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Faults locating of power 
distribution systems based 
on successive PSO‑GA algorithm
Wenzhang Xu 1, Jiachun Li 1*, Lv Yang 1* & Quan Yu 2

As the terminal of the power system, the distribution network is the main area where failures occur. In 
addition, with the integration of distributed generation, the traditional distribution network becomes 
more complex, rendering the conventional fault location algorithms based on a single power supply 
obsolete. Therefore, it is necessary to seek a new algorithm to locate the fault of the distributed 
power distribution network. In existing fault localization algorithms for distribution networks, since 
there are only two states of line faults, which can usually be represented by 0 and 1, most algorithms 
use discrete algorithms with this characteristic for iterative optimization. Therefore, this paper 
combines the advantages of the particle swarm algorithm and genetic algorithm and uses continuous 
real numbers for iteration to construct a successive particle swarm genetic algorithm (SPSO‑GA) 
different from previous algorithms. The accuracy, speed, and fault tolerance of SPSO‑GA, discrete 
particle swarm Genetic algorithm, and artificial fish swarm algorithm are compared in an IEEE33‑node 
distribution network with the distributed power supply. The simulation results show that the SPSO‑GA 
algorithm has high optimization accuracy and stability for single, double, or triple faults. Furthermore, 
SPSO‑GA has a rapid convergence velocity, requires fewer particles, and can locate the fault segment 
accurately for the distribution network containing distorted information.

Keywords Power distribution network, Fault location, Particle swarm algorithm, Genetic algorithm, Hybrid 
algorithm

As the terminal of the power system, the distribution network is characterized by many branches, variable 
operation modes, a large number of devices, and poor operation conditions, which makes it the main area where 
distribution system failures occur. With the access of distributed generation, the traditional distribution network 
has changed from a single-power radiant structure to a multi-power structure, and the traditional fault location 
algorithm based on single-power supply is no longer applicable, so further exploring new fault location methods 
is necessary. In addition, due to the installation characteristics of the feeder terminal unit (FTU), the information 
uploaded by FTU may be distorted. Therefore, the fault location algorithm should also meet the requirements 
of positioning accuracy and high fault  tolerance1.

At present, the fault location methods used in distributed power distribution networks include intelligent 
 algorithms2,3, matrix location  method4, and synchronous vector  method5. The matrix location algorithm usually 
needs to establish a structure matrix related to the current distribution network and then carry out specific opera-
tions with the fault information matrix to obtain the fault information of the distribution network.  Literature6 
proposes a fault location model combining matrix and particle swarm optimization algorithms. Although the 
positioning accuracy and anti-interference ability are improved compared with the traditional matrix algorithm, 
it can also cause a dimensional disaster. The synchronous vector method can realize high-precision fault location 
by providing real-time current and voltage, but the synchronous vector unit (PMU) equipment is  expensive7. 
Therefore, some  authors8 have effectively mitigated this defect by considering the impact of load loss on PMU 
equipment layout.

In recent years, the rapid development of artificial intelligence technology has provided a reference for the 
solution of fault localization problems in distribution networks with multiple power structures. Among them, 
well-studied intelligent algorithms include particle swarm optimization (PSO)9, genetic algorithm (GA)10, arti-
ficial fish swarm algorithm (AF)11, and so on. However, a single PSO or GA algorithm often tends to fall into the 
dilemma of local optimal  solution12. For this reason, some  researchers13 proposed a switching function expression 
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for multiple faults of multiple power sources and utilized a hybrid discrete PSO-GA algorithm better to solve the 
fault localization problem in distribution networks. However, the algorithm needs to improve its iteration speed 
triggered by the unsuccessful speed update, and it is prone to falling into the local optimum. Although the binary 
artificial fish swarm algorithm has an excellent performance in localization effect, the algorithm is complex, and 
the optimality-seeking speed is slow. In contrast, the continuous particle swarm algorithm can overcome the 
problem of speed update failure in binary iterative optimization search and has a high iteration speed. Therefore, 
successive particle swarm genetic algorithm (SPSO-GA) is established in this paper and takes the IEEE 33-node 
distributed distribution network as an example to compare and study the performances of SPSO-GA, PSO-GA, 
and AF in terms of localization accuracy, arithmetic speed, and fault tolerance.

Distribution network fault location rules
State encoding style
There are only fault and normal states in the feeder segment of the distribution network. Therefore, a 1 or 0 code 
can represent a specific segment’s feeder state. The expression is as follows:

After the DG is connected, the feeder current direction changes to bidirectional. When a fault occurs, the 
FTU at the node can detect the fault current, and the node status code can be expressed as:

Switching function
The switch function expresses the connection between switch information and each feeder segment. The switch 
function in the distribution network containing DG is:

where

where switch j is the breaking point, the distribution network is divided into uptream and downstream, i.e., u 
and d two parts, the upstream and downstream lines have M1 and N1 power supplies respectively; “ 

∏

 ” means 
“logical or”; I∗j (x) is the switch function of the jth switch, Iju(x) and Ijd(x) are the switching functions of the 
upstream and downstream lines of the jth switch; Ku and Kd are the power switching coefficients of the upstream 
and downstream lines, which are taken as 1 if the power supply is connected and 0 otherwise; Xj,Su and Xj,Sd are 
the status values of the feeder section from the jth switch to the upstream power supply Su and the downstream 
power supply Sd ; Xj,u and Xj,d are the states of the upstream and downstream feeder sections, respectively; M and 
N are the total number of feeder sections of the upstream and downstream lines, respectively.

Fitness function
The fitness function is a function used to compare ideal state value and actual value, and its expression is as 
 follows14:

where Ij is the actual reported information of FTU at switch j, and I∗j is the expected status value of FTU at switch 
j; n is the total number of extents and nodes; Xj represents the state of the j section; ω is the anti-misjudgment 
weight coefficient. The second term on the right can solve the case of multiple solutions of the function. The 
smaller the fitness function value, the closer the predicted fault segment is to the actual fault segment.

Distribution network fault location algorithm
Improvement of particle swarm optimization algorithm
The particle swarm optimization model is built to imitate the foraging process of  birds15, and its binary particle 
speed and position update expression is as follows:
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In the formula, vid and xid are the velocity and position of the d dimension of the ith particle, respectively. ω 
is the inertia weight; c1 and c2 are learning factors; r1 and r2 are random numbers; t  is the number of iterations; 
gbestid(t) is the d-dimensional position of the global optimal particle in the t-th iteration, and pbestid(t) is the 
d-dimensional position of the historical optimal particle i in the t-th iteration.

By observing the second and third items on the right of Eq. (7), it can be seen that there is a 50% probability 
that this item will be zero, which will lead to the failure of speed updating and will not improve with the increase 
of iterations, significantly weakening the convergence speed and optimization ability of the algorithm. Therefore, 
the coding method of “dual structure coding of particle position” proposed in the  literature16 is introduced in this 
paper to construct successive particle swarm optimization (SPSO) for fault location of the distribution network, 
which is defined as follows:

where sign(x) = 1
1+e−x  ; vid(t) ∈ [−4.5, 4.5] ; gbestid(t) , pbestid(t) , xid(t) ∈ [−5k, 5k] . this article takes k = 1.5 . 

The improved algorithm retains the advantages of the PSO algorithm in continuous space search and applies to 
discrete space optimization problems.

Binary fish swarm algorithm
In a piece of water, fish can often find the place with more nutrients by themselves or with other fish, so the place 
with the most significant number of fish surviving is generally the place with the most nutrients in the water. The 
artificial fish swarm algorithm is based on this feature to achieve optimization. Artificial fish shoals are usually 
abstracted into four behaviors: swarm behavior, tailgating behavior, and foraging behavior. In recent years, the 
AF algorithm has become one that can solve binary optimization problems. In order to reflect the advantages 
and effectiveness of the algorithm established in this paper, the AF algorithm is introduced as a comparison, 
and its relevant definitions are as follows:

The gathering behavior
Fish naturally gather in groups to ensure their survival and avoid hazards during swimming. There are three rules 
for fish to abide by when they gather in groups: separation rules: try to avoid overcrowding with neighboring 
partners; Alignment rules: try to be consistent with the average direction of neighboring partners; Cohesion 
rule: Try to move toward the center of the neighboring partner.

Suppose the current state of i artificial fish is xi , the food concentration is fi , and the number of artificial fish 
in its field of vision ( norm

(

xi − xj
)

< visual ) centering on itself is ns . If ns ≥ 1 , the binary central expression is:

where ρ =
sum(xj)

nf
 , round is the integer function.

Calculate the food concentration fj of the center, if satisfied:

Note the center is not too crowded. Follow the formula (15) to move toward the center. Otherwise, foraging 
behavior is performed.

In this paper, n is obtained by the function randperm (). For Eq. (15), randperm (Step, 1) is taken here. The 
Step is the step size of each move.

The rear‑ending behavior
When one or more of the fish in the shoal finds food, its neighbor follows it quickly to the spot.

Suppose the current state of artificial fish i is xi , the food concentration is fi , and xj is the partner with the 
lowest food concentration among all partners in its field of vision centered on itself. If fj > fi , foraging behavior 

(8)xid(t+ 1) =
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1, rand < sign(vid(t+ 1))
0, other

(9)sign(vid(t+ 1)) =
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0, ρ < 0.5

(14)fj < fi , fj/nf < σ · fi

(15)x(i+1)k =

{

xjk , select nn ≤ Step positions on xj at random
xik , other
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is performed; Otherwise, use Formula (14) centered on xj to judge whether it is crowded. If not, move with 
function (15); otherwise, foraging behavior will be performed.

The foraging behavior
Fish generally swim freely in the water at random, and when they find food, they swim quickly toward increasing 
food.

Set the current state of the i th artificial fish as xi and food concentration as fi , and select a state xj randomly 
in the field of vision according to Formula (16) with food concentration as fj.

If fj < fi , move one step in this direction according to (17). The Try-number is repeated if the maximum 
search times cannot be met. If the maximum search times are not met, random behavior (18) is executed

The random behavior
Individual fish swim randomly in the water to find food spots or partners around them in a broader area.

PSO‑GA and SPSO‑GA algorithms for distribution network fault location
In this paper, the concepts of gene crossover and mutation in GA were introduced in the iteration of the PSO 
algorithm to increase the diversity of  particles17. In this paper, the mutation effect is achieved by inverting a 
specific number, different from the variation in the previous binary genetic algorithm. In order to balance the 
computational efficiency, each iteration has a 20% probability of going through an additional the GA substep. 
After entering GA substep, iteration G = 30 times, where crossover probability pc = 0.9 , mutation probability 
pm = 0.5 . When the GA substep gets a better individual than the global optimal of the previous generation, exit 
the GA substep immediately to improve the operation efficiency. The process is shown in Fig. 1.

Comparison of fault optimization in SPSO‑GA, PSO‑GA and AF distribution 
networks
In order to compare and study the optimization ability of the three algorithms, this paper takes the IEEE33-node 
distribution network as the object. It uses MATLAB simulation to verify the algorithm’s effectiveness in terms 
of optimization accuracy, fault tolerance, and optimization speed. The network structure of the distribution 
network is shown in Fig. 2:

The number of individuals of the three algorithms is set as N = 20 , the number of single iterations of the 
program is set as 100, and each algorithm is tested 200 times to reduce occasionality.

Optimal parameter verification
In order to make the comparison results more convincing, it is necessary to find out the optimal parameters 
of each algorithm. In this paper, Section “Conclusion”, the fault of the distribution network is selected as the 
optimization object of the three algorithms, and the grid method is used to find the optimal parameters.

The learning factors c1 and c2 of the particle swarm optimization algorithm are generally set in the interval 
of [0,4], and the algorithm is more stable when the inertia weight ω is less than 1. In this paper, the parameters 
of the PSO-GA algorithm are set as ω = 0.9, c1 = 3.4, c2 = 3.5.

For the SPSO-GA algorithm proposed in this paper, The debugging steps are as follows:

(1) This algorithm uses a different continuous velocity (only containing 0 and 1) for iteration, so the velocity 
of some particles will gradually approach 0, resulting in a slower position update. Therefore, the random 
velocity between (0, ± 2) is re-assigned to the particles with lower velocity to retain the positive and negative 
of the original velocity to prevent the particles from falling into the local optimal state.

(2) Through debugging, the basic parameters of the SPSO-GA algorithm are set as = 0.8 , c1 = 0.7 , c2 = 0.1.

For the AF algorithm, Step and Visual are restricted to integers in the interval (0,4], and the size of the delta 
is also restricted to the interval (0,4]. The parameter combination with the highest accuracy was selected, and 
finally, the parameters of the algorithm were set as Step = 2, visual = 4 and, delta = 2.5.

Comparison of search accuracy
Table 1 compares the positioning accuracy obtained for each optimization-seeking algorithm across 200 experi-
ments conducted under various human-specified fault scenarios. It can be seen from the table that the optimi-
zation accuracy of the PSO-GA algorithm and AF algorithm in different fault segments changes significantly, 

(16)xjk =

{

∼ xik , select nn < Visual positions on xi at random
xik , other

(17)x(i+1)k =

{

xjk , randomly select m
(

m ≤ Step
)

elements from the selected n positions
xik , other

(18)x(i+1)k =

{

xik , select l
(

l ≤ Step
)

positions on xi at random
xik , other
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Figure 1.  PSO-GA algorithm flowchart.

Figure 2.  IEEE 33-node distribution network.

Table 1.  Comparison of single fault location accuracy.

Algorithms 2 (%) 3 (%) 5 (%) 16 (%) 19 (%) 27 (%) 32 (%)

PSO-GA 100 92 95 98 11 70 16

AF 100 100 100 100 0 100 1

SPSO-GA 100 99 98.5 100 85 87 77.5



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11259  | https://doi.org/10.1038/s41598-024-61306-w

www.nature.com/scientificreports/

and the algorithm is unstable. At the same time, the algorithm proposed in this paper is stable and has a good 
optimization effect.

It can also be seen from Table 1 that when the fault occurs in section 32 of the distribution network, the 
optimization accuracy of the three algorithms is low; this is because there are only 20 optimization individuals 
set in this paper, and the probability of hybrid algorithm entering GA subroutine is only 0.2, so if we want to 
increase the optimization accuracy of the algorithm, in addition to increasing the number of particles in the 
algorithm, it can also increase the number of iterations of the GA subroutine and or increase the probability of 
entering the GA subroutine. Through verification, when the number of individual particles of each algorithm is 
increased to 30, the accuracy of the SPSO-GA algorithm constructed in this paper can reach 88%. In contrast, 
the optimization effect of the other two algorithms is not improved much. Figure 3 shows the iteration situation 
where only the particle number of each algorithm is increased to 30:

Continue to compare other fault situations. The following simulation results are still based on the particle 
number of the algorithm being 20, and the comparison results of dual fault location accuracy are shown in 
Table 2.

It can be seen from the optimization results of double faults that, except for the case of feeder segment 23 
and 30 faults, all algorithms can maintain a high level in terms of stability and positioning accuracy, and the 
SPSO-GA algorithm has little difference with the AF algorithm in the optimization of double faults. However, 
the SPSO-GA algorithm is more stable in general.

Table 3 shows the optimization results of triple faults. It can be seen that when the faults co-occur in sections 
15, 28, and 3, the optimization result of the AF algorithm drops significantly to only 68.5%. Although PSO-GA 
has a higher optimization rate in this case, the SPSO-GA algorithm shows a more stable optimization result.

Comparison of fault tolerance of algorithm optimization
As the distribution network at the end of the power system, most of its faults are single  faults18, so in order to 
highlight the fault tolerance of the SPSO-GA algorithm, this paper continues to simulate and compare single 
faults containing distorted information, and the calculation results are shown in Table 4.

As seen from Table 4, the optimization accuracy of the three algorithms has a high accuracy when the fault 
occurs in section 16, and there is one or two distorted information. Among them, the fish swarm algorithm AF 

Figure 3.  Iterative comparison after increasing the number of particles.

Table 2.  Comparison of double fault location accuracy.

Algorithms 33|4 (%) 2|28 (%) 8|18 (%) 2|9 (%) 9|25 (%) 23|30 (%) 20|7 (%)

PSO-GA 91 100 92.5 100 96.5 26.5 85.5

AF 100 100 100 100 100 19.5 100

SPSO-GA 99 99.5 97.5 99.5 98 79.5 97.5

Table 3.  Comparison of accuracy of triple fault location.

Algorithms 30|6|19 (%) 20|4|27 (%) 7|5|30 (%) 1|18|4 (%) 31|26|9 (%) 22|17|19 (%) 15|28|3 (%)

PSO-GA 86.5 97.5 93.5 100 97 100 88

AF 100 100 98 100 100 100 68.5

SPSO-GA 91.5 94 92.5 100 96 100 90.5
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can even reach 100%. However, when 32 zone faults and distorted information exist, the optimization effect of 
PSO-GA and AF algorithms is significantly reduced. In contrast, the SPSO-GA algorithm shows better stability 
despite some changes. Therefore, the SPSO-GA algorithm can better locate the fault section with distorted infor-
mation and be more stable. Similarly, if the fault optimization accuracy of the algorithm needs to be improved. 
In that case, it can still be achieved by adding a few particles or increasing the probability of GA substeps.

Search for speed comparison
Figure 4 shows the comparison results of a single iteration of the three algorithms. Since the single iteration of 
the algorithm is contingent, it cannot be equated with the speed of algorithm optimization. In order to compare 
the searching speed of each algorithm and make the comparison results reliable, fault section 16, which has lit-
tle difference in the searching accuracy rate of the three algorithms in Table 1, is selected for data analysis. The 
specific setting of the program here is to run the three algorithms for 200 times, respectively. When the optimal 
value is iterated in an experiment, the experiment will be ended, and the time will be accumulated for the next 
experiment. The final comparison result is shown in Fig. 5.

According to the running time of the three algorithms in Fig. 5, the SPSO-GA algorithm constructed in this 
paper is about 1/3 longer than that of the PSO-GA algorithm. In contrast, the iteration time of the AF algorithm 
is more than twice as long as that of the PSO-GA algorithm. Therefore, in combination with Figs. 4 and 5, it can 
be concluded that under the condition of high accuracy of the three algorithms. However, AF requires fewer 

Table 4.  Comparison of single fault location accuracy with distortion information.

Algorithms 32(13) (%) 32(13|19) (%) 16(5) (%) 16(7|15) (%)

PSO-GA 9.5 11.5 96 97.5

AF 2 1.5 100 100

SPSO-GA 75.5 75 100 98.5

Figure 4.  Comparison of times of single iteration.

Figure 5.  Iteration speed comparison.
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iterations, and its running time is the longest among the three algorithms, which is determined by the large 
computation amount of the AF algorithm itself. In addition, although the iteration speed of PSO-GA is fast, 
combined with the previous analysis, it can be seen that the optimization accuracy of this algorithm is the lowest. 
Therefore, overall, the algorithm constructed in this paper is still dominant.

Conclusion
In this paper, we break away from the binary nature of fault coding in distribution networks and introduce 
a successive particle swarm coding approach. This method is then combined with the principles of genetic 
algorithms to form a new hybrid algorithm called SPSO-GA. The accuracy, fault tolerance, and optimization 
speed of SPSO-GA, AF, and PSO-GA in locating faults within the IEEE33 node distribution network were 
compared. The results indicate that the SPSO-GA hybrid algorithm proposed in this paper exhibits high 
optimization accuracy, stability, and fault tolerance across various fault conditions. Moreover, it demonstrates 
rapid execution speed and performs well even with a small number of particles. These advantages collectively 
position SPSO-GA as a superior choice compared to other algorithms.

Overall, the findings of this study offer new insights into addressing fault localization issues in multi-power-
source structures, contributing to reducing operational costs and improving the stability of power networks. 
As technology advances and algorithms are optimized, these outcomes will serve as valuable references and 
foundational support for achieving more reliable, intelligent, and efficient power systems.

Data availability
The data that support the findings of this study are available on request from the corresponding author, Jiachun 
Li, upon reasonable request.
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