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Jnk1 and downstream signalling 
hubs regulate anxiety‑like 
behaviours in a zebrafish larvae 
phenotypic screen
Ye Hong 1,2, Christel Sourander 1,2, Benjamin Hackl 1, Jedidiah S. Patton 1, Jismi John 1, 
Ilkka Paatero 1 & Eleanor Coffey 1*

Current treatments for anxiety and depression show limited efficacy in many patients, indicating 
the need for further research into the underlying mechanisms. JNK1 has been shown to regulate 
anxiety‑ and depressive‑like behaviours in mice, however the effectors downstream of JNK1 are 
not known. Here we compare the phosphoproteomes from wild‑type and Jnk1-/- mouse brains and 
identify JNK1‑regulated signalling hubs. We next employ a zebrafish (Danio rerio) larvae behavioural 
assay to identify an antidepressant‑ and anxiolytic‑like (AA) phenotype based on 2759 measured 
stereotypic responses to clinically proven antidepressant and anxiolytic (AA) drugs. Employing 
machine learning, we classify an AA phenotype from extracted features measured during and after 
a startle battery in fish exposed to AA drugs. Using this classifier, we demonstrate that structurally 
independent JNK inhibitors replicate the AA phenotype with high accuracy, consistent with findings 
in mice. Furthermore, pharmacological targeting of JNK1‑regulated signalling hubs identifies AKT, 
GSK‑3, 14–3‑3 ζ/ε and PKCε as downstream hubs that phenocopy clinically proven AA drugs. This 
study identifies AKT and related signalling molecules as mediators of JNK1‑regulated antidepressant‑ 
and anxiolytic‑like behaviours. Moreover, the assay shows promise for early phase screening of 
compounds with anti‑stress‑axis properties and for mode of action analysis.

Anxiety and depression are highly prevalent mental disorders that involve abnormal neural function and dys-
regulation of circuits associated with threat and fear  responses1,2. Together they account for over half of the 
global burden of mental disorders, and are among the largest of disease burdens  overall3,4. Current treatments 
are lacking as not all patients achieve remission from their  symptoms5, while side effects are  common6. These 
disorders develop as a result of a complex interplay between genes and the  environment7,8, and involve a wide 
variety of  mechanisms5,9. One of the most consistent changes associated with depression is increased plasma cor-
tisol and deregulation of hypothalamic-pituitary-axis homeostasis associated with desensitised cortisol receptor 
feedback  mechanisms10,11. Clinically useful antidepressant drugs such as serotonin reuptake inhibitors (SSRIs) 
and tricyclic antidepressants have been shown to recover cortisol  homeostasis12,13. Thus, a screening assay based 
on cortisol-responsive behaviour could potentially identify relevant new homeostatic regulators by accelerating 
mode of action analysis and mechanistic understanding.

Phenotypic screening represents a strategy that can identify molecules with the ability to alter  behaviour14. 
Typically mouse models are used to model disease, however the time and resources required to carry out com-
pound screens in mice limits their use in this context. Simpler systems are needed when large numbers of 
compounds should be tested. The zebrafish larvae as a model organism is emerging as a viable approach for 
screening of phenotypic  behaviours15–17. For analysis of stress-induced behaviour, the zebrafish hypothalamic-
pituitary-interrenal (HPI) axis is cortisol responsive already by four days post fertilization, and like the HP-
adrenal (HPA) axis in mammals, its dysregulation is associated with dysfunctional coping  behaviours18,19. Also, 
zebrafish larva habenula and amygdala are involved in affective behaviours at an early  stage20, and zebrafish brain 
neurotransmitters and corresponding receptors (including NMDA receptors) are expressed and functional at 
the larval stage. Zebrafish express orthologues for about 70% of human genes with 47% of these genes bearing a 
1:1  relationship21,22, compared to 80% in  mice23. The larvae display stereotypical behavioural responses such as 
thigmotaxis which is an evolutionarily conserved anxiety behavioural  response24, and hyper-locomotor activity 
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in response to neuroactive  drugs16,17,25. For these reasons it is used for central nervous system drug screens at an 
early developmental stage which is suitable for  scaleup26,27.

The JNK1 pathway represents a potential homeostatic regulator of anxiety and depression. The human brain 
expresses three JNK genes among which JNK1 (or MAPK8) is involved in brain  morphogenesis28–31. However 
all JNKs also act as stress sensors, responding to a range of stimuli including endocrine stress which has been 
shown to induce rapid retraction of dendritic spines, with the potential to alter circuit  activity32. Moreover, JNK 
signalling may contribute to glucocorticoid resistance and HPA-axis dysregulation which is prominent in anxiety 
and  depression33, as JNK phosphorylation of the glucocorticoid receptor has been shown to block its nuclear 
translocation and subsequent gene  regulation34,35. Interestingly also, JNK activity is reduced by the fast-acting 
antidepressant ketamine in hippocampal  neurons32, and in turn in mice, knockout of Jnk1 or JNK inhibitor-treat-
ment reduces anxiety- and depressive/anhedonic-like  behaviours32,36,37. JNK1 is expected to phosphorylate a large 
number of downstream targets in  brain31, however a precise definition of these targets has not been available.

In this study we identify signalling hubs downstream of JNK1 by comparing the mouse brain phosphopro-
teome from wild-type and Jnk1-/- mice. We then utilise a zebrafish larvae behavioural assay to test whether any 
of these downstream hubs phenocopy known antidepressant and anxiolytic drugs, and JNK1 inhibition. This 
identifies downstream players on the JNK1 pathway that phenocopy anxiety- and antidepressant-like stereotypic 
responses in a zebrafish larvae screen.

Results
Establishing an acoustic/light stimulus battery to profile zebrafish larvae behavioural 
responses to antidepressant and anxiolytic drugs
We set out to develop a multiparameter test battery with which to assess the behaviour of zebrafish larvae in 
response to light and acoustic stressors. For this, larvae were placed individually in square wells of a 96-well 
plate and exposed to blue (470 nm), red (635 nm), purple (a combination of red and blue lights), white light, or 
flickering light, combined with acoustic stimuli (light or heavy tapping) as indicated (Fig. 1A,B). Zebrafish larvae 
from 4 days post-fertilization (dpf) onwards exhibited robust motility in response to stimuli, except for white 
light where older larvae were less responsive (Fig. 1B,C). Among the wavelengths used, blue light triggered the 
strongest motility even without tapping. For the other colours, the combination of light and tapping altered the 
magnitude of the motility response compared to tapping alone. Together, the test battery incorporated a rich 
variety of sensorimotor stressors from which stereotypic behavioural responses to test drugs could be uncovered. 
We expanded the test to include five cycles, each followed by a 29 min intermission post startle (Fig. 1D). This 
enabled us to monitor stress, recovery, and habituation responses.

Classical and fast‑acting antidepressant and anxiolytic drugs alter zebrafish larvae motility
We next measured motility of zebrafish larvae following a 1-h incubation with classical antidepressant or anxio-
lytic (AA) drugs: fluoxetine (a SSRI), imipramine (an antagonist against the serotonin transporter > noradrenaline 
transporter > dopamine transporter), LiCl (which targets inositol monophosphatase and  GSK338), diazepam 
(a Gamma Amino Butyric Acid (GABA) receptor antagonist), or low dose (1–10 µM) ketamine; a fast-acting 
 antidepressant39; NMDA receptor antagonists with psychosis-inducing activity at higher doses (100 µM) keta-
mine or MK801 (also known as dizocilpine)40 (Fig. 1E–K; Table 1). The motility responses during the 1 min startle 
period were quantified from six peak clusters (P1 to P6) (Fig. 1E). Additional data for each drug treatment (i.e. 
individual fish tracking plots and quantitative output from individual cycles) is found in supplementary Figs. 1 
to 6 and responses to the anti-psychotic drug haloperidol are shown for comparison (Supplementary Fig. 7). 
Clinically relevant doses of the AA drugs reduced the distance moved during the startle period (Fig. 1F–K). Even 
lithium at 1 mM showed a response similar to other AA drugs, while at 10 mM (above the therapeutic range), 
LiCl increased distance moved, possibly due to engagement of additional targets. Diazepam, with its muscle 
relaxant properties, caused a more significant motility inhibition than other AA drugs. Interestingly however, 
diazepam induced an unexpected increase in motility in response to purple light plus tapping (P5) (Fig. 1H), 
resembling the paradoxical hyperactivity or agitation effect seen in some individuals in response to  diazepam17,41. 
Overall the motility profiles from the AA drugs (at the clinically relevant dose) were similar.

Ketamine elicits an antidepressant effect in humans at steady state plasma levels of around 1 µM, and an 
anaesthetic effect at an average dose of 9.3 µM in humans 42,43. We therefore treated larvae with doses in this 
range. During the acute startle phase, ketamine decreased motility at doses of 10 µM and above for peaks P1-P3 
and increased motility for peaks P4-P6. This closely matched the effect of MK801 and is therefore likely to be 
mediated through an NMDA receptor antagonist effect as both drugs share the phencyclidine site on this recep-
tor (Fig. 1E,J,K). That MK801 elicits a response at lower doses is consistent with the higher affinity of MK801 
for NMDA receptor binding (Ki = 30.5 nM for MK801 verses 417 nM for ketamine)42. In summary, treatment 
of zebrafish larvae with classical AA drugs suppressed their motility responses during the test battery, at doses 
that are clinically relevant for an antidepressant/anxiolytic effect in mammals.

Distance, turning, pausing and spurting are altered by AA drugs during the startle period
We next examined the behavioural syllables that make up the motility response. Thus, in addition to distance 
travelled, we also measured turning (sum of turning angles), pausing (total time spent pausing), spurt velocity, 
time thigmotaxis and distance thigmotaxis near the well border (Fig. 2A). We characterised the effect of AA 
drugs on this expanded set of features using 411 zebrafish larvae behaviour tracks (Fig. 2B). Fluoxetine, imipra-
mine, LiCl and diazepam elicited strikingly similar behavioural syllables during the startle period (Fig. 2B). All 
clinical drugs tested increased turning behaviour and decreased thigmotaxis distance and time, and spurting 
behaviours at lower doses. Only diazepam (at 1 µM or higher) diverged somewhat in that thigmotaxis distance 
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was increased. Ketamine mimicked MK801 at high dose (100 µM) with regards to thigmotaxis (which increased), 
whereas turning increased with 10 µM ketamine or 1 µM MK801, consistent with the effect being mediated by 
the NMDA receptor for which MK801 has higher affinity. Notably, increased turning was a prominent feature of 
the AA-drug treated fish (Fig. 2B). In addition, MK801 induced a large increase in motility at 10 µM consistent 
with the known hyperlocomotor effect of NMDAR inhibition in rodents and  fish42,44–46, however the effect of 
ketamine on distance moved was minor in comparison during the startle period (Fig. 2B and Supplementary 
Fig. 5A, B and 6A, B).

In order to validate that the test battery was sensitive to a HPI stressor, we investigated the response to elevated 
saline, which is known to activate the HPI axis and increase cortisol in zebrafish  larvae47,48. Moreover, it has 
been shown that NaCl or white light-induced motility responses require the glucocorticoid receptor in zebrafish 
 larvae48. Interestingly, NaCl stress (which freely crosses the blood brain barrier) is also a classical means with 
which to activate JNK in the nervous  system28. We treated fish with 100 mM NaCl, or with E3 medium alone, 
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Figure 1.  Motility profiles for anxiolytic and antidepressant drugs. (A) A schematic of experimental setup 
shows the apparatus, square-well plate and representative motility traces from 1 min tests from larvae treated 
with MK801. (B) Motility responses from zebrafish larvae at 3 to 8 days post fertilization (dpf) during the 1 
min startle battery. (C) Mean motility data of zebrafish larvae at 3–8 dpf. Larvae number per age group; 3 dpf 
(n = 95), 4 dpf (n = 94), 5 dpf (n = 94), 6 dpf (n = 89), 7 dpf (n = 89) and 8 dpf (n = 97). (D) Example traces from 
the entire test battery showing mean motility of 7 dpf fish. 60 min acclimation is followed by 5 cycles (C1 to 
C5) of 1 min startle period with 29 min recovery between cycles. Measurements are from larvae treated with or 
without fluoxetine (0.1, 1.0, or 10 µM) for 1 h (n = 22 to 24). (E) A trace of 1 min startle response shows motility 
of fish treated with high doses of ketamine or MK801 (C = 48, MK801 = 23, Ketamine = 23). (F-K) Motility 
responses are shown for AA drugs according to stimuli clusters P1 to P6. The left-side panels depict the overall 
mean motility during the 5 cycles of 1 min startle. The right-side panels show the mean motility data within the 
peaks only. Y-axis scaling differs to accommodate various size effects. One-way ANOVA with post-hoc Tukey 
test was performed on the original MI distributions to calculate the p-values of the left-side panels; Two-way 
ANOVA with post-hoc Dunnett test was performed on the original MI distributions to calculate the p-values of 
the right-side panels. *p-value ≤ 0.05; **p-value* ≤ 0.01; ***p-value ≤ 0.001; ****p-value ≤ 0.0001. The number of 
fish measured for each treatment were as follows (the total number of repeats is shown in parenthesis): control: 
146 (730 observations), diazepam: 70 (337 observations), fluoxetine: 72 (338 observations), imipramine: 69 (335 
observations), LiCl: 41 (210 observations), haloperidol: 51 (220 observations), ketamine: 70 (350 observations), 
MK801: 70 (350 observations).
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and measured the motility over 30 min (Fig. 2C). Saline treatment increased motility as  previously46, and altered 
distance, spurting and pausing in a JNK-dependent manner, as responses were reversed upon JNK inhibitor 
treatment (SP600125, 10 µM for 1 h) (Fig. 2D). We next tested the effect of saline stress in the test battery. 
NaCl-induced behaviour syllables that were generally in the opposite direction of those elicited by anxiolytic 

Table 1.  Drugs used in the study. Name, formula, CAS number, usage, used concentration and chemical 
structures are shown for (A) the antidepressant/anxiolytic (AA) drug group; (B) molecules targeting the JNK 
pathway hubs and (C) the known HPI axis stressors.

A AA drugs B Molecules targeting JNK pathway hubs

Fluoxetine98

C17H18F3NO
CAS 54910–89-3
SSRI
0.1, 1.0, 10.0 µM

SP60012599

C14H8N2O
CAS 129–56-6
JNK inhibitor
(ATP-competitive)
0.1, 1.0, 10.0 µM

R18100

C101H157N27O29S3
CAS 211364–78-2
14–3-3 inhibitor
0.1, 1.0, 10.0 µM

PHCVPRDLSWLDLEAN-
MCLP

Imipramine98

C19H24N2
CAS 50–49-7
Antidepressant
10, 100, 1000 nM

JNK-IN-8101

C29H29N7O2
CAS 1410880–22-6
JNK inhibitor
(irreversible)
1, 10, 100 nM

SB-590885102

C27H27N5O2
CAS 405554–55-4
B-Raf inhibitor
1, 10, 100 nM

Lithium  Cloride103

LiCl
CAS 7447–41-8
Mood stabiliser
1, 10, 100 mM

SB216763
C19H12Cl2N2O2
CAS 280744–09-4
GSK-3 inhibitor
1, 10, 100 µM

SRC-I1102

C22H19N3O3
CAS 179248–59-0
SRC inhibitor
10, 100, 1000 nM

Diazepam98

C16H13ClN2O
CAS 439–14-5
benzodiazepine (anxiolytic)
0.1, 1.0, 10.0 µM

BIM102

C25H24N4O2
CAS 133052–90-1
PKC inhibitor
(ATP-competitive)
0.1, 1.0, 10.0 µM

AKTi-1/2102

C34H29N7O
CAS 612847–09-3
Akt inhibitor
2, 10, 50 µM

Haloperidol98

C21H23ClFNO2
CAS 52–86-8
Antipsychotic
0.1, 1.0, 10.0 µM

FR236924104

C20H36O2
CAS 28399–31-7
PKCε activator
0.1, 1.0, 10.0 µM

SC79102

C17H17ClN2O5
CAS 305834–79-1
Akt activator
1, 2, 5 µM

Ketamine98

C13H16ClNO
CAS 6740–88-1
Anesthetic
1, 10, 100 µM

PMA102

C36H56O8
CAS 16561–29-8
PKC activator
(DAG mimic)
10, 100, 1000 µM

MK801105

C16H15N
CAS 77086–21-6
Psychotic
1, 10, 100 µM

Bryostatin-1 106

C47H68O17
CAS 83314–01-6
PKC modulator
1, 10, 100 nM

C HPI-axis stressors

Sodium Chloride
NaCl
CAS 7647–14-5
100, 150, 200 µM
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and antidepressant drugs (Fig. 2E). This indicates that the battery test replicates stress responses that are JNK 
and cortisol-dependent.

Identification of JNK1 pathway signalling hubs
Having established phenotypic responses to clinically used AA drug classes in zebrafish larvae, we next turned 
our attention to the JNK1 pathway. As JNK1 regulates many physiological processes in brain, we were interested 
to identify downstream signalling hubs that could serve as alternative, possibly more specific AA drug targets 
than JNK1 itself. Initially we identified JNK1-regulated phosphoproteins by comparing the phosphoproteome 
from wild-type (WT) and Jnk1-/- mouse brains. Phosphoproteins that differed significantly by more than 1.5 fold 
in Jnk1 knockout brain are presented as a circular array (Fig. 3A). We next predicted the most highly connected 
phosphoproteins to the JNK1-regulated ones using the GeneMANIA physical interaction network database. 
The predicted proteins that physically interact with the JNK1-regulated phosphoproteins are displayed at the 
centre of the circle (Fig. 3A). From the identified interacting proteins, we determined 29 candidate hubs from 
the JNK1-regulated phosphoproteome based on interaction counts and interaction confidence levels. To assess 
the significance of these interactions, we compared interaction counts for JNK1-regulated phosphoproteins to 
1000 randomly generated datasets derived from the entire brain phosphoproteome (Fig. 3B). These hubs demon-
strated significantly higher connectivity in Jnk1-/- mouse brains compared to WT brains. From among the hubs, 
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Figure 2.  Testing the effect of AA drugs on zebrafish larvae behavioural sequalae during the 1 min startle 
phase. (A) The behavioural features extracted from zebrafish larvae tracking are shown. Distance, turning, 
pausing, spurting, time and distance thigmotaxis are extracted using R statistical computing platform. (B) Fish 
were exposed to AA drugs and ketamine, MK801 or haloperidol as indicated and features (distance, turning, 
pausing, spurting, time and distance thigmotaxis) were extracted from the entire 1 min startle period. Averaged 
data indicates change relative to control for each of these behaviours according to colour code. (C) Mean 
motility profiles of zebrafish larvae (5 dpf) before and after E3 (n = 24) or NaCl (100 mM, n = 24) are shown. 
(D) Mean distance travelled, turning, pausing, and spurting of zebrafish larvae (5 dpf) before and during the 
10 min after 100 mM NaCl (n = 72) or control (n = 67), are plotted as a % change from control. (E) Zebrafish 
treated with E3 medium or NaCl as indicated underwent the battery test. Mean data on distance travelled, 
turning, pausing and spurting are shown. Control: 15 (75 observations), NaCl: 32 (156 observations). P-values 
were calculated by Wilcoxon Rank Sum test and adjusted with Benjamini–Hochberg procedure, where * 
p-value ≤ 0.05; ** p-value * ≤ 0.01; ***p-value ≤ 0.001; ****p-value ≤ 0.0001.
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we further selected those for which small molecule drugs were available for testing in the zebrafish behavioural 
screen. The selected hubs included YWHAZ/E (14–3-3s), AKT1, GSK3B, BRAF, and PKCE/G.

JNK1 pathway hub compounds induce AA‑like stereotypic behaviours during the startle period
We next screened JNK1 pathway drugs during the startle period. JNK inhibitors SP600125 at 1 µM, and JNK-IN-8 
at 10 nM mimicked the AA drug profiles (Fig. 4A). Downstream of JNK1, we targeted signalling hubs 14–3-3 
and AKT using R18, an inhibitor of 14–3-3 client binding 49 and SC79 (an AKT activator). This also induced a 
profile similar to that obtained with clinically used AA drugs. In contrast AKTi, an inhibitor of AKT, showed an 
opposite effect on distance and pausing and less effect on turning (Fig. 4A). GSK-3 inhibitor (SB216763) at 1 µM 
and LiCl at 1 mM, both known to inhibit GSK-3, produced similar responses. We also screened PKC-targeted 
drugs. PKC-epsilon activator (FR236924)50 at 0.1 µM increased turning and pausing while decreasing distance 
(Fig. 4A). Bryostatin-1, a mixed PKC agonist, also increased turning, but differed from FR236924 in that it 
reduced spurting. Also, at 10 nM (a dose that activates PKCα and PKC δ isoforms, but antagonizes PKCγ), it 
increased thigmotaxis and decreased pausing. Conversely, the pan-PKC inhibitor 3,4-Bis(3-indoyl)maleimide 
(BIM) increased turning and decreased thigmotaxis at 100 nM, a dose that inhibits PKCα more effectively than 
PKCε51.

Drug behaviour profiles during the post‑startle period
The post-startle period is also relevant for stress responses and  habituation52, therefore we examined zebrafish 
behaviour during this period. Clinically validated drugs produced behaviours similar to those during the startle 
period but with a more pronounced reduction in distance moved, increased pausing, and milder effects on 
thigmotaxis (Fig. 5A). Turning behaviour during the post-startle response period increased more linearly with 
dose, and at 10 µM, ketamine’s behaviour profile resembled classical AA drugs in this period. In contrast, saline 
stress strongly increased distance travelled and decreased turning and spurting at 100 mM NaCl (Fig. 5B). These 
behaviour profiles are consistent with a block of the HPI axis stress response by the clinical drugs, as expected. 
Among the JNK1 pathway hub compounds, several induced AA-like profiles during the post-startle period 
(Fig. 5C). For example, the 14–3-3 inhibitor R18 (0.1 µM) mimicked classical AA drug profiles, reducing distance 
moved while increasing turning and pausing. The selective PKCε activator FR236924 (0.1 µM) showed a similar 
effect, decreasing distance and thigmotaxis while increasing turning and pausing.
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Figure 3.  Identification of signalling hubs downstream of JNK1 in mouse brain. (A) JNK1 regulated 
phosphoproteins from Jnk1-/- mouse brain are organised in a large outer circle with connections to the 
predicted interacting proteins in the centre. Warmer colours indicate a larger number of physical interactions, 
red being the highest. (B) Signalling hubs derived from the Jnk1-/- mouse brain phosphoproteome (labelled 
using gene names) represent the most highly connected phosphoproteins from among all phosphoproteins that 
are significantly altered in Jnk1-/- brain verses wild-type. For each hub, the distribution of physical interaction 
count from the 1000 background networks is represented with a boxplot. The number of physical interactions 
for the same hub in the Jnk1-/- mouse brain phosphoproteome (i.e. the phosphoproteins that are significantly 
altered in Jnk1-/- mouse brain phosphoproteome), is depicted with a red cross. The most highly ranked JNK1-
regulated signalling hubs are shown.
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JNK inhibitor SP600125 (1 µM) reduced distance, decreased thigmotaxis, and increased pausing, while the 
less well characterised JNK-IN-8 at 0.01 µM, had no significant effect. The AKT activator SC79 (2 µM) produced 
a response similar to JNK inhibitor and AA drugs, while the AKT inhibitor AKTi (50 µM) induced an opposite 
response, possibly representing anxiogenic-like behaviours.

GSK-3 inhibitor SB216763 mimicked the response of AKT activator SC79. The PKC activators FR236924 (0.1 
µM) and PMA evoked similar responses, although Bryostatin-1, which activates some PKC isoforms, differed 
substantially in  profile51. Notably, we found that NMDA receptor antagonists MK801 and high-dose ketamine 
elicited similar effects to each other in zebrafish, as previously  reported53. Interestingly, the behavioural profiles 
evoked by ketamine and MK801 after the startle period (rather than during) (Fig. 5), aligned more closely 
with those of the AA drugs. AKTi, BIM, and Bryostatin-1 did not fit the AA phenotype, as expected, whereas 
haloperidol fit both “AA” and “other” classification. Finally, saline stress (NaCl) induced responses during the 
post-startle period were measured. These were notably similar to those exerted by AKTi (Fig. 5B), consistent 
with an anxiogenic profile.

Machine learning identifies compounds with antidepressant/anxiolytic classification
In addition to traditional statistical analysis, we employed machine learning to create a comprehensive AA phe-
notype classification. For this we used Receiver Operating Characteristic (ROC) curves to assess the "fit" of test 
drugs to this classification. This approach has the advantage of overcoming the limitations and biases of regular 
statistical analysis and enhances the interpretation of complex data. We tested three supervised learning models: 
Random Forest classification-regression, GLMNET linear-regression, and SVM non-linear-regression. The SVM 
non-linear regression model achieved the highest training accuracy (> 0.99) for both the startle and post-startle 
response periods with AA drugs, making it the chosen model to validate the test compounds.

Using motility tracking from the startle response period, we found that SP600125, JNK-IN-8, SC79, GSK-3 
inhibitor (SB216763), PKC isoform activators (FR236924 and PMA), and the 14–3-3 inhibitor (R18) classified 
as "AA" drug types with an area under the curve (AUC) of > 97% in the SVM ROC analysis. For JNK inhibitors, 
this aligned with mouse data where JNK1 inhibition exerts an anxiolytic effect (Fig. 6A,B)36. Conversely, inhibi-
tors of the same molecules (BIM, AKTi, SB59085, and bryostatin-1) did not fit the "AA" category. Interestingly, 
haloperidol, which is a D2 receptor antagonist used for its anti-psychotic drug effect, classified with both "AA" 
and "other" phenotypes.

When using post-startle response data, the accuracy of predictions for test drugs was generally higher. Thus, 
SC79, R18, SB216763, PMA, and FR236924 scored highly for an AA phenotype in the post-startle period, even 
surpassing the scores of JNK inhibitors, suggesting that greater functional specificity is achieved by targeting 

A JNK1 hub drugs during startle period:
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Figure 4.  Testing the effect of JNK1 pathway hub drugs on zebrafish larvae behaviour during the startle period. 
(A) Zebrafish behaviours are shown during the 1 min startle period following treatment with pharmacological 
inhibitors or activators of JNK and downstream signalling hubs. As above, drug treatments were for 1 h before 
exposure to the startle battery. Mean distance, turning, pausing, spurting, time and distance thigmotaxis 
are shown for the following numbers of fish measurements (5 cycles per zebrafish larvae) SP600125: 224, 
JNK-IN-8: 346, R18: 354, SC79: 318, AKTi: 360, SB216763: 358, SB590885: 206, FR236924: 360, PMA: 115, 
BIM: 216, bryostatin-1: 359. P-values were calculated by Wilcoxon Rank Sum test and adjusted with Benjamini–
Hochberg procedure and are indicated as follows *p-value ≤ 0.05; **p-value * ≤ 0.01; ***p-value ≤ 0.001; 
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downstream of JNK1. A summary of the multiparametric zebrafish larvae behaviour test and the impact of 
signalling hubs downstream of JNK on the AA phenotype are outlined in Fig. 6C.

Discussion
In this study, we establish a multiparameter behavioural screen to classify a common AA phenotype in zebrafish 
larvae using clinically proven AA drugs. We use a range of classical antidepressant and anxiolytic drugs; fluox-
etine, representing a commonly used serotonin reuptake inhibitor; imipramine, a tricyclic antidepressant, and 
ketamine, a fast-acting antidepressant, as well as the mood stabilizing drug lithium chloride and diazepam, a 
commonly used anxiolytic of the benzodiazepine class. Despite having distinct pharmacological profiles, these 
drugs elicit similar effects on zebrafish larvae motility patterns. All AA drugs reduce distance moved, thigmotaxis 
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and spurting, while they increase turning. This differs from the behavioural responses to psychosis-inducing 
drugs MK801 and high dose ketamine NMDA receptor antagonist drugs and anti-psychotic haloperidol, and 
saline-induced HPI axis stress, all of which produce opposing behaviours in the same test battery. We employ 
machine learning to characterise an “AA phenotype” using all of these behavioural features, and go on to use the 
assay to evaluate the signalling hubs downstream of JNK1. The results uncover new regulators downstream of 
JNK1 that align with the classical AA-drug phenotype performing even better than JNK inhibitors, suggesting 
increased functional specificity.

Dysregulation of the hypothalamic–pituitary–adrenal axis leading to hypercortisolemia is one of the main 
circuit irregularities contributing to anxiety disorders and major  depression54–57. This hormonal change can trig-
ger a cascade of events including the activation of JNKs. Accordingly, JNK is activated by cortisol and induces 
pro-inflammatory cytokines as well as amygdaloid dendritic  hypertrophy32,58–60. Additionally, JNK plays a role 
in the homeostatic regulation of glucocorticoid receptor transcriptional  activity28,31. In contrast, when JNK is 
inhibited in mouse brain a reduction in anxiety- and depressive-like behaviours is  observed61, as is the case with 
JNK inhibitor treatment or genetic  deletion36,62–64. In contrast, chimeric JNK activation induces depressive-like 
behaviour and impaired assessment of risk/reward  benefit64,65. In zebrafish brain at the larval stage, JNK1 ortho-
logues (mapk8a and mapk8b) are  expressed66, and consistent with behavioural findings in  rodents60, we find that 
treatment with structurally independent JNK1 inhibitors SP600125 and JNK-IN-8, induce an AA phenotype with 
A.U.C.s of 97.9% and 98.3% respectively in the startle period. Thus, JNK inhibitors elicit a behavioural response 
in zebrafish larvae that matches closely to that of clinically used AA drugs.

A main goal of this study was to identify signalling hubs downstream of JNK1 influencing anxiety- and 
depressive-like behaviours. We discover 14–3-3ζ (YWAZ) and 14–3-3ε (YWHAE), members of the 14–3-3 cli-
ent binding  family67, as key hubs in this process. This is interesting as JNK is known to phosphorylate 14–3-3ζ 
leading to client protein  release68. Consistent with this, in Jnk1-/- brain, we detect an increase in the interaction 
count for ζ and ε 14–3-3 isoforms, indicating that JNK1 regulates 14–3-3 binding dynamics in the CNS. In 
zebrafish larvae, we show that R18 peptide which disrupts 14–3-3 client  binding69, recapitulates the AA-drug 
phenotype with A.U.C. of 93.5% and 97.2% in the startle and post-startle period respectively, consistent with the 
involvement of ζ or ε  isoforms67,70. 14–3-3ε has also been shown to mediate chronic stress-induced  depression71. 
Interestingly, fluoxetine rescues the behavioural deficit in zebrafish lacking 14–3-3 ζ suggesting a shared mecha-
nism with fluoxetine 72.

We also identify AKT as a potential signalling hub downstream of JNK1 based on mouse brain phosphopro-
teome interaction network analysis. AKT and 14–3-3 are mechanistically linked, thus inhibition of 14–3-3 client 
binding activates  AKT73,74, potentially placing AKT regulation by JNK1 downstream of 14–3-3. We find that the 
AKT activator SC79 evokes an AA phenotype with A.U.C.s of 99.4% and 98.3% for the startle and post-startle 
response periods in the zebrafish larva screen. Conversely, the allosteric inhibitor of AKT (AKTi) induced an 
opposite response (A.U.C. 60.3% and 60.4% respectively). That AKT activation induces an AA phenotype fits with 
the well-documented antidepressant action of AKT in animal models and depressed subjects, and its regulation 
of  BDNF75,76. Consistent with this, we also identify that GSK-3β is a hub downstream of JNK1 in mouse brain. 
This is not surprising as GSK-3α/β isoforms are phosphorylated directly by AKT on S21 and S9 (α and β isoforms 
respectively), leading to GSK-3  inhibition77. In the zebrafish larva assay, the GSK-3α/β inhibitor SB216763, elicits 
an AA phenotype with A.U.C.s of 97.6% and 99.0% during the startle and post-startle response phases.

B-Raf was another signalling hub identified downstream of JNK1. In the interaction screen, B-Raf displayed 
an increase in protein interactions (from “0” to “10”) in the phosphoproteome from Jnk1-/- mouse brain com-
pared to wild-type. However, when we tested the B-Raf inhibitor SB590885, the resulting phenotype did not 
classify as “AA” either during the startle or post-startle period. Interestingly, B-Raf is also known to interact with 
14–3-3, which functions to maintain its kinase domain in an inactive  state78. The expectation therefore would 
be that activation of B-Raf upon disruption of 14–3-3 binding may allow it to contribute to an AA-like state, as 
observed with the 14–3-3 client binding inhibitor R18. However, it was not possible for us to test B-Raf further 
due to lack of activators for this molecule. The oncogenic nature of B-Raf activating mutations contraindicates 
the use of such molecules.

Figure 5.  Testing the effect of AA drugs and JNK1 pathway hub drugs on zebrafish larvae behaviour during 
the post-startle period. (A) Fish were exposed to AA drugs and ketamine or MK801 doses as indicated and 
new features (distance, turning, pausing, spurting, time and distance thigmotaxis) were extracted from the 
first 10 min following the 1 min startle period. Averaged data from the following fish measurement numbers: 
diazepam: 337, fluoxetine: 338, imipramine: 335, LiCl: 210, ketamine: 325, MK801: 323 or haloperidol: 255 are 
shown. P-values were calculated by Wilcoxon Rank Sum test and adjusted with Benjamini–Hochberg procedure 
and are indicated as follows: *p-value ≤ 0.05; **p-value * ≤ 0.01; ***p-value ≤ 0.001; ****p-value ≤ 0.0001. (B) 
Mean distance, turning, pausing and spurting during the first 10 min following 100 mM NaCl was measured. 
The number of fish per group were as follows: control/E3 = 47, NaCl = 47. (C) Zebrafish behaviours during 
the 10 min following the 1 min startle period are shown with or without treatment with pharmacological 
inhibitors or activators of JNK and downstream signalling hubs. As above, drug treatments were for 1 h before 
exposure to the startle battery. Mean distance, turning, pausing, spurting, time and distance thigmotaxis 
are shown for the following numbers of fish measurements (from 5 cycles per zebrafish larva): JNK-IN-8: 
360, SP600125: 224, haloperidol: 220, SB216763: 358, FR236924: 360, R18: 354, SC79: 318, BIM: 216, PMA: 
115, SB590885: 206, bryostatin-1: 359, AKTi: 360. P-values were calculated by Wilcoxon Rank Sum test and 
adjusted with Benjamini–Hochberg procedure and are indicated as follows *p-value ≤ 0.05; **p-value * ≤ 0.01; 
***p-value ≤ 0.001; ****p-value ≤ 0.0001.
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Figure 6.  Machine learning predicts compounds with high sensitivity and specificity for generating an AA phenotype. (A) ROC 
curves show the Support Vector Machine (SVM) results for JNK pathway hub compounds to predict an “AA” or “other” phenotype 
during the Startle Response Behaviour (SRB) and the Post Startle Response Behaviour (PSRB). The number of fish measurements 
used for testing the machine learning models were JNK-IN-8: 346, SP600125: 224, haloperidol: 220, SB216763: 358, FR236924: 360, 
R18: 354, SC79: 318, BIM: 216, PMA: 115, SB590885: 206, Bryostatin-1: 359, AKTi: 360. (B) A table summary of the area under 
the curve (AUC) values from Random Forest, Glmnet and SVM machine learning models are shown. Bold: Ranked highest overall 
taken from highest score across all machine learning approaches. The number of zebrafish tracks used for ML model training for the 
SRB class label “AA” were- diazepam: 350, fluoxetine: 335, imipramine: 343, LiCl: 210, and for class label “other”–ketamine: 349 and 
MK801: fish. During the post-startle response behaviour (PSRB) were as follows: class label “antidepressant or anxiolytic”–diazepam: 
337, fluoxetine: 338, imipramine: 335, LiCl: 210; class label “other”–ketamine: 325 and MK801: 323. (C) A schematic summary of the 
zebrafish larvae behaviour screen for AA phenotype is shown. Beside it is a summary of results obtained using this test to evaluate the 
effect of JNK1 pathway hub drugs on AA-like behaviour.
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Finally, we tested PKC activators and inhibitors in the zebrafish screen to explore their impact as possible 
effector hubs downstream of JNK1. We used the PKCε-activator FR236924 and the pan-PKC activator PMA, 
both of which evoked a clear anxiolytic-like effect (A.U.C.s of 97.8% and 95.7% respectively). Consistent with 
this, the broad specificity PKC inhibitor (BIM) had the opposite effect. Notably however, in some contrast with 
our findings in zebrafish larvae, BIM treatment attenuates corticotrophin releasing factor (CRF) facilitation of 
the acoustic startle response in mice, although it had no effect in the absence of  CRF79. Moreover, PKCγ-/- mice 
exhibit low  anxiety80. Interestingly also, that PKCε activator (FR236924) promotes an AA phenotype in zebrafish 
is supported by the response to byrostatin-1 at 100 nM, (a dose that activates PKCε81) during the startle response, 
even though when analysed at the full dose response in our study the overall phenotype is “other”. While these 
studies suggest isoform-specific roles for PKC variants in anxiety-like behaviours, we identify that PKCε repre-
sents a signalling hub downstream from JNK1 which controls an AA phenotype in zebrafish larvae, indicating 
that further analysis of this isoform in the context of stress-related behaviours is warranted.

Our observation that distinct clinical drugs, namely fluoxetine, imipramine, diazepam and LiCl, elicit over-
lapping behaviours in this short timeframe assay merits some discussion. Although these drugs share some 
pharmacological endpoints, their primary mode of action is classically seen to differ. For example, fluoxetine and 
imipramine block serotonin uptake, whereas imipramine also blocks norepinephrine uptake and antagonises 
dopamine D2 and acetylcholine receptors, and the primary target of diazepam is GABA  receptors82. Moreover, 
these drugs elicit effects on neurotransmitter levels both in responders and non-responders, giving rise to the 
theory that other effects such as neuroplasticity and neurogenesis changes may be needed for the therapeutic 
 effect82,83. A recent groundbreaking study identified the Tropomyosin receptor kinase (TrkB) as a common bind-
ing site for antidepressant drugs including fluoxetine, imipramine and ketamine. The authors demonstrated that 
binding of these drugs to TrkB occurs within minutes and is required for the antidepressant-like  effect84. They 
rationalized that neuroplasticity effects of BDNF, mediated via its receptor TrkB, could explain the antidepres-
sant effect and its timeline. In our experiments, many lines of evidence support a common role for TrkB in the 
observed responses. Firstly, it is feasible, as zebrafish larvae express TrkB orthologs (trkB1 and trkB2) from 6 
days post fertilization onwards 85. Secondly TrkB activation upon BDNF binding leads to rapid (within minutes) 
activation of AKT 75, and the behaviors measured here occur after only 60 min drug exposure. Thirdly, we show 
that JNK1-regulated signalling hubs identified here converge on the AKT pathway which incorporates 14–3-3 
ζ/ε and GSK-3. Finally, the AKT activator (SC79) evokes an AA phenotype that closely matches the clinically 
used drugs with an A.U.C. of 99.4%. Thus, AKT pathway activation offers the most likely explanation for the 
temporal and phenotypic overlap observed in response to the clinically used and JNK1-regulated hub drugs.

Animal models are limited when it comes to modeling complex disorders such as anxiety and depression. 
They do not account for subjective experience, or complex genetic and environmental background, and the 
models that do exist in mice require large numbers to attain statistical  power86,87. Here we present an assay that 
is more straightforward and scalable than rodent models. It measures stereotypic responses to acoustic and 
light stress, based on larval behavioural sequelae (distance, turning, pausing, spurting, thigomataxis distance, 
thigmotaxis time, dose and size effect). This may lack face and construct validity, and it is not designed to model 
a specific disease mechanism. Nonetheless, it does measure HPI axis stress responses and the neuroendocrine 
and monoamine control systems underlying the stress axis is conserved from chordates to  mammals88, moreover 
locomotor activity in zebrafish larvae is inherently cortisol  dependent89. A similar approach has been used to 
identify novel anti-psychotic compounds in zebrafish  larvae16, and to investigate the paradoxical excitatory effects 
of GABA and  serotonin17, for example. Interestingly, here we also observe a similar hyperactivity effect with the 
GABAR agonist diazepam when fish are exposed to violet light and acoustic stimuli together (Fig. 1H). Our study 
in addition exploits machine learning to classify the desired phenotype, enabling use of complex combinations of 
features. The result is high accuracy prediction scores for test drugs that are known to be anxiolytic/antidepres-
sant in mice e.g. AKT activator and GSK-3  inhibitor75,76,90. This highlights the potential of the zebrafish larvae 
screen to potentially identify compounds that mimic AA drugs, for further testing in rodent models, which is 
rather the goal of a phenotypic screen.

A possible explanation for the high prediction score could be linked to the dependence of the zebrafish larvae 
locomotor response on the HPI-axis48, and the drugs used regulate the HPA-axis91. Although the stereotypic 
behaviours measured here may not directly relate to AA conditions, JNK is activated by  cortisol37,92 leading 
to synapse  withdrawal32, which may influence circuit behaviour and long-term mental state. Notably also, the 
phenotype of AA-drugs differs from those of psychotic compounds MK801 and ketamine. Similarly, the anti-
psychotic D2 antagonist haloperidol shows dual classification which is consistent with its known paradoxical side 
effect, whereby some patients can respond with worsening of symptoms such as increased agitation, insomnia and 
hallucinations in  patients89. Consistent with this in the zebrafish larvae, we find that haloperidol shows a distinct 
hyper-motility phenotype, which possibly accounts for its classification as “other”; yet it also increases turning 
and diminishes spurting, consistent with the “AA” phenotype (Fig. 2; Supplementary Fig. 7). This paradoxical 
effect to haloperidol was also previously reported in zebrafish  larvae16. A long-term advantage of the screen is 
the potential reduction in the number of mice needed for drug discovery, while expanding the utility of zebrafish 
larvae in neuropsychopharmacology studies.

Materials and methods
Zebrafish husbandry—WT zebrafish (Danio rerio) larvae were derived from a cross between the high-perfor-
mance AB strain and the Tu short-fin wild type  strain22. Fish were maintained in the Turku Bioscience Zebrafish 
Core facility at 28.5 °C, under a 12 h day/night cycle. Embryos were cultured in E3 medium (5 mM NaCl, 0.17 
mM KCl, 0.33 mM  CaCl2, 0.33 mM  MgSO4) with 30 eggs per 10 cm diameter dish. Larvae of indeterminate sex 
were used from 3 to 8 dpf as indicated. Experiments were carried out in the afternoon to maximise consistency 
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of locomotor  behaviour93. Fish were bred in two tanks. At least two plates of fish were tested for every drug. There 
were minor differences in baseline motilities between plates therefore data was normalised to internal control fish 
measured on the same plate. After the experiment, zebrafish larvae are anaesthetised with 200 mg/L Tricaine for 
5min, and then euthanized by transferring to 1% chloramine ice-water solution. Behavioural experiments were 
carried out following the guidelines that were approved by the National Animal Experiment Board (ELLA) and 
the Regional State Administrative Office of Southern Finland (ESAVI) under licenses ESAVI/16343/2019 and 
ESAVI/30686/2022, which is the authority in Finland that ensures that animal experimentation is carried out 
following the law and thus follows EU ethical guidelines for animal experimentation. All methods are performed 
and reported in accordance with the ARRIVE guidelines (https:// arriv eguid elines. org).

Behavioural battery test—7 days post fertilization (dpf) zebrafish larvae were transferred to square well 96-well 
plates and drug dosages were administered following which the plate was directly transferred to the DanioVi-
sion™ device (Noldus Information Technology, BV, Wageningen, Netherlands) and acclimatized for 1 h in the 
dark at 28.5 °C. Larvae then underwent the test battery consisting of 5 cycles of a 60 s string of acoustic/vibratory 
(tapping) and light stimuli programmed using Ethovision13 XT software (Noldus Information Technology, BV, 
Wageningen, Netherlands). The 60 s stimuli were as follows; high (H) and low (L) intensity patterns (1.6 & 4.2 
W): 1 s pause, 6 × L-tap (0.5 s break between individual taps), 4 s pause, 4 × H-tap, 1 s pause, 8 × L-tap, 8 s pause, 
2 × L- tap, 10 × H- tap, 7 s pause, 2 × H-tap, 13 s pause, 14 × H-tap, 3 s pause. Visual stimuli evoked using red 
(635 nm, 192 Lm), blue (470 nm, 240 Lm), purple (red and blue together) and white LEDs, switched colour at 10 
s intervals in the following order: darkness, red, blue, purple (red & blue), white, and sequential flickering light of 
all colours sequentially at 0.1 to 0.2 s intervals. After the stimuli period there was a 29 min intermission period. 
This 30 min sequence was repeated 4 more times. Digital video tracking was performed using the Daniovision 
imaging unit using a pre-programmed protocol with the included Ethovision XT software. Acquisition was 60 
fps and exported as csv file for automated analysis using customized software in R. The data analyst was agnostic 
to the drug properties.

Stress response assay—5 or 7 dpf larvae (as indicated) were transferred to a 48-well plate with 1 fish/well and 
acclimatized for 1 h following which they were exposed to stress: either with white light illumination (10,000 
Lux) for 50 s or addition of 100 mM NaCl. Larvae were tracked for a further 30 min following stressor in the dark 
using infrared light. NaCl experiments were performed using ambient level (500 Lux) white light.

Drug treatments—Larvae at the indicated ages were treated with increasing doses of drugs and compounds 
as follows: fluoxetine, diazepam, FR236924 and PMA (Phorbol 12-myristate 13-acetate) and ketamine were 
from Tocris Bioscience, Abingdon, UK; haloperidol, imipramine, LiCl, SP600125, SB590885, Bryostatin-1 and 
MK801 from MERCK Sigma Aldrich Solutions, Darmstadt, DE; R18 from Enzo Life Sciences distributed by 
AH Diagnostics, Helsinki, FI; SB216763, JNK-in-8 and AKTi from Selleck Chemicals LLC, Houston, Texas; 
bisindolylmaleimide I (BIM) from Santa Cruz Biotechnology Inc., Dallas, Texas and SC79 from R&D systems, 
McKinley Place NE, Minneapolis or NaCl in E3 medium. Treatments were for 1h at 28.5°C before commencing 
the startle battery. Control fish were treated with equivalent volume of carrier.

Behaviour data analysis—Motility: Raw motility tracking data was exported in csv format, where each file 
contained data from 1 experimental cycle, and each worksheet contained time series data from 1 fish. Relative 
motility index (M.I.R) (plots of left side) represents the motility during a certain condition (Mcx) relative to the 
motility during the control condition (Mc0). The relative motility index was calculated as follows from all 5 cycles:

“Relative Peak Analysis” (shown in Fig. 1F–K right side panels) represents the motility during peaks P1, P2, 
P3, P4, P5, and P6 of a test condition relative to the same peaks from control fish in the same plate. The data 
scientist handling the analysis was agnostic to the drug treatments. Analysis was done in R.

Analysis of other features: X and Y positions, heading, and distance features from the time series data were 
utilized to calculate behavioural features: distance, turning, pausing, spurt velocity, and thigmotaxis by distance 
and time. Distance – Distance was summed from all time points per fish and mean total distance travelled per 
treatment dose was calculated. Turning – Turning angles between consecutive time points were calculated from 
the heading parameter of the last and current time points, and converted to magnitude representing the smaller 
angle in 360 degrees. Relative turning angles were calculated by summing all time points for each fish, then nor-
malizing to distance travelled, and presented as average values according to drug dose. Pausing—Time points 
with value 0 for distance were summed to give a value for total pause time for each fish. Spurt velocity—Time 
bouts between pauses were identified and the velocity for each time point was calculated from distance feature. 
The maximum velocity from each time bout was recorded and the mean maximum velocities from all time bouts 
in a single fish were calculated. Thigmotaxis—The well border coordinates from the 96-well plate were recorded 
from Ethovision graphic user interface (GUI). An inner border was (virtually) created that was 40% of the width 
and length of the original border, and placed in the centre of each well. The coordinates of these inner borders 
served as thresholds for thigmotactic behaviour. Time points where a fish travelled outside the inner border 
were identified and the ratio of near outer border travel versus total travel for each fish was calculated for time 
and distance. Analysis was done in R.

Machine learning analysis—Machine learning algorithms were applied to zebrafish larvae behaviour data dur-
ing the 1 min startle period and during the 10 min of the recovery period. Specifically, the quantitative variables 
total pause duration, total distance travelled, relative turning angle, average spurt speed, total thigmotaxis time 
and total thigmotaxis distance were normalized against control (or zero-dosage fish) data as percentages. These 
normalized metrics, along with dosage level variable, were incorporated as features for the machine learning 
models. The models were tasked to differentiate between “antidepressant or anxiolytic” drugs and “other” drugs. 

M.I.R(cx)[%] =
(Mcx)− (Mc0)

(Mc0)
∗ 100

https://arriveguidelines.org
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For the training dataset, drug treatments including diazepam, fluoxetine, imipramine, and lithium chloride (LiCl) 
were categorized as "antidepressant/anxiolytic" class, while ketamine and MK801 treatments were categorized 
as "other". Generalized Linear Model via penalized maximum likelihood (Glmnet), Support Vector Machine 
(SVM) with a polynomial kernel, and Random Forest algorithms were utilized to build 3 separate models each 
for startle response behaviour (SRB) data during the 1 min startle battery and post-startle response behaviour 
(PSRB) data during the 10 min recovery period. The constructed models were subsequently employed to predict 
the class category of other drug treatments. Machine learning was performed with “caret” package within the 
R environment.

Statistics—All behavioural features were compared to control fish from the same experiment. For statistical 
testing, feature values were collected into a distribution, and this data according to drug dose was compared to 
respective control distributions using Wilcoxon signed-ranked test or one-way or two-way ANOVA with Tukey or 
Dunnett’s multiple comparison test as indicated. Calculations and plots were made using a customized pipeline in 
R programming language. Data analysis was automated and the data scientist was agnostic to the treatment drugs.

Preparation of samples for mass spectrometry, SDS-PAGE and in-gel digestion – All the chemicals for diges-
tion and mass spectrometry analysis were from Sigma-Aldrich (Stockholm, Sweden). Whole brain was isolated 
from WT and Jnk1-/- C57B6J  mice94 at embryonic day 15 (E15), post-natal day 0 (P0), post-natal day 21 (P21), 
and 8 months (Adult). We extracted brains from three mice for each age and genotyped and snap froze them 
in liquid  N2. Later tissue was pulverized in a Micro-dismembrator II (Braun Biotech International, Melsungen, 
Germany). We weighed the powder and stored aliquots at -80°C before use. SDS (1%), supplemented with pro-
tease and phosphatase inhibitors (Sigma-Aldrich, St. Louis, USA), was added to the brain-powder. Mechanical 
disruption followed using a syringe twice. We centrifuged samples for 1 h at 4 °C and collected the supernatant. 
We quantified protein concentration using the Total Protein Kit, Micro Lowry, Peterson’s Modification (Sigma-
Aldrich, St. Louis, USA).

A total protein amount of 100 μg for each sample was separated on 12% Criterion gels (Bio-Rad Laboratories, 
Hercules, Ca, USA), following the manufacturer’s instructions. We washed the gel in milliQ, stained for 30 min 
with GelCode (Bio-Rad Laboratories) and washed overnight in milliQ before manually slicing each lane into 
5 equal slices. We de-stained gel slices by washing 3 times in 25 mM ammonium bicarbonate (AMBIC)/50% 
acetonitrile and dried in a vacuum centrifuge (Speedvac). Samples were reduced (10 mM DTT/100 mM AMBIC, 
1 h at 56 °C), alkylated (55 mM iodoacetamide (IAA)/100 mM AMBIC, 45 min at room temperature in the 
dark), washed 2 times with 100 mM AMBIC and dehydrated with ACN before being dried in the Speedvac. We 
rehydrated slices with 12.5 μg/ml modified porcine trypsin (Promega, Madison, WI, USA) in 50 mM AMBIC 
and digested overnight at 37 °C. Peptides were eluted 2 times in 75% ACN/5% FA, dried 1 h in the Speedvac and 
dissolved in 0.1% formic acid.

TiO2 phospho-peptide enrichment – we incubated samples for 10 min with Buffer A (1 M GA, 80% ACN, 
5% TFA) followed by incubation with the TiO2 Mag Sepharose (GE Healthcare Life Sciences) for 30 min in 
an Eppendorf Thermomixer at 800 rpm. Liquid was removed and washing steps were done using Buffer A and 
2 times using Buffer B (80% ACN, 1% TFA). Phospho-peptides enriched were eluted 2 times using 100 mM 
ammonium hydroxide in water and dried 1 h in the Speedvac.

LC–MS/MS analysis- Dried peptides were resuspended in 0.1% formic acid and separated using an Eksigent 
nano-LC 2D system (Eksigent, Dublin, CA, USA) consisting of a solvent degasser, a nano-flow pump and a 
cooled auto-sampler. Peptide concentrations were measured by Nanodrop (ThermoFisher, Stockholm) and the 
concentration adjusted to the same amount in all samples. Eight μl of sample was loaded and washed for 15 min 
onto a pre-column (Acclaim PepMap 100, C18, 3 μm particle size, 50 μm diameter, Thermo Fisher Scientific, 
Hägersten, Sweden) at a constant flow of 5 μl/min solvent B (0.1% FA in ACN). We ran three biological replicates 
and two technical repeats for each of the genotypes across four time points. Phosphopeptides were loaded into 
a RP analytical column (10 μm fused silica emitter, 75 μm ID column, 16 cm Pico Tip, New Objective) packed 
in-house with C18 material ReproSil-Pur and separated using an eighty-minute gradient from 3 to 40% solvent 
B at a flow rate of 300 nl/min. The gradient was followed by 20 min column washing with 90% ACN, 0.1% FA 
and 15 min re- equilibration with 3% solvent B. The HPLC system coupled to an LTQ-Orbitrap XL mass spec-
trometer (ThermoFisher Scientific, Bremen, Germany) operated in Data Dependent Acquisition mode. Spray 
voltage was set to 1.90 kV and the temperature of the heated capillary was set to 200 °C. The ten most intense 
ions from the survey scan performed by the Orbitrap were fragmented by collision-induced dissociation (CID) 
in the LTQ (normalized collision energy 35, parent mass selection window 0.5 Da, 30 ms activation time and 
minimum signal threshold for MS/MS scans set to 100). We excluded unassigned charge states and singly charged 
ions from fragmentation. The dynamic exclusion list was limited to a maximum of 500 masses with a retention 
time window of 2 min and a relative mass window of 10 ppm. The X-calibur software version 2.0.7 (Thermo 
Scientific) controlled the HPLC, mass spectrometer and data acquisition.

Shotgun data analysis from LTQ Orbitrap – The raw data was uploaded into Progenesis LC–MS (Waters) 
for analysis. After raw mass spectra were aligned and normalisation across all runs was carried out by total ion 
current in the analysis area manually defined for the reference HPLC for the time and mass ranges. We submit-
ted the raw files from the mass spectrometer to Thermo Proteome Discoverer (version 1.0.43.0) for protein 
identification by Mascot. Cysteine carbamidomethylation was set as a fixed modification, methionine oxida-
tion and phosphorylation of serine, threonine, tyrosine (STY) were set as variable modifications. Data were 
searched against Uniprot Mus musculus database containing 170.598 sequences (release date April 2014). The 
mass tolerance was set to 10 ppm for the precursor ion and 0.8 Da for the fragment ions. Trypsin was set as the 
protease and a maximum 2 of missed cleavages were allowed. We ran raw data using an FDR of 5% and a score 
cutoff of 20. We discarded proteins marked as contaminants, reverse hits and “non-unique peptides”. We selected 
phospho-peptides with a Mascot score higher than 20 and verified using the default Mascot Delta score of 0.1 
for comparative analysis between groups.
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Data merging and statistical analysis phosphoproteomics data – Downstream analysis of MS intensity outputs 
from Progenesis LC–MS (Waters) utilized a customized R (v.3.4.0) software pipeline. Phosphopeptide data were 
refined as follows: (i) all phosphopeptides from 5 gel slices were merged, (ii) identical phosphopeptides, i.e. those 
with identical sequence, UniProt identifier and number and position of phosphorylated residues, were merged by 
summing the intensities. (iii) If a peptide entry had > 1 missing value across 3 replicates, all entries were removed. 
For quality control of data, a distribution plot of phosphopeptide intensities for each unique genotype at given 
ages was visualized using boxplot and histogram analysis, using  ggplot295 (Supplementary F1). “Phosphopeptide-
centric” and phosphosite-centric analysis was performed as appropriate and is defined in figure legends. We 
used the Bioconductor package  RankProd96,97 for statistical analysis. We calculated mean ratios of phosphopep-
tide intensities [Jnk1-/-/WT] per entry (for both phosphopeptide-centric and protein-centric changes). Only 
phosphorylation intensity changes that passed a threshold  RatioJnk1-/-/WT > 2, with p-value < 0.05 were included.

Hub analysis – 29 candidate hubs (Fig. 3A,B)that were significantly altered in Jnk1-/- mouse brain compared 
to wildtype brain and were part of the psychiatric disease associated genes according to the MetaCore™ database 
schizophrenia gene list were selected to analyse as potential signalling hubs acting downstream of JNK1 in regu-
lating depressive/anxiety-like behaviour. The selection criteria included a threshold for phosphoproteins that 
showed either ≥ 7 physical interactions, or > 3 high weight (weight > 0.04) physical interactions from the physi-
cal interaction network built with GeneMANIA from among the significantly altered phosphoproteins derived 
from the wildtype and Jnk1-/- mouse brain phosphoproteomes. 29 proteins fulfilled these criteria. To control 
for hub protein’s inherent functional plasticity variations, 1000 control phosphoprotein networks of the same 
size as the Jnk1-/- psychiatric disease phosphoprotein network were randomly generated from the entire brain 
phosphoproteome dataset using GeneMANIA (v.3.4.1). The number of interactions of the 29 proteins from the 
significantly altered phosphoproteome network in Jnk1-/- mouse brain was each compared to the distribution 
of interaction count from 1000 randomly generated control networks to determine the significance of the hubs. 
Statistical significance for the hubs was calculated using the hypergeometric test. P-values were adjusted using 
the Benjamini–Hochberg procedure.

Receiver Operating Characteristic (ROC) analysis—ROC curves were constructed to visualise the predictive 
proficiency of the machine learning models. Individual curves were plotted for each test drug from the test 
dataset, paired with a control drug that was either classified as a "positive control" or a "negative control". Each 
treatment drug is assigned with a "true" class label that reflected its known properties and molecular interactions. 
Drugs of the "antidepressant or anxiolytic" class were coupled with the "negative control" drug ketamine, which 
provided the "true" class label of "other". Conversely, drugs classified under the "other" class were paired with 
the "positive control" drug fluoxetine for the "true" class label of "Antidepressant or anxiolytic" for the purposes 
of ROC curve calculation. The construction of the ROC curve was facilitated by the ’pROC’ package within the 
R statistical programming environment.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 
partner repository with the dataset identifier PXD016530 (www. ebi. ac. uk/ pride/).
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