), FP, and true negative (TN) metrics to evaluate the model and determine whether the pre-
dicted box falls on the polyps. Consequently, we employed metrics such as precision, recall, F1 score, mean aver-
age precision (mAP), and accuracy to delineate the model’s performance as outlined in Eqs. (11) through (15).

We also used the mean average precision (mAP) metric, which is commonly used in target detection. The 
mAP averages AP values across all categories as shown in Eq. (14). Therefore, the performance of the model can 
be measured by a single metric

where Q is the number of polyp classifications, and AveP
(

q
)

 is the average precision for a given query.
Finally, accuracy measures the proportion of correct polyp classifications over all ground truth (GT). Here, 

ground truth refers to total number of samples, providing a benchmark for evaluating model performance.

(7)LOSSIoU = 1− IoU

(8)LOSSCIoU = 1− IoU +

⇀

b −

⇀

bgt
2

c2
+ αv

(9)α =
v

1− IoU + v

(10)v =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)

2

(11)Precision =
TP

TP + FP

(12)Recall = sensitivity =
TP

TP + FN

(13)F1 =
2× P × R

P + R

(14)mAP =

∑M
q=1AveP

(

q
)

Q

(15)Accuracy =
TP + TN

GT
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Data augmentation
We applied different data enhancement methods to the two sub-models in the ASODE model. Each training 
image is randomly sampled using a selected data augmentation method. Data augmentation simulated polyps that 
were not closely detected by the lens, images that were selected according to the overlap strategy, or a patch were 
randomly sampled from the training images. Our small dataset had a significant advantage after data enhance-
ment, because introduction of this new “extended” data augmentation technique generated more training images.

For adaptive lightweight YOLOv4, the Mosaic data augmentation algorithm was used to enrich the detection 
dataset and increase the robustness ability of the model. In the training process, four images were randomly 
selected, flipped, scaled, and the color intensity was randomly changed. Finally, an augmented image was gener-
ated by distributing the images along the four corners. The robustness of the network was increased through the 
use of a random scaling operation, which added multiple small targets. In addition, the stitched images increased 
the batch size, and improved the efficiency of batch normalization. An example of data augmentation is shown in 
Fig. 2C. The images here represent the results identified after model training. The blue boxes indicate adenomas, 
while the red boxes denote other types of polyps.

For SSD, one of the three methods of data augmentation was selected for each training image sampled patches 
with a minimum overlap of 0.1, 0.3, 0.5, 0.7, or 0.9 between the sampled image and the target polyp, or randomly 
sampled patches. Data augmentation strategies have been shown to significantly improve performance, especially 
on small datasets like PASCAL VOC30.

Training parameters
Training was divided into two phases: the freeze phase and the unfreeze phase. This setting reduces the memory 
consumption and helps to leave the local optimal solution. Adam, an adaptive learning rate optimization algo-
rithm designed specifically for training deep neural networks, was used in our model. Unlike the stochastic 
gradient descent (SDG), which may be trapped in the local optimal solution during training, Adam introduces 
the first-order momentum and second-order momentum, respectively, such that the adaptive learning rate can 
improve the optimization efficiency. Although Adam can fail to converge due to too small a learning rate in later 
iterations, this did not occur in our study. Here, the momentum was set at 0.9, and weight decay was set at 0.0005, 
while other parameters were used as previously described in the YOLOv4 study24. In the prediction process, 
we retained a predicted box with classification confidence and intersection over union (IoU) greater than 0.5, 
while the non-maximal suppression (NMS) value was 0.3. Sample sizes were not checked using power analysis 
because the present study did not report statistical analysis results for between- or within-group variables. The 
parameters of the model are shown in Supplementary Table S1.

Results
Collection and examination of the image datasets
A total of 1436 polyp images were collected from 1288 patients, with 1438 videos, ranging in age from 18 to 
89. 20% of the images were randomly selected for model validation. Training revealed that the following three 
conditions should be simultaneously met when a detection result was considered to be a TP. First, the confidence 
score should be greater than the confidence threshold. Second, predicted box classification should match clas-
sification of ground truth. Third, the IoU of the predicted box should be greater than the set threshold of 0.5. 
The three conditional prediction processes are shown in Fig. 3A.

Since our primary goal was to improve the ability to detect adenomas, additional attempts were made to 
reduce the FPR by training the original YOLOv4, adaptive lightweight YOLOv4, SSD and ASODE model, 
respectively. Detailed training and validation results including precision, recall, F1-score, and mAP are shown 
in Table 1. The Training is the result based on the training set and the validation set, and the Validation is the 
result based on the test set. In the training results, our analysis revealed improvements in the ASODE model’s 
performance metrics compared to the lightweight YOLOv4 model: precision increased by 0.45%, sensitivity 
(also known as recall) by 1.2%, F1-score by 0.84%, while mean average precision (mAP) saw a decrease of 2.15%. 
However, accuracy experienced a notable boost of 3.22%.

In the validation results, we observed notable improvements in the precision, sensitivity (recall), F1-score, 
mAP and Accuracy of the ASODE model compared to the lightweight YOLOv4 model, with increases of 1.04%, 
7.2%, 4.23%, 8.95% and 2.49% respectively. We found that the ASODE model performed better than any single 
model in each evaluation index. Although the adaptive lightweight YOLOv4 achieved a higher mAP in the 
training results, this was due to the ASODE model having a larger prediction box, which reduced the IoU when 
the SSD classifier was used. SSD is more sensitive during the detection of small objects. However, if the predic-
tion box is too small, the real polyps will be masked. Thus, we set a larger prediction box without changing the 
prediction center, so that the drawing line would not impact the endoscopists’ judgement.

Furthermore, to more clearly demonstrate the training process, we will compare the validation loss curves 
during training using the single Adaptive Lightweight YOLOv4, SSD, and the ASODE model as shown in Fig. 4. 
It is evident that all three models show a significant increase in loss around the 50th epoch, followed by a rapid 
decrease, and eventually, all decrease to relatively low levels. Among them, the Adaptive Lightweight YOLOv4 
experiences the fastest loss reduction and the lowest loss, but its loss values are the least stable; the increase in 
loss for the SSD is not as pronounced, and it does not converge to the relatively lowest loss; the ASODE model 
combines the advantages of both, with a stable loss reduction process, although the loss value obtained after 300 
epochs is only intermediate between the two single models. In general, it is difficult to determine which model 
is more suitable for colonoscopy image detection only through training loss, so it is necessary to calculate the 
index and compare the training loss comprehensively.
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Figure 3.   (A) Visualization of the conditional prediction process. The blue box represents the target box and 
the green box represents the predicted box. The probability of the IoU and polyp classification were calculated at 
the bottom of the screen. The prediction boxes that met the three threshold conditions were eventually adopted 
and presented in the screen. (B) Model prediction and associated confidence scores.

Table 1.   Training and validation results of the models. Significant values are in bold.

Model Stage Precision% Recall% F1-score% mAP% Accuracy%

YOLOv4 Training 87.08 67.55 76.15 65.06 82.79

Adaptive light-weight YOLOv4 Training 84.79 82.61 83.68 80.73 81.44

SSD Training 83.70 75.73 79.52 71.10 75.97

ASODE model Training 85.24 83.81 84.52 78.58 84.66

YOLOv4 Validation 84.88 83.80 84.16 86.49 93.91

Adaptive light-weight YOLOv4 Validation 89.25 80.76 85.15 76.36 85.80

SSD Validation 82.39 76.29 80.76 74.76 83.71

ASODE model Validation 90.29 87.96 89.38 85.31 88.29
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Polyps detected during colorectal screening that are smaller in size (< 5 mm) may be missed by an inexpe-
rienced endoscopist. In our dataset, polyps smaller than 5 mm constitute over 50% of the total (regardless of 
adenomas or other types). The results show that most of the contribution of the model performance improvement 
comes from the small polyp detection ability based on the ensemble model. In the ASODE model, if the predic-
tion box is too small, the real polyps will be masked. Thus, we set a larger prediction box without changing the 
prediction center, so that the drawing line would not impact the endoscopists’ judgement.

We then replicated two recently developed model, named Proposed YOLOv3 and Proposed YOLOv4, and 
trained it using our dataset. The training outcomes revealed that the sensitivity of the ASODE model surpassed 
the previously reported value of 82.80% in state-of-the-art methods by 1.48%22, indicating alignment with the 
objectives of computer-aided systems design. The mAP metric provided a comprehensive evaluation of the 
model’s localization and classification capabilities. Similar to our training results, despite the strategy of expand-
ing the prediction box of the ASODE model leading to a reduction in IoU, it resulted in an improvement in the 
model’s classification ability.

Although the dataset we used was small compared to other studies, our network performance exceeded that 
of recent studies22. Firstly, we replicated the current best-performing model for training and used our dataset. 
Our results showed that the network structure and parameters did not achieve the expected training effect. From 
the perspective of network weight, the number of parameters in our ASODE model was 26,151,824 compared to 
93,198,365 parameters for Proposed YOLOv3. From the perspective of evaluation index, the sensitivity of our 
ASODE model was 87.96% compared to 79.49%% and 82.80% for Proposed YOLOv3 and Proposed YOLOv4, 
respectively. The main reason for the low sensitivity of our analysis is that the model relies on large datasets for 
training and is not suitable for small datasets of real scenarios.

Secondly, we compared our proposed ASODE model with the newly introduced YOLOv7 and YOLOv8 meth-
ods, and the results on the test set were not ideal. Specifically, both YOLOv7 and YOLOv8 exhibited extremely 
high false positive rates. Although YOLOv7 and YOLOv8, like most models, have normal accuracy, meaning that 
most of the true classified polyps were detected, there was a very high rate of false positives, i.e., an explosion of 
FPR, leading to these discordant results.

Typically, the performance of the latest models would not be poor, and the cause of these results might stem 
from the limited number of images in our dataset. We cannot deny that YOLOv7 and YOLOv8 have shown 
excellent results on their released test datasets, but the applicability of the dataset still needs to be demonstrated 
through experiments like those presented in this paper31,32. Lastly, experience has shown that increasing the size 
of the training dataset is beneficial for improving the training effect. Thus, we anticipate that our model will be 
further enhanced after expanding the training dataset.

Our analysis utilized confusion matrices and False Positive Rate (FPR) data from both our models and those 
replicated to predict variations in polyp identification, as illustrated in Table 2. These assessments were conducted 
using a test set distinct from the training dataset. The ASODE model demonstrated notable accuracy rates of 
92.70% for adenomas and 81.45% for other polyps, alongside an FPR of 8.18%. This indicates that our model 
notably lowers the FPR while maintaining high sensitivity, thereby meeting clinical objectives efficiently without 
the unnecessary expenditure of resources.

Moreover, the training speed of our model notably surpassed that of conventional object detection frame-
works. Specifically, the ASODE model required only 2875 s to complete 300 epochs of training, in contrast to 
5112 s for YOLOv4 and 5955 s for the proposed YOLOv3 to achieve the same. The output data from our model 
included both the prediction box and the associated confidence score, as depicted in Fig. 3B.

Figure 4.   The comparison of the loss curves during the training process for the single Adaptive Lightweight 
YOLOv4, SSD, and the ASODE model, which highlights the strengths and weaknesses of each approach.
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Analysis of video datasets
Lens movement during clinical testing causes considerable quality bias compared to still images captured by 
endoscopists. Thus, the clinical application value of the model mainly depends on its performance during video 
detection. Here, we captured 25 real-time colonoscopy videos from 25 different patients, who were not part of 
the patient pool from which the image dataset was collected. These videos have a total duration of 3397 s and 
feature 39 genuine polyps, comprising 25 adenomas and 14 polyps of other types. Each colonoscopy examina-
tion video continuously records scenarios of polyps detected by the lens, rapid movements, and identification 
of non-polyp regions.

We conducted predictions of real-time polyp prediction using individual models and an ASODE model to 
compare their effectiveness. In the course of colonoscopy procedures, certain polyps may be overlooked or incor-
rectly identified due to a range of factors: (1) the detection system might confuse colon wrinkles and bubbles 
with polyps; (2) polyps that are recognized as the camera quickly passes by might suffer from variations in the 
confidence level of judgment and potentially in their classification due to frame changes. Illustrations of scenarios 
leading to potential misjudgments by the single SSD and ASODE models are depicted in Fig. 5A. Real-time pre-
dictions for all individual models can be provided upon request. Research indicates that augmenting the dataset 
with more negative samples could aid in diminishing the false positive rate (FPR) during prediction processes.

The ASODE model identified 42 “polyps” across 25 videos. Among these, there were 36 true polyps (23 
adenomas and 13 polyps of other types) and 6 false polyps attributed to bubbles and intestinal peristalsis. This 
indicates that 2 adenomas and 1 other type of polyp went undetected. The primary errors of the ASODE model, 
when compared to the ground truth, occurred in mistaking colon peristalsis and bubbles for polyps. When the 
lens focuses, the model automatically corrects, not affecting the endoscopist’s operational efficiency. The video 
test data revealed an accuracy of 92.31% and FPR score of 7.14%, which exceeded values reported in previous 
studies. The classification and evaluation indicators of polyps detected by video are shown in Table 3.

In addition, we found significant increases in the speed of the ASODE model in real-time prediction. The 
original video we used was 50.04 frames. The ASODE model could make predictions in almost every frame, 
with a real-time detection delay of about 20 ms, which significantly exceeded single model. A comparison 
between the single SSD and ASODE models in real-time prediction is shown in Fig. 5B. The increased speed of 
the ASODE model means that the model will not be misguided due to identification delays, and the length of 
the colonoscopy operation will be reduced.

Table 2.   Confusion matrices assessing the performance of the AI models, including the realistic performance 
of different models in the test set. Accuracy and FPR describe the predictions for adenomas and other types of 
polyps.

YOLOv4
Adaptive light-weight 
YOLOv4 SSD

Predicted class Predicted class Predicted class

Adenoma Others Adenoma Others Adenoma Others

True class

 Adenoma 145 28 165 39 151 47

 Others 26 133 20 112 32 119

Accuracy (%) 92.95% 95.00% 92.36% 77.68% 88.43% 78.41%

FPR (%) – 16.35% – 15.15% – 21.19%

Ensemble model Proposed YOLOv3 Proposed YOLOv4

Predicted class Predicted class Predicted class

Adenoma Others Adenoma Others Adenoma Others

True class

 Adenoma 178 12 124 32 130 27

 Others 9 101 26 138 20 102

Accuracy (%) 92.70% 81.45% 88.54% 78.23% 65.69% 53.43%

FPR (%) – 8.18% – 15.85% – 16.39%

YOLOv7 YOLOv8

Predicted class Predicted class

Adenoma Others Adenoma Others

True class

 Adenoma 65 55 67 62

 Others 62 43 70 53

Accuracy (%) 76.47% 68.25% 78.82% 84.12%

FPR (%) – 59.05% – 56.91%
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Discussion
CRC is a major public health problem due to its high mortality and morbidity. Over the past half century, adult 
CRC mortality and incidence have declined dramatically (51% and 32%, respectively), largely due to CRC screen-
ing and removal of adenomas33. With the in-depth research and breakthrough of computer vision deep learning, 
optical biopsy will gradually achieve accurate prediction under colonoscopy, so that targeted pathological biopsy 
and resection can be performed. Early diagnosis of cancer-prone lesions reduces the damage caused by multiple 
biopsies and medical waste.

In this study, we improved popular deep neural networks using lightweight architecture. This architecture 
significantly reduced the number of parameters from 46.01 to 26.15 Mb by using ASODE model hardly changing 
the model performance. Our model improved the confidence of polyp classification compared with state-of-the-
art models by increasing the confidence threshold from 0.25 to 0.5. From the perspective of evaluation metrics, 
an increase in confidence threshold will decrease the evaluation of the model. Even under stricter conditions 
for polyp identification, our ASODE model exhibited a sensitivity of 87.96% and an FPR of 8.18% on the test 
set comprising 288 images. This performance surpasses the sensitivity of state-of-the-art methods trained on 
our dataset (79.49%)22. In the analysis of video datasets, the sensitivity of the ASODE model was found to be 
92.31%. Our real-time polyp detection system ran with a latency of approximately 20 ms on a common personal 
computer (PC). The real-time detection of the model was over 47 frames. Thus, the ASODE model achieved a 
balance between network weight and sensitivity.

From a practical perspective, our model is not constrained by the performance of the computing platform. 
Even if the operational memory of the polyp detection device is not ideal, our model can work with compu-
tational efficiency in real-time detection for result display. The ultimate goal is to assist frontline healthcare 
professionals in determining whether polyps should be retained or excised. Lastly, our model does not require 
training on large-scale datasets, as readily available clinical datasets have already achieved improvements in the 
Adenoma Detection Rate (ADR).

There are some limitations associated with our study. For example, video datasets contain a limited number 
of polyps. If several hundred videos were used for testing, it might yield results more conducive to interpreta-
tion. In addition, the successful application of real-time detection systems needs to be tested on computers with 

Figure 5.   Representative data showing real-time polyp detection. Images in the first row are detected by a 
single SSD model, while images in the second row are detected by the ASODE model. (A) SSD prediction results 
highlight the advantages of the ASODE model after adding adaptive lightweight YOLOv4. (B) The ASODE 
model confidence is higher than that of the SSD model. A larger prediction box helps physicians to make a 
diagnosis macroscopically.

Table 3.   Analysis of video datasets.

Adenoma Others Total

Ground truth 25 14 39

Polyps identification by ASODE 27 15 42

Precision% 85.19% 86.67% 85.71%

Sensitivity % 92.00% 76.47% 86.42%

F-1 score% 88.46% 81.25% 86.06%

Accuracy % 92.00% 92.86% 92.31%
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different operating systems and memory resources. Finally, in both image and video detection, our model still 
exhibits a small amount of confusion between adenomas and other types of polyps, as well as misinterpretations 
of bubbles and intestinal peristalsis. To address these issues, it is imperative not only to collect more authentic 
colonoscopy images to augment our dataset but also to implement additional model enhancements aimed at 
strengthening polyp feature extraction capabilities.

In future studies, we will develop our model further by focusing on acquisition of labeled data and optimiza-
tion of the model, as well as the design of clinical validation studies. We believe that optical biopsy based on AI 
in real time has the potential to improve the performance of endoscopists and guide clinical decisions in a more 
accurate, intuitive, and user-friendly manner.

Conclusion
This study introduces a novel integrated model for real-time detection and classification of colorectal adenomas, 
known as the adaptive small object detection ASODE model (ASODE). The model integrates an adaptive light-
weight modification of the YOLOv4 network with the single shot multibox detector (SSD) to create an efficient 
AI-based ensemble framework. Our approach significantly reduces the demand on computational resources 
while maintaining high accuracy and sensitivity in real-time polyp detection. The ASODE model demonstrated 
superior performance, achieving high sensitivity and accuracy in both image and video test sets, with a lower 
FPR, and was also successful in tests against the state-of-the-art YOLOv7 and YOLOv8 models.

Importantly, the model is designed to be practical and adaptable across various computing platforms, ensuring 
its effective use even on devices with less-than-ideal operational memory. This adaptability makes it a powerful 
tool for endoscopists, aiding in the early detection and decision-making process for the retention or excision of 
adenomas, which is crucial for the prevention of colorectal cancer (CRC).

Despite its encouraging results, the study acknowledges limitations, such as the need for larger-scale testing 
and further optimization to enhance adenoma detection accuracy. Future work will focus on expanding the 
model’s capabilities through the acquisition of more labeled data, reduction of false positives due to bubbles 
and folds, and the design of clinical validation studies. The ultimate goal is to improve AI-based optical biopsy, 
providing endoscopists with a more accurate, intuitive, and user-friendly aid, and improving clinical outcomes 
in CRC prevention.

Our findings underscore the potential of AI in revolutionizing CRC screening and treatment, paving the way 
for more effective, efficient, and accessible diagnostic tools that can significantly alleviate the health burden of 
colorectal cancer.

Data availability
The raw data for this study were generated at Beijing Hospital of Traditional Chinese Medicine, Capital Medi-
cal University. Derived data supporting the findings of this study are available from the corresponding author 
upon request.
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