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Performance investigation 
of epilepsy detection from noisy 
EEG signals using base‑2‑meta 
stacking classifier
Torikul Islam 1,2*, Redwanul Islam 2, Monisha Basak 2, Amit Dutta Roy 2, Md. Adil Arman 3, 
Samanta Paul 4, Oleksii Shandra 3 & Sk. Rahat Ali 2

Epilepsy is a chronic neurological disease, characterized by spontaneous, unprovoked, recurrent 
seizures that may lead to long‑term disability and premature death. Despite significant efforts made 
to improve epilepsy detection clinically and pre‑clinically, the pervasive presence of noise in EEG 
signals continues to pose substantial challenges to their effective application. In addition, discriminant 
features for epilepsy detection have not been investigated yet. The objective of this study is to develop 
a hybrid model for epilepsy detection from noisy and fragmented EEG signals. We hypothesized that 
a hybrid model could surpass existing single models in epilepsy detection. Our approach involves 
manual noise rejection and a novel statistical channel selection technique to detect epilepsy even 
from noisy EEG signals. Our proposed Base‑2‑Meta stacking classifier achieved notable accuracy 
(0.98 ± 0.05), precision (0.98 ± 0.07), recall (0.98 ± 0.05), and F1 score (0.98 ± 0.04) even with noisy 5‑s 
segmented EEG signals. Application of our approach to the specific problem like detection of epilepsy 
from noisy and fragmented EEG data reveals a performance that is not only superior to others, but 
also is translationally relevant, highlighting its potential application in a clinic setting, where EEG 
signals are often noisy or scanty. Our proposed metric DF‑A (Discriminant feature‑accuracy), for the 
first time, identified the most discriminant feature with models that give A accuracy or above (A = 95 
used in this study). This groundbreaking approach allows for detecting discriminant features and can 
be used as potential electrographic biomarkers in epilepsy detection research. Moreover, our study 
introduces innovative insights into the understanding of these features, epilepsy detection, and cross‑
validation, markedly improving epilepsy detection in ways previously unavailable.

Keywords EEG, Epilepsy, Base-2-Meta stacking classifier, Machine learning, Feature extraction, Feature 
ranking

Epilepsy is a prominent neurological disease that is denoted by repetitive and unprovoked  seizures1,2. Seizures 
result from abnormal sudden electrical discharges in the brain, often typically presenting with loss of conscious-
ness, convulsion, atypical movements, behavioral alterations or  emotions3,4. Additionally, epilepsy is one of the 
most common neurological diseases since around 50 million people worldwide have  it5.

The detection of epilepsy remains a significant challenge nowadays. It is a chronic neurological disease that 
can affect individuals of all ages. Moreover, aging can affect epilepsy detection significantly which makes epi-
lepsy detection more  challenging6,7. The etiology of epilepsy is heterogeneous, with variations observed among 
individuals. In certain instances, it is associated with underlying conditions such as traumatic brain injuries or 
developmental  disorders8. Yet, the exact causes of epilepsy are still unknown and epilepsy detection presents a 
substantial challenge.

Recent advancements in diagnostic approaches allowed researchers and clinicians to shift from subjective 
assessments to more objective and quantifiable tests, recognized by improved accuracy since they provide more 
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accurate results. Establishing a diagnosis of epilepsy most of the time involves a review of the exhaustive medi-
cal history and a physical examination, along with a series of tests. These tests include an electroencephalogram 
(EEG) to measure brain activity and imaging scans such as functional magnetic resonance imaging (fMRI) to 
identify any structural abnormalities in the brain. Epilepsy brings substantial changes to certain parts of the brain 
regions such as the hippocampus, amygdala, frontal cortex, temporal cortex, and olfactory  cortex9–11. However, 
these structural changes occur in a rather slow progression.

EEG is a non-invasive test that measures and records the electrical activity of the brain using electrodes placed 
on the  scalp12,13. During an EEG, the electrical signals generated by the brain are amplified and displayed as 
waveforms on a computer screen. The patterns observed in the EEG can provide valuable information including 
the presence of epilepsy, seizure classification, and seizure  prediction14. Therefore, EEG plays a crucial role in the 
detection of epilepsy. Correspondingly, it will also facilitate the treatment of epilepsy which will be immensely 
helpful for human beings.

Literature review
In a study, a wavelet scalogram was utilized in the dataset described by Andrzejak et al.15 with Alex net and 
achieved 100%  accuracy16. Fourier-based synchro squeezing transform (SST) and convolutional neural net-
work were applied in the publicly available CHB-MIT dataset and achieved 99.63%  accuracy17. Multi-view fea-
ture learning was utilized with convolutional deep learning applied in the CHB-MIT dataset achieving 94.37% 
 accuracy18. Till now different studies utilizing neural networks for epilepsy detection are discussed. Although, in 
various studies, researchers utilized neural networks but, it is having some dilemma too. Here, EEG signals are 
converted into images by different transform analysis which is an arduous and time-consuming task. Additionally, 
the convolutional neural network automatically extracts features from the image. Hence, researches are not aware 
of the features that play significant role in epilepsy detection. In a study, Discrete wavelet transform was used to 
decompose the data into sub-bands and then the wavelet energy distribution of each band was used as a feature 
set from the dataset described by Andrzejak et al.15 utilized in artificial neural network (ANN) for classification 
achieved 95.0%  accuracy19. However, ANN is very complex and it requires copious data for training. Thus, it 
is very time-consuming. Several machine learning models were used for epilepsy detection and they exhibited 
promising results. One study utilized wavelet transform on a dataset described by Andrzejak et al.15with K means 
clustering has achieved 96.67%  accuracy20. Another study used the optimum allocation technique on the data-
set described by Andrzejak et al.15 with the logistic model tree achieved 96.67%  accuracy21. Fuzzy distribution 
entropy (fDisEn) and wavelet packet decomposition were extracted from the dataset described by Andrzejak 
et al.15 and were utilized in K-nearest neighbor. This method achieved 98.33% accuracy as per  reference22. Symlet 
wavelet processing and grid search optimizer featured extracted from dataset described by Andrzejak et al.15 and 
were used in gradient boosting machine. This method achieved 96.10%  accuracy1. In some studies, researchers 
segmented the EEG signals. Thus, prolonged EEG signals were not required for classification. In a study, the 
5 s epileptic segment was utilized with sample entropy and distributed entropy, using GA-SVM (genetic algo-
rithm for feature selection and parameter optimization of support vector machine) on the dataset described by 
Andrzejak et al.15 and achieved a maximum AUC of 96.67%23. In practical while data is recorded from humans 
there are so many noises and artifacts which makes epilepsy detection more challenging. Spectrogram images 
of EEG signals were utilized in a pre-trained convolutional neural network applied in the TUH dataset, which 
achieved the highest 88.30% accuracy as per as the  reference24. A one-dimensional deep convolutional neural 
network was used for the automated identification of abnormal EEG signals without any feature extraction and 
applied in the TUH dataset, which achieved 79.34%  accuracy25.

Research gap
A common practice in epilepsy research is often based on the use of smooth, noise-free datasets. As the data 
is mostly noise-free and smooth, researchers only utilized filters such as band pass, high pass, and low pass to 
put an end to noise from the signal. Therefore, researchers achieved significantly higher accuracy for epilepsy 
detection. In contrast, the real-world EEG signals are often contaminated by noise and various kinds of artifacts, 
which raises big questions regarding the practicality of the aforementioned methods. Therefore, the methodology 
proposed by the researchers will not work flawlessly.

Epilepsy detection from segmented EEG has supplementary utility. However, practical use of segmented 
EEG in detection still remains a limiting challenge for epilepsy diagnosis, since the accuracy rates drop much 
below certain conditions that remain to be fully understood. Therefore, although segmented has added value 
for epilepsy detection, researchers cannot take advantage of it.

Different researchers utilized non-identical features for their  study7,26–28. Additionally, researchers claimed 
that the feature utilized in their study is the most prominent feature for epilepsy  detection26. Thus, it is not 
transparent that actually which features play consequential role in epilepsy detection. Moreover, there appears 
to be no widely accepted significance order for epilepsy detection. Furthermore, researchers only have a few 
feature for their  study26,27.

Researchers have not created any metric that can be utilized to exhibit the significance of the features for all 
the machine learning models. It is a notable issue since different features work differently with disparate machine 
learning models. Hence, it was not feasible for the researchers to construct a feature significance order for epilepsy 
detection that would remain accurate for all the models.

The field has thus far mostly focused on the use of either single machine learning or neural network-based 
models for epilepsy detection, leaving quite unexplored area of more promising hybrid models or the synergistic 
use of a few models. This narrow vision is missing the opportunity in which the fusion of different methodologies 
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could make the system of epilepsy detection more accurate and robust. It points toward a very significant area 
for future research and development in this domain.

Objective
The main problems that we are striving to address in this paper: are (1) achieving the utmost accuracy in epilepsy 
detection utilizing noisy data (TUH dataset) which are more likely to practical EEG signals. (2) Finding out the 
reason behind accuracy mitigation while utilizing segmented EEG signals. (3) Finding out the discriminant 
features and evolving the feature order for epilepsy detection. (4) proposing a new metric that can be utilized to 
exhibit the significance of the features for all the machine learning models. (5) proposing a new hybrid model 
that will detect epilepsy more precisely than a conventional single model. To the best of our knowledge, existing 
research has not specifically addressed these challenges and hence, our work represents a significant advance, 
offering innovative solutions rather than mere incremental progress. This highlights the potential for translational 
application and highlights the innovation and impact of our research. Therefore, this research outcome will be 
substantial enough for epilepsy detection.

Methodology
Data preparation and processing
In this study, we utilized the world’s largest publicly available EEG database which is called the TUH EEG corpus 
 database8. The number of channels used for the recording of EEG signals is 32. Here, some channels are non 
EEG, such as (EEG-KKG, and EEG-RESP). We did not use these  channels29. 10–20 electrode placement systems 
used in this dataset. This dataset carries annotation files by dint of it we can acquire knowledge about the event 
of each channel. Here, we used data from 10 disparate patients (5 epileptic, 5 normal). Delineate information 
regarding patients is provided in the supplementary information.

EEG may contain muscle activity, eye movement, power line interference, and interference from other devices. 
These are called noise of EEG signals. The primary purpose of EEG signals is to record the cerebral electrical 
activity of the brain. However, it may also record the electrical activity that is not generated from the cerebral 
region of the brain which is known as artifact of EEG signals. These noise and artifacts do not contain any sig-
nificant information that may assist the analyze of EEG signals.

Noise and artifact evolve dilemma while analyzing EEG signals. Noise and artifact removal may increase 
the output of EEG signal analyze in a positive direction significantly. In the previous study, researchers utilized 
only filtering owing to remove the noise artifact. In this study, we have also utilized manual noise remove for 
better results.

Signal analysis and feature extraction
A bandpass filter is the most effective way to remove noise from the EEG signal. In our study, EEG signals 
were passed across a bandpass filter with a cut-off frequency between 0.1 to 44 Hz, resulting in high-fre-
quency noise along with low-frequency superfluous signal being detached. MATLAB EEGLAB was utilized 
for the visualization as well as filtering of the signal. EEG signals before as well as after filtering are depicted in 
supplementary information.

After filtering the signal, noise, and artifacts were obviated from the signal manually by taking advantage of 
the annotation files. To discern the noise, we employed the image exhibited in the annotation files. EEG signals 
before as well as after removing the noise along with the artifact are depicted in supplementary information.

As the TUH EEG corpus dataset comprises a multi-channel EEG signal, it is necessary to select the appropri-
ate channels. We used statistical features such as mean, median, and standard deviation for channel selection. 
Initially, we calculated statistical features for each channel of the EEG signal. Subsequently, we constructed 
co-relation as well as reckoned the p-value of the mean, median, and standard deviation for each channel of the 
EEG signal. Afterward, we selected two channels that have the upmost co-relation and p-value.

In this study, we segmented the Normal EEG signal and Epileptic EEG signal into 5-s fragments. Then, this 5-s 
EEG signal was used for feature extraction. Different signal fragments have been used in other research studies 
such as 0.1  s30, 2  s31,32, 4  s33, 5  s23,34, and 60  s25.

In the context of signal processing, features refer to specific characteristics of a signal. Additionally, features 
provide more relevant information about the signal context. To extract features various mathematical compu-
tations as well as algorithms are applied to the raw signals. For instance, in the case of EEG signals, there are 
copious features. Different techniques are utilized to extract these features.

Based on the idea of signal processing, a signal can have many features. However, the significance of the 
features is not alike. Disparate features have different noteworthiness. Feature ranking depicts the importance 
of the features of that particular signal.

Machine learning framework
A machine learning model is an algorithm that learns patterns from the given data to make prediction, and 
decisions without being explicitly programmed. These models initially process data, learn from data, and make 
decisions and predictions for unknown data.

Classification indices imply the performance of the machine learning models for classification tasks. These 
metrices indicate how well machine learning works, in making classification. Therefore, we can perceive that 
which model can be utilized for our stipulate classification task. In this study, we used four classification indices 
such as accuracy, precision, recall, f1 score.
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Furthermore, to enhance the robustness of our findings, we used cross-validation. The basic idea of cross-
validation is to divide the dataset into multiple subsets, train and test the model on different subsets, and then 
aggregate the results to get a more robust evaluation of the model’s performance.

In this method, multiple base models are trained independently on the training data, each producing its 
predictions or decisions. The prime reason behind it is different models can capture different aspects of the data. 
All the models take the same feature value and make their predictions individually. Afterward, this prediction 
can be used for the classification or prediction that may outperform the single model.

A meta-classifier, is a higher-level model that combines the predictions or decisions of multiple base models 
to make a final prediction or classification. The purpose of the meta-classifier is to learn how to best combine 
the predictions of the base models to make a final prediction or classification. It takes into account the strengths 
and weaknesses of the base models and attempts to leverage the complementary information provided by them.

A key innovation in our methodology is the use of a stacking classifier which is the combination of base model 
and meta classifier. The idea behind stacking is to escalate predictive performance. In this study, we utilized two 
base model, and then the output of the base models were given to meta classifier.

Proposed metrics
In this study, we proposed a metric for depicting the significance of features. Initially, all the feature ranks are 
calculated for different models using permutation feature  importance35–38. Different models gave disparate feature 
ranks. To solve this dilemma, we proposed new metric called DF-A (discriminant feature–accuracy). In this 
metric, accuracy implies the cut-off accuracy for the selected model. For example, DF-90 implies the models that 
gave 90 percent or above accuracy are taken into account. Afterward, the cumulative order for selected models is 
calculated for all the features. Cumulative feature order means the summation of feature order for any particular 
feature for the selected models. The most discriminant feature has the least feature order value. Then, features 
are arranged in ascending order of the cumulative feature order. In this way, we calculated the value of DF-A 
that exhibits the importance of features of a particular signal for any particular task.

Proposed model
In this study, we utilized two models for ensemble to mitigate the computational complexity. The output predic-
tion of the model is utilized to evolve a new dataset. Afterwards, this meta-classifier is used with the new dataset. 
In this way, our proposed model exhibited in Fig. 1 outperformed all other models.

Proposed methodology
Here, Fig. 2 depicts the novel methodology used in this study for epilepsy detection along with feature ranking.

Result
Single base model
The results for the single model with 32 feature datasets is depicted in supplementary information. We divided 
the classifier model into two parts such as right and left. In the left side, classifier models that exhibited accuracy 
95% or above. On the other hand, Classifier models that exhibited lower than 95% accuracy are on the right side.

DF‑95 metrics
In order to exhibit the most significant feature DF-A metric was utilized. In this study, we selected 95% accuracy 
for DF-A metric as the accuracy parameter is variable and it can be altered. We used all the classifier models 
that exhibited 95% accuracy or above in single-model epilepsy detection task. Feature orders were calculated for 
all 32 features and seven classifier models that exhibited selected 95 accuracy or above. In Table 1, first column 
shows the 32 features used in this study. From column 2 to column 8 shows the feature order of 32 features used 
in this study for selected seven classifiers. Here, feature order was calculated by permutation feature importance. 
Afterward, in column 9 shows cumulative ranking order which is calculated by simple arithmetic addition. Sub-
sequently, DF-95 (discriminant features–accuracy) is calculated by observing the cumulative ranking order. The 
feature achieving the least cumulative ranking order is entitled as the most discriminant feature. In this way, all 
32 features are ranked for DF-95. The results are depicted in Table 1.

Base 2 meta stacking classifier
To reduce the computational complexity only 2 models were used as a Base model. XGB Classifier along with 
LGBM Classifier as a base classifier performed better than any other model. It may happened since they also 
performed significantly better as a single model for epilepsy detection with a 32-feature dataset. Therefore, results 
are depicted while they were utilized as base classifiers and others models as meta classifiers. We also investigated 
the impact of cross-validation in this study and utilized disparate CV values such as 10, 25, 50, 75, and 100.

Supplemental information depicts the results of models for cross-validation value 10. We can perceived 
that the highest accuracy, precision, recall, and F1 score were respectively 0.95 (+ /− 0.04), 0.96 (+ /− 0.06), 1.00 
(+ /− 0.00), and 0.95 (+ /− 0.04). However, some models exhibited 1.00 (+ /− 0.00) recall, but accuracy, precision, 
and F1 score were low for them.

Supplemental information depicts the results of models for cross-validation value 25. We can perceived 
that the highest accuracy, precision, recall, and F1 score were respectively 0.95 (+ /− 0.04), 0.96 (+ /− 0.06), 1.00 
(+ /− 0.00), and 0.96 (+ /− 0.06). However, some models exhibited 1.00 (+ /− 0.00) recall, but accuracy, precision, 
and F1 score were low for them.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10792  | https://doi.org/10.1038/s41598-024-61338-2

www.nature.com/scientificreports/

Supplemental information depicts the results of models for cross-validation value 50. we can perceived that 
the highest accuracy, precision, recall, and F1 score were respectively 0.97 (+ /− 0.06), 0.97 (+ /− 0.07), 0.98 
(+ /− 0.05), and 0.97 (+ /− 0.05). Although some models exhibited 1.00 (+ /− 0.00) recall, but accuracy, precision, 
and F1 score were low for them.

Table 2 depicts the results of models for cross-validation value 75. We can perceived that the highest accu-
racy, precision, recall, and F1 score were respectively 0.98 (+ /− 0.05), 0.98 (+ /− 0.07), 0.98 (+ /− 0.05) and 0.98 
(+ /− 0.04). Although some models exhibited 1.00 (+ /− 0.00) recall, but accuracy, precision, and F1 score were 
low for them. Meta–Bagging Classifier provided the upmost results when it was used as a meta-classifier.

Supplemental information depicts results of models for cross-validation value 100. We can perceived that 
the highest accuracy, precision, recall, and F1 score were respectively 0.97 (+ /− 0.06), 0.97 (+ /− 0.07), 0.98 
(+ /− 0.05), and 0.97 (+ /− 0.05). Although some models exhibited 1.00 (+ /− 0.00) recall, but accuracy, precision 
and F1 score were low for them.

Discussion
Findings of the study
The most significant finding of this study are proposed combination of the Base-2-Meta model that exhibits 
higher accuracy than the usually used single model. Additionally, finding out the most discriminant feature for 
epilepsy detection. Moreover, we have proposed a metric DF-A for depicting the most discriminant feature that 
is persistent with most of the models that give A accuracy or above. Furthermore, we have also investigated the 
influence of cross-validation in this study. In addition, one of the most significant findings of this study is to work 
with a challenging dataset containing copious noise and artifacts and achieving higher accuracy by manual noise 
rejection and filtering. Besides, achieving upmost accuracy with 5-s fragments of EEG signals.

In our proposed model, we utilized XGB and LGBM classifiers as base classifiers. We used the Bagging Clas-
sifier as a meta-classifier. We observed from the results that our proposed model gave better accuracy the single 
base model. Accuracy, precision, recall and F1 score for this Base-2-Meta model are respectively 0.98 (+ /− 0.05), 

Figure 1.  Stacking classifier (combining base model and meta classifier).
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0.98 (+ /− 0.07), 0.98 (+ /− 0.05) and 0.98 (+ /− 0.04). Additionally, it also renders better results than other Base-2-
Meta models. Initially, base model used the dataset and made the initial prediction. The probability of prediction 
is used as a dataset for the meta-classifier.

We observed from the study that some models gave better accuracy when they were used as meta classifiers 
than utilized as a single classifier model. We realized from this escalation of results that the output result sub-
stantially depends on the Base classifier. While the classifier model works as a single classifier model they used 
the main feature dataset. Conversely, when they worked as a meta classifier they used the dataset evolved from 
the probability of prediction predicted by the Base classifier.

Our proposed metric, DF-95 rendered the rankings of the features for epilepsy detection. Previously, there 
was confusion about the most discriminant feature since different model implies different features as the most 
discriminant. Additionally, different researchers also claim different features as the most discriminant. However, 
our proposed metric resolves this dilemma.

We investigated the impact of cross-validation in this study. We observed that when we increased the cross-
validation value model training time increased significantly. However, we also observed the escalation of results 
with the cross-validation. Thus, we have found a tradeoff between execution time and accuracy for cross-vali-
dation. Although a higher cross-validation value increases the complexity, it gives better results.

EEG signals contain various noise and artifacts and they lower the results of detection. However, research-
ers in their research work mostly utilized noise-free and smooth datasets. Thus, they were able to achieve the 
upmost accuracy with their proposed methodology. However, with the practical data their proposed models 
do not work up to the mark.

In this study, we utilized a manual noise rejection technique along with filtering the data. In addition, we 
utilized a novel statistical channel selection procedure to find out the most significant EEG channel. Afterward, 
features were extracted from these channels. Therefore, our proposed methodology achieved significant accuracy 
even with the dataset containing noise and artifacts.

Figure 2.  Graphical representation of the proposed methodology of this study.
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We utilized fragments of EEG signals. Thus, a prolonged EEG signal is not required for epilepsy detection. 
In cases where only a small fragment of EEG signals is present, our proposed methodology can be utilized to 
accurately detect epilepsy with those small EEG signals.

We have found a tradeoff between signal-to-noise ratio (SNR) with the length of the EEG signals. When the 
length of the EEG signal is reduced, detection accuracy is also mitigated. Researchers utilized only filtering for 
noise eradication. However, filtering alone cannot eradicate the noise and artifact accurately. Therefore, when 
the length of the signals is reduced the signal part of the signal is reduced considerably but noise and artifacts 
do not reduce at that high level. Thus, a significant reduction of results is observed while the length of the signal 
is reduced.

Conversely, our methodology worked significantly even with the 5 s fragment of the EEG signals. In our 
proposed method, we utilized novel manual noise and artifact rejection techniques along with filtering. In this 
way, noise and artifacts can be removed significantly better than only filtering. Therefore, while the error rate 
with signal fragments for other studies is significantly high, in our study error rate with 5 s fragments of data 
is only 2%.

Table 1.  Feature order, cumulative feature order and results for the DF-95.

XGB classifier 
order

LGBM classifier 
order

RandomForest 
classifier order

ExtraTrees 
classifier order

Bagging 
classifier order

AdaBoost 
classifier order

Decision tree 
classifier order

Cumulative 
ranking order DF-95

1.kurtosis 21 15 28 26 15 34 17 156 24

2.mean absolute 
deviation 4 1 7 2 8 19 4 45 3

3. mean 27 23 30 32 19 27 12 170 28

4.median 30 30 31 31 32 14 23 191 34

5.root mean 
square 7 7 5 9 20 3 24 75 8

6.skewness 13 17 26 19 16 13 8 112 14

7.standard devia-
tion 11 27 13 6 7 12 22 98 12

8.variance 32 34 12 21 30 22 16 167 26

9.correlation 
dimension 5 4 9 11 17 6 3 55 5

10.largest lyapu-
nov exponent 16 3 11 1 18 1 7 57 6

11.peak max 9 5 20 7 29 5 11 86 10

12.peak min 20 13 29 24 21 15 19 141 20

13.instantaneous 
frequency max 18 10 33 30 14 11 18 134 18

14.instantaneous 
frequency min 12 8 19 25 28 2 21 115 16

15.energy 34 33 17 27 10 28 29 178 30

16.power 31 32 8 16 27 30 32 176 29

17.approxi-
mate entropy 10 14 6 3 23 32 34 122 17

18.har-
monic mean 26 28 34 34 5 33 31 191 33

19.mode 29 26 32 33 4 31 25 180 31

20.shan-
non entropy 17 21 21 22 34 16 30 161 25

21.AR1 14 12 10 5 13 20 9 83 9

22.AR2 3 20 2 8 26 21 10 90 11

23.AR3 25 18 24 28 3 23 26 147 19

24.AR4 1 19 1 10 1 10 1 43 2

25.AR5 6 16 18 13 2 7 5 67 7

26.AR6 15 11 16 23 11 17 14 107 13

27.AR7 23 9 14 18 6 24 20 114 15

28.AR8 24 25 22 20 12 18 27 148 21

29. activity 33 31 15 15 22 25 15 156 23

30.mobility 28 24 23 14 25 26 28 168 27

31.complexity 8 2 4 4 24 4 6 52 4

32.recur-
rence rate 22 22 27 29 31 9 13 153 22

33.laminarity 2 6 3 12 9 8 2 42 1

34.MLV 19 29 25 17 33 29 33 185 32
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Comparison
We have achieved up-to-the-mark results with our proposed methodology even though we utilized a dataset 
that contains copious noise and artifact-like practical data. We achieved this sublime result owing to our novel 
approaches. Therefore, our proposed methodology will be very useful for the practical application. Tables 3 and 4 
exhibit the comparison of our study with previous studies conducted on the same dataset. From the comparison, 
it is evident that our study surpasses previous studies. This superiority is attributed to our innovative approach.

Limitations
In our study, although we achieved 98% accuracy, it can be further improved with additional novel techniques 
in the future. Although, we utilized 32 features, the number of features can be further improved which might 
raise the result. we rendered a ranking of features for epilepsy detection. However, this order of features was only 
calculated between the 32 features utilized in this study. In the future, if further features are augmented then the 
orders of the features can be altered. The result of our proposed metric also varied with the accuracy parameter 

Table 2.  Results of model for CV 75.

Model Accuracy Precision Recall F1 score

Base-XGB Classifier 0.97 (+ /− 0.05) 0.98 (+ /− 0.07) 0.98 (+ /− 0.05) 0.97 (+ /− 0.05)

Base-LGBM Classifier 0.97 (+ /− 0.06) 0.97 (+ /− 0.07) 0.98 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Random Forest Classifier 0.97 (+ /− 0.05) 0.98 (+ /− 0.07) 0.98 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Extra Trees Classifier 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Bagging Classifier 0.98 (+ /− 0.05) 0.98 (+ /− 0.07) 0.98 (+ /− 0.05) 0.98 (+ /− 0.04)

Meta-AdaBoost Classifier 0.97 (+ /− 0.06) 0.97 (+ /− 0.07) 0.98 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Decision Tree Classifier 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.05) 0.98 (+ /− 0.05)

Meta-SVC 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-KNeighbors Classifier 0.97 (+ /− 0.05) 0.98 (+ /− 0.06) 0.97 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Label Spreading 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Label Propagation 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Nu SVC 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.05) 0.97 (+ /− 0.05)

Meta-SGD Classifier 0.97 (+ /− 0.05) 0.98 (+ /− 0.06) 0.97 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Linear SVC 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Calibrated Classifier CV 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Passive Aggressive Classifier 0.51 (+ /− 0.02) 0.51 (+ /− 0.02) 1.00 (+ /− 0.00) 0.67 (+ /− 0.02)

Meta-Ridge Classifier 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Ridge Classifier CV 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Perceptron 0.97 (+ /− 0.05) 0.98 (+ /− 0.06) 0.97 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Quadratic Discriminant Analysis 0.49 (+ /− 0.02) 0.00 (+ /− 0.00) 0.00 (+ /− 0.00) 0.00 (+ /− 0.00)

Meta-Nearest Centroid 0.97 (+ /− 0.05) 0.98 (+ /− 0.06) 0.97 (+ /− 0.06) 0.97 (+ /− 0.05)

Meta-Bernoulli NB 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Gaussian NB 0.97 (+ /− 0.05) 0.97 (+ /− 0.07) 0.98 (+ /− 0.04) 0.97 (+ /− 0.05)

Meta-Dummy Classifier 0.51 (+ /− 0.02) 0.51 (+ /− 0.02) 1.00 (+ /− 0.00) 0.67 (+ /− 0.02)

Table 3.  Performance comparison of the proposed method with other methods using three parameters 
(Epoch Size, Results, and Classifier).

Classifier Epoch Size Results Reference

One-dimensional deep convolutional neural network 60 Sec Error rate 20.6% 25

Base-2-Meta 5 Sec Error rate 2% This work

Table 4.  Comparison results of the proposed method with previous works.

Feature Classifier Dataset Result Reference

Spectrogram Convolutional neural network TUH Acc. 88.30% 39

Automated identification without feature extraction One-dimensional deep convolutional neural network TUH Acc. 79.34% 25

32 Features extracted from EEG signals Base-2-Meta TUH Acc. 98% This work
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added with it. We utilized 5 s fragments of EEG data. Therefore, while EEG data is less than 5 s, our proposed 
methodology cannot detect epilepsy as accurately as the result exhibited in Table 3 and Table 4. Although our 
proposed methodology has a few drawbacks, it provides intriguing insights for epilepsy detection. However, in 
the future we are looking forward to providing more significant insights for epilepsy detection and resolving 
these drawbacks.

Conclusion
Although epilepsy detection is a challenging task, our proposed methodology can do it merely accurately. We 
utilized a novel manual noise rejection technique with filtering and extracted copious features for epilepsy detec-
tion. Afterward, a novel Base-2-Meta stacking model is utilized for the detection of epilepsy. Even though with 
the noisy data our proposed method can work up to the mark. We have also discovered the most discriminant 
features order in this study. In addition, our proposed metric DF-A used to exhibit the most discriminant fea-
ture unprecedentedly. We have also achieved significantly higher accuracy with 5 s fragments of EEG signals. 
The influence of cross-validation for the detection of epilepsy is investigated in this study. Our investigation 
provided significant insights for epilepsy detection. These insights can be considerably useful for the detection 
and treatment of epilepsy.

Data availability
The TUH EEG Epilepsy Corpus dataset was collected from the web link- https:// isip. picon epress. com/ proje cts/ 
tuh_ eeg/ html/ downl oads. shtml.
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