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NGMD: next generation malware 
detection in federated server 
with deep neural network model 
for autonomous networks
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Distributed denial-of-service (DDoS) attacks persistently proliferate, impacting individuals and 
Internet Service Providers (ISPs). Deep learning (DL) models are paving the way to address these 
challenges and the dynamic nature of potential threats. Traditional detection systems, relying on 
signature-based techniques, are susceptible to next-generation malware. Integrating DL approaches 
in cloud-edge/federated servers enhances the resilience of these systems. In the Internet of Things 
(IoT) and autonomous networks, DL, particularly federated learning, has gained prominence for 
attack detection. Unlike conventional models (centralized and localized DL), federated learning does 
not require access to users’ private data for attack detection. This approach is gaining much interest 
in academia and industry due to its deployment on local and global cloud-edge models. Recent 
advancements in DL enable training a quality cloud-edge model across various users (collaborators) 
without exchanging personal information. Federated learning, emphasizing privacy preservation at 
the cloud-edge terminal, holds significant potential for facilitating privacy-aware learning among 
collaborators. This paper addresses: (1) The deployment of an optimized deep neural network for 
network traffic classification. (2) The coordination of federated server model parameters with training 
across devices in IoT domains. A federated flowchart is proposed for training and aggregating local 
model updates. (3) The generation of a global model at the cloud-edge terminal after multiple rounds 
between domains and servers. (4) Experimental validation on the BoT-IoT dataset demonstrates that 
the federated learning model can reliably detect attacks with efficient classification, privacy, and 
confidentiality. Additionally, it requires minimal memory space for storing training data, resulting in 
minimal network delay. Consequently, the proposed framework outperforms both centralized and 
localized DL models, achieving superior performance.

The most destructive cyberattacks, particularly DDoS assaults, continue to inflict unintended damage on ISPs 
and network operators, ranking among the top security  concerns1. Recent catastrophic events, characterized by 
traffic attacks exceeding 1 Tbit/s, underscore the increasing strength, sophistication, and devastating impact of 
DDoS attacks. Annually, these substantial security risks impose significant financial losses on both commercial 
and academic institutions. Large-scale and severe DDoS attacks are exacerbated by the proliferation of IoT bot-
nets and the rapid growth in unsecured IoT devices, projected to reach 10 billion by  20272. This escalating trend 
poses a considerable threat, contributing to the intensification of DDoS attacks. The need for robust defense 
mechanisms is evident, and the significance of advancements in detection and prevention methods, such as the 
proposed federated learning model, becomes increasingly apparent in the face of evolving and more potent cyber 
threats. The development of new cyberattack techniques, such as botnet as a service, gives attackers more sophis-
ticated tools with which to launch new attacks that may result in various types of damage, such as the theft of 
sensitive data, the disruption of some crucial industries (such as healthcare and finance), and network intrusion. 
As a result, there is a critical need for extremely powerful detection  systems3 to protect networks against DDoS 
attacks and other types of intrusive activity. Detection systems are important for maintaining information security 
and are regarded as the first line of defense against network security risks; they work to quickly and accurately 
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identify such threats while producing a few false positives. Conventional detection systems, on the other hand, 
are pattern- and signature-based detection systems, which makes it challenging to find autonomous assaults.

Furthermore, effort is needed to constantly enhance and evolve such detection systems to detect next-gen-
eration malware.

Fifth-generation (5G)4 cellular networks are currently advancing and putting different demands on them, 
notably those for dependability, delay, and throughput. Confidentiality is another issue that has drawn the most 
interest from the networking and telecommunications research community as networks are becoming more 
complicated. The concept of mobile networks that go beyond 5G or 6G considers crucial characteristics like 
intelligent security and automated security management. Implementing such security monitoring solutions and 
their maintenance with minimal to no human interaction while meeting high-performance standards would 
provide a plethora of novel obstacles. To satisfy the automation needs of network administration, the European 
Telecommunications Standards Institute (ETSI) established the Zero-touch Network (AN) architecture. The 
AN design, which divides the network into clusters depending on their various requirements, such as logistical, 
commercial, and technical demands, also includes closed-loop operations and artificial intelligence (AI) and 
machine learning (ML) techniques. The basic AN  architecture5, safety closed-loop activities for detecting attacks, 
security assessment, cyber threat intelligence for threat mitigating or avoidance, safety coordination, and defense 
policy modifications can all be directly impacted by safety constraints.

The authors  in6, construct smart transactions and keep hostile or unreliable participants out of FL, sug-
gest a blockchain- based safe FL architecture. In order to prevent poisoning attempts, the central aggregator 
distinguishes hostile and unreliable individuals by automatically executing smart contracts. Furthermore, we 
defend against membership inference attacks using local differential privacy approaches.  In7, every UAV has a 
Computing Element (CE) that handles tasks that are sent to it via vertical offloading from the equipment on the 
ground. In order to ensure that the FANET processing latency for each work acquired is reduced and is almost 
independent of the activity status of the area encompassed by the UAV collecting that job, horizontally offload 
amongst UAVs of the FANET is also added for load balancing considerations. Deep Reinforcement Learning 
(DRL) is the foundation of the suggested FANET management architecture, enabling zero-touch adaptation to 
the time-variant activity state of the region serviced from each UAV. As seen by the various  researchers8, there 
should be a sufficient number of detectors powered by ML techniques in the network inspired by the AN design 
to evolve in various fields, including image and speech recognition. Detectors will nevertheless have limitations 
in terms of processing speed and storage. In this detection, systems have acquired these techniques to identify 
the security attacks of the traffic on the network. Without updating the protocols of conventional IDS, the IDS 
is able to detect existing or any new  attacks9. These ML/DL-based detection systems are ineffective when dealing 
with newly emerging security threats since there aren’t enough balanced and recently labeled training datasets. 
To overcome all these issues, the concept of federated learning (FL)10, a comparatively recent type of machine 
learning algorithm, permits decentralized processing with greater privacy and communication effectiveness. 
In FL, the models are aggregated after being trained on decentralized  devices11. In FL, every contributor trains 
locally a globally interconnected model utilizing its local training data, then provides just the local model updates, 
as opposed to transporting sensitive information of every collaborator to a centralized authority (e.g., server) 
in order to build a specific ML model. Even though only short model updates are exchanged, as opposed to 
transmitting the complete raw training data across the network, FL can dramatically reduce privacy issues and 
communication costs (e.g., network bandwidth utilization)12.

Motivation
Federated learning has demonstrated its capability to enhance vast, unstructured, and diversified datasets in zero-
touch networks. This is particularly advantageous as it automatically facilitates learning at both local (local server) 
and global (cloud edge terminal) levels, enabling the extraction of hidden patterns from massive data volumes. To 
ensure network security, as highlighted  by13, the concept of a detection system can leverage this approach to han-
dle unforeseen malicious data effectively. The deployment of an intrusion detection system becomes imperative 
for identifying and distinguishing between normal and malicious traffic on the  network14–16. Compared to other 
learning techniques, a federated learning-based detection system significantly improves overall  accuracy17–19.

While much of the existing research in 4G and 5G communications focuses on network performance, depend-
ability, and delay, attention to network security and confidentiality in wireless communication has increased in 
recent years. The safeguarding of data security and privacy has become a crucial aspect of human-centric zero-
touch communications, directly impacting users’ lives. Simultaneously, the lawful collection of extensive user 
information by communication and data service providers often leads to the inadvertent leakage of personal data. 
Consequently, identifying intrusions with federated learning becomes challenging, particularly in zero-touch 
networks where applications often involve large sequences of data based on time series.

In conclusion, there is an anticipation that federated learning approaches can be effectively employed on cloud 
edge terminals to develop intrusion detection-enhanced learning techniques in zero-touch networks, addressing 
the intricate challenges associated with data security, privacy, and intrusion identification.

Problem definition
This paper introduces the utilization of Federated Learning (FL) to establish a framework for the anomaly 
detection of attacks within the architecture of AN. The proposed architecture presents a novel approach incor-
porating Federated Learning and zero- touch networks, providing an effective security-preserving solution. This 
framework develops an anomaly detection mechanism specifically designed to manage the DDoS collaboration 
process among diverse IoT clusters. Firstly, the security and privacy preservation achieved through collaborative 
learning among various collaborators make it highly effective for the selected collaborative Intrusion Detection 
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System (IDS). Secondly, Federated Learning acts as a deterrent against attacks, as potential attackers may attempt 
to retrieve crucial information about the training data from locally updated computations transmitted by each 
collaborator. Thirdly, the evaluation is conducted using the BoT-IoT dataset to secure the network, encompass-
ing parameters such as protocol, source address, source port, destination address, sequence number, standard 
deviation, source and destination rate, and various attack categories including Denial of Service (DoS), DDoS, 
Reconnaissance, and Information theft. The evaluation results demonstrate the effectiveness of the proposed 
architecture compared to state-of-the-art centralized machine or deep learning models concerning accuracy, 
precision, recall, and F1-score in detecting the number of attacks occurring in different clusters.

Contributions
The major contributions in the paper are summarized as:

1. Utilizing federated learning, a distributed and secure collaborative framework is proposed to enable diverse 
IoT domains to construct an effective attack detection model on cloud-edge terminals. This framework is 
designed to handle authorized attacks, ensuring security while safeguarding the privacy of each domain 
within the IoT ecosystem.

2. Furthermore, a federated secure server aggregation mechanism is developed to securely aggregate data from 
each collaborator for updating localized models. A deep neural network architecture is specifically tailored 
for classifying network traffic, with the FedAvg technique employed for merging updates from local models.

3. To validate the efficacy of the proposed framework, simulations are conducted using the BoT-IoT dataset. 
Performance evaluation metrics, including accuracy, precision, recall, and F1-score, are utilized across five 
IoT-based domain devices. The aim is to achieve maximum accuracy, a high rate of attack detection, and 
privacy preservation to effectively counter the significant scale of security threats in IoT environments.

Attacks in IoT-based federated learning for zero-touch networks
In this subsection, the main attacks are in multiple layers of IoT-based federated learning for zero-touch networks 
are discussed (Fig. 1). The three-layered framework has been highlighted to show the attacks on the different 
layers of IoT-based federated learning zero-touch network system:

In the perception layer, there are numerous resource-restricted sensors and actuators that transmit and 
retrieve the data with regard to the multiple communication technologies that include Bluetooth, 6LowPAN, 
etc.20. More often all the devices are located at diversified positions, the injection rate is maximum with respect 
to the captured nodes. This layer is vulnerable to relays, side channels, malicious data, and routing threads. The 
network layer intimates the information that is directed and sent generously. The information or data is inter-
changed and may initiate the diversification of vulnerabilities in the network, which includes manipulation in 
the network, DDoS and DoS attacks, access to authentication and authorization, etc. In the application layer, 
the top layer, sometimes referred to as “layer 7,” is where business logic is delivered to systems and where user 
interfaces are provided for traffic control, mobility evaluation, resource endowments, and forecast capabilities. 
The majority of software weaknesses, such as user acquisition, unprotected login details, and access termination 

Figure 1.  Attacks in IoT-based federated learning.
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after a predetermined number of failed password guesses, affect the application  layer21. The various attacks in 
this layer are authentication, cloud, and cryptographic vulnerabilities and vulnerabilities in the software.

Proposed methodology
Federated learning in autonomous networks
The framework for federated learning in zero-touch networks comprises various services in which the massive 
number of decentralized devices can collectively exchange the global model based on anomaly detection by 
deploying the local datasets. In Fig. 2, the strategy of the federated learning framework is split up into three steps: 
System Initialization, Training Model, and Aggregation Stage. In the system initialization stage, service requests 
will be computed by the device and determined to sign up with the accessible cloud to connect the training of the 
global model through the zero-touch networks. Furthermore, a fraction of the registered devices will be selected 
randomly by the cloud, serving as task distributors to engage in this round of training. In contrast, the other 
registered devices will be rejected. The cloud will transmit the initialized or global model that is pre-trained θc to 
every chosen device ((i),(ii)). The next stage, i.e., the training stage, in which each device that is chosen trains the 
global model θm← θc by deploying the localized dataset for each round, to acquire the updated global model θm

c+1.
In general, mth device (m ∈ 1, 2, ...,M) , the optimized loss function is shown as arg min 

Pc(θ), Pc(θ) =
1
Ec

∑
a ∈ Ecpa(θ) , in which Ec represents the size of the localized dataset that comprises of input 

and output pairs of vectors (ka, ja), ka, ja ∈ Q, θ represents the parameter of local model, pa(θ) shows the loss func-
tion locally. The model updates to the cloud are done in which the updates of each device chosen were uploaded 
((iii),(iv),(v)). In the aggregation stage, all chosen devices’ model upgrades are sent to the cloud for consolidation 
to generate a new global model θc+1 for the next round in which the number of edge nodes is signified by M. In 
the next round, the cloud’s chosen device retrieves the most recent global model, θc+1, from the cloud.

The device will upgrade its particular model using the newly obtained global model. The cloud will choose a 
random device subset arbitrarily for the subsequent training cycle, and it will continue the previous steps until 
the trained model satisfies the halting criterion (vi).

Proposed framework for detection of DDoS attacks in federated learning-based autonomous 
networks
In this section, the proposed framework ensures secure privacy preservation for collaborative learning within 
diverse distributed IoT domains. The framework facilitates secure collaboration among various IoT domains. 
Initially, the company establishes collaboration in the federated server, enabling the learning process to occur 
collaboratively only with authorized collaborators. Utilizing a federated server ensures the system’s privacy, 
confidentiality, flexibility, and adaptability. The company initiates global model training across authenticated 

Figure 2.  Role of federated learning in autonomous networks.
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collaborators. Broadly, the company represents the global model alongside a collection of parameters, trans-
mitting these parameters to each collaborator. The encryption employed aims to prevent any entity, such as an 
aggregator, from reconstructing a collaborator’s private information from its model notifications. Each col-
laborator assists in calculating simultaneous local model updates based on its local training data, subsequently 
transmitting the encrypted values of these updates to secure aggregators. These aggregators amalgamate the 
local encrypted updates provided by each collaborator, and the combined value is then relayed to the company. 
Subsequently, the company decrypts the aggregated results and delivers the global model parameters to each 
collaborator. This iterative process is repeated for a predetermined number of rounds or until a predetermined 
stop condition is met.

In the proposed framework, the company manages the secure and private preserving process of collabora-
tive learning amongst various IoT  domains22. The company generates and utilizes the proposed work in the 
server. Then, the collaborators in federated learning IoT domains are added to the system of collaboration. The 
information to be included is the collaborator’s address, which will provide the flexibility for the company to 
insert or delete the collaborators from the system and manage them in a decentralized, trustworthy way. The 
framework enables private learning amongst the IoT domains by merging federated learning with the secure 
federated server. The work is illustrated in Fig 3:

The company, federated secure server aggregator, IoT domains (collaborators). The company starts with col-
laborative learning by defining the parameters that are at the global model defining the set of weights s0. Later, it 
chose C-authorized collaborators and delivered the global model to every authorized collaborator. Where every 
collaborator c, 1 <= c <= C, executes all the local updates and, based on the global model, evaluates in parallel with 
its training dataset locally. Every collaborator performs the encryption on the local model updates and divides 
all these updates among FSh shares. Every federated secure server aggregator fs, 1 <= f s <= FSh acquires any one 
of the shares of every collaborator and aggregates the acquired encrypted updates of the local model through 
global model updates, which are later delivered to the company. The company will decrypt the parameters of the 
global model and initiate the newest round. This procedure is repeated till we reach the maximum round. The 
controller in domains extracts the features of network traffic for training the local model, once the global model 
training is completed, the utilization of the global model is to efficiently cope with the security-related threats. 
The objective function of neural network optimization is:

The Eq. 1 is explained as C depicting the total number of collaborators for each domain, fc(dh) indicates the 
objective function performed locally for the cth collaborator, fc shows the parameterized function denoted by the 
high dimensional vector dh ∈ Hd, for every round h, the locally trained comprised of selecting the parameters dh. 
The minimized local loss function is evaluated as follows:

(1)Minimumdh belongs toHd f (dh) =
1

C

C∑

c=1

fc(dh)

Figure 3.  System model of proposed framework.
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where in Eq. 2 nc denotes the local samples (number) with respect to (ajc, b jc) of the cth collaborator.
On every collaborator, the deployment of stochastic gradient descent (SGD) is used for optimization having 

the learning rate of lr. Every collaborator independently evaluates the average value on the local data for the 
present model dh by utilizing the local batch for two or many more epochs ep, as shown in Eq. 3 (Figs. 4 and 5).

The training of the proposed work is shown as flowcharts in Figs. 4 and 6:

(2)∀c, fc(dh) =
1

nc

nc∑

jc

= 1fjc(dh; ajc; bjc)

(3)mc
h = δfc(Dh; vh)

Figure 4.  Flowchart for training.

Figure 5.  Flowchart for secure aggregation.
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Furthermore, every collaborator took the move of localized gradient descent on the present model deploying 
the local data is shown in Eq. 4:

To safeguard the updates of the local model from any malicious event, the utilization of a security mechanism 
is used. This mechanism permits every collaborator c to divide its secret into multiple shares that are assigned 
to secure the global model aggregators so that every aggregator fs = 1, ..., FSh  has the value for encryption dx,ch,fs 
and has nothing to learn regarding the secret. This phenomenon is called sharing the secret that is known well 
in cryptography, which facilitates the best efficiency with regard to an evaluation in contrast to existing crypto-
graphic mechanisms.

The collection of finite fields is from 0, 1, ...,P − 1  for every prime P, from which all the evaluations are tak-
ing place. Every collaborator c encodes the updates of local model dh denoted as integers. Furthermore, every 
collaborator c divides the value encoded into shares of secret FSh. Every federated server aggregates fs, 1 <= f s 
<= FSh, which acquires any one of the secret shares that denote the value encrypted for the local model updates. 
Later on, every fs, combines the encrypted gradients. For every fs, the update of the final model becomes:

where 1C
C∑
c=1

gch,fs . For every collaborator c, there is an update of the final model fo every secure server aggregator 

fs. The company finally regenerates the secret by adding updates to the finalized model from every aggregator 
fs. Later, the final updates of model parameters are decrypted and transmitted to the newly generated global 
model to every authorized collaborator. In this, the procedure will be repeated until and unless the maximum 
round is reached hmaximum.

Challenges and limitations of proposed framework
While utilizing federated learning and a distributed, secure collaborative framework for constructing an attack 
detection model in IoT domains offers numerous benefits, there are also several challenges and limitations to 
consider:

1. Communication overhead: Federated learning involves frequent communication between edge terminals 
and the central server for model updates. This can lead to increased communication overhead, especially in 
large-scale IoT deployments with a vast number of devices.

(4)∀c;Dc
h ← Dh − lrδfc(Dh; v)

(5)∀fs,Dx
h+1,fs ← Dx

h,fs − lr
1

C

C∑

c=1

gch,fs

Figure 6.  Flowchart for Collaborators at Cloud-Edge Terminal.
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2. Bandwidth constraints: IoT devices often operate with limited bandwidth and intermittent connectivity. 
Transmitting model updates and aggregating data from diverse IoT domains may strain available bandwidth 
and exacerbate network congestion.

3. Heterogeneity of IoT devices: IoT ecosystems comprise a diverse range of devices with varying computa-
tional capabilities, communication protocols, and data formats. Ensuring interoperability and compatibility 
across heterogeneous devices poses challenges for federated learning implementations.

4. Data imbalance and distribution: In federated learning, data distribution across IoT domains may be 
uneven, leading to data imbalance and biased model training. Addressing data heterogeneity and ensuring 
representative sampling from diverse domains are crucial for achieving robust and generalizable attack 
detection models.

5. Security and privacy risks: While federated learning aims to preserve data privacy by keeping raw data on 
edge devices, there are inherent security and privacy risks associated with transmitting model updates and 
aggregating data on the central server. Mitigating these risks requires robust encryption, authentication, and 
access control mechanisms.

6. Model synchronization and consistency: Ensuring synchronization and consistency of model updates 
across distributed edge terminals is essential for maintaining the integrity of the global attack detection 
model. Handling delayed or lost updates, as well as addressing conflicts between divergent models, presents 
technical challenges in federated learning frameworks.

7. Scalability and resource management: As the number of IoT devices and domains increases, scalability 
becomes a concern for federated learning frameworks. Efficient resource management and allocation of 
computational resources are essential for scaling the framework to accommodate large-scale IoT deploy-
ments while maintaining performance and responsiveness.

Addressing these challenges requires careful consideration of technical, operational, and regulatory factors, 
as well as continuous innovation in federated learning techniques and distributed systems architecture. Despite 
these limitations, federated learning remains a promising approach for building effective attack detection models 
in IoT domains while preserving data privacy and security.

Results and discussions
In this section, the implementation and computations of the proposed work are presented. Firstly, the experimen-
tal environment is discussed to depict the results. The performance evaluation of the proposed work is presented.

BoT-IoT dataset
In this subsection, the use of the most popular cyber security dataset known as BoT-IoT is available for the 
research. It comprises normal traffic and malicious attack scenarios that include DoS, DDoS, reconnaissance, 
and data theft. The numerous testbeds are generated in which normal traffic on the network is composed of 
weather stations, smart refrigerators, and smart lights. Various  researchers23 have developed a method for cap-
turing the packets on the network and extracting features. In this dataset, packets in the network are captured 
by deploying the Tshark (https:// www. wires hark. org/ docs/ man- pages/ tshark. html.) tool, whereas the features 
of the network were extracted by deploying the tool named Argus (https:// opena rgus. org/.). Also, the new fea-
tures were obtained based on the number of transaction flows of connections in the network in connection to 
the sliding window of 200. The other authors  in24 have also confirmed the method of extracting the features for 
malicious classification of the traffic on the network. There are in all 43 features were extracted from the packets 
of the network to discuss the sample’s network traffic behavior. The BoT-IoT has samples of 477 normal traffic 
and 3668045 malicious attacks.

In this paper, seven duplicate features are removed from the dataset: a. pkSeqID, b. flgs, c. f lgsnumber, d. 
proto, e. state, f. min, g. max. As pkSeqID is defined as the identification of the sequence numbers allocated 
to the packets in the network; flgs, f lgnumber are the flow state flags that are observed in the transactions and 
representation of features in flags done numerically respectively; state and proto are the transaction protocols in 
data transmission that are represented textually. In this case, a total of 36 features are used to depict the samples 
of traffic on the network. The values of these features were scaled to numbers between 1 and 0 for the efficient 
training of the neural network. This can be performed by using the min-max normalization shown as:

where a is the feature vector for traffic on the network; amax and amin are depicted as the maximum and minimum 
values of a.

The table below shows the cyberattacks describing the major categories of the BoT-IoT dataset:

1. Probing attacks: Attacks known as probing are hostile actions that examine remote computers, or so-called 
"fingerprint- ing," to gain more information about users. These attacks are divided into various subcategories, 
the first one relies on the actions performed during the probing and the second one relies on the target of 
gathered information.

2. Denial of Service (DoS): DoS refers to malicious actions that aim to interrupt service and prevent legitimate 
traffic from using it. The dataset’s DDoS and DoS attack types are outlined as follows: A collection of infected 
machines known as Bots conduct Distributed Denial of Service (DDoS) and DoS attacks against a remote 

(6)anorm =
a− amin

amax − amin

https://www.wireshark.org/docs/man-pages/tshark.html
https://openargus.org/
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computer, typically a server. Such attacks are conducted with the intention of interfering with services that 
authorized users can access.

3. Information Theft: Information theft refers to a class of attacks where a perpetrator tries to undermine a 
machine’s safety in order to obtain confidential information. The dataset’s information stealing attack cat-
egories are characterized as follows: Depending on the goal of the attack, information theft attacks can be 
divided into different subcategories. The first subdivision is information theft. In data theft attacks, a remote 
machine is targeted and attempted to be compromised in order to gain access to information that can then be 
downloaded to the remote attacking system. Keylogging is indeed the second category. An attacker breaches 
a remote host during keylogging operations to capture a user’s keystrokes and perhaps steal sensitive cre-
dentials.

Performance evaluation
The implementation of the proposed framework is utilized by using a library to secure the federated data called 
Pysyft, which is developed on top of PyTorch. The proposed framework is deployed using TensorFlow Federated 
(TFF), a Python 3 open-source framework used by federated learning. At first, the data is coded, and afterward, 
the proposed framework is compiled into virtual machine byte code. Once the compilation is done, the byte 
code is obtained. The experiments are run on the Jupyter Notebook, which is deployed using the NVIDIADGXTM 
package repositories.

Preprocessing of BoT‑IoT Dataset
The framework for zero-touch botnet attacks in federated learning for five edge-based IoT devices using the 
BoT-IoT dataset. In this, the devices in IoT have very few resources computed and very limited utilization of 
memory space used for storing the data. Thus, the traffic on private networks is generated by the IoT inside 
the same network that is stored in edge-based IoT devices for easy processing. The five IoT-based edge devices 
include IoT-Domain1, IoT-Domain2, IoT-Domain3, IoT-Domain4, and IoT-Domain5.

The results of the proposed federated learning model are represented in Figs. 7, 8, 9 and 10. The results show 
that the proposed model acquires the maximum performance in detecting the normal traffic on the network and 
various attacks in the five IoT domains. Thus, the updates of the local model from the devices in IoT extending 
the epochs do not result in achieving maximum performance.

Using the BoT-IoT dataset, Tables 1 and 2 display the splitting of testing and training data amongst the vari-
ous IoT domain devices. Without concern for data privacy, the category of traffic on the network was missing 
in every IoT domain device, which depicted the capability of a federated learning model for the detection of 
next-generation malware. Furthermore, there is no sample of DDoS, DoS, Reconnaissance, Information theft, 
or traffic on the network included in all the domains. To describe the real-life experiments, imbalanced the 
splitting of training and splitting the unidentified data across the different categories and five domains. The 
performance evaluation of the federated learning model was computed using the different sets of testing data 
in every IoT-domain device.

Experimentation
The model named Deep Neural Networks was trained and tested with the dataset chosen to decide the optimized 
framework of the neural network for the effective classification of traffic on the network. Centralized learning, 
splitting learning, and federated learning models were proposed for the autonomous detection of attacks in vari-
ous domains. The use of TensorFlow and Pandas framework for the Deep Neural Network model was proposed, 
and the IBM framework was used for federated learning in the federated learning model. The training of the 
model was utilized using the Visual Studio IDE that is running on Ubuntu 16.04LTS with the said specifications 
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Figure 7.  F1 implementation with five different IoT domains.
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Figure 8.  Precision implementation with five different IoT domains.
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Figure 9.  Recall implementation with five different IoT domains.
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Figure 10.  Accuracy implementation with five different IoT domains.
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with RAM 16GB, processor intel Core i7 8th Generation Quad-Core Processor with the 64-bit operating system. 
The utilization of a federated learning model in IoT-based domain devices was evaluated by deploying different 
terminals. Lastly, the performance classification was computed based on the metrics: accuracy, precision, recall, 
and F1-score.

The framework of the model is composed of an input layer, a hidden layer, and an output layer. All the layers 
are comprised of various neurons. In the training data, the number of neurons is similar to the features of traffic 
on the network. A total of 36 features are extracted in the BoT-IoT dataset. When the DNN model was trained, 
the total number of input layer neurons was 36. During the experimentation, the total number of hidden layers 
and neurons is decided with the help of experiments. The number of hidden layers is diverged between 2 and 
5, whereas the number of neurons hidden is diverged between 30 and 120 at the interval of 30. The total five 
categories of attack and normal are there in the BoT-IoT dataset. Thus, the deep neural network is trained with 
a batch size of 256 and 50 epochs to minimize the time spent during the training process and avoid the model 
being overfitted.

The performance classified based on the different models was tested and computed with the testing data in 
the IoT-domains devices on the basis of accuracy, precision, recall, and F1-score and the comparison is done 
with the baseline models centralized deep learning  model25, Localized deep learning  model26 and federated 
deep learning model.

Where True Positive (TP) is defined as the total number of samples in network traffic that are correctly clas-
sified as positive in the positive class; False Positive (FP) is defined as the total samples in network traffic that 
are not classified as positive in the negative class; True Negative (TN) is defined as the samples in network traffic 
that are classified as negative in the negative class; False Negative (FN) is defined as the total samples in network 
traffic that are not classified as positive in the negative class.

In Table 3, the effectiveness of the federated learning model in the five IoT-domains devices. The performance 
of all the domains is trained and tested with the BoT-IoT dataset. The features of traffic on the network of the 
devices in the IoT-based domain in the edge.

Based on the accuracy, precision, recall, and f1-score, the performance classification of centralized, localized, 
and proposed deep learning models is computed with the testing data in the five different domains. The metrics 
used for the performance evaluation in our study are:

1. Accuracy: This statistic aids in figuring out a classifier’s accuracy. It establishes how many accurate predic-
tions the model built. It is the proportion between the number of accurate predictions and all of the model’s 
other predictions.

2. Precision: It is the percentage of correctly predicted values to all correctly predicted values as determined 
by the classification model.

3. Recall: It describes the overall number of records for a given class that can be correctly predicted using 
whatever data is available.

4. F1-Score: also referred to as the mean of recall and precision, employs recall and accuracy to evaluate the 
model thoroughly.

In Fig 11, the analysis of centralized and localized deep learning models is compared with the proposed 
federated learning model. In this, the accuracy of the proposed model is increased as the total number of itera-
tions or rounds is extended up to 30 when the training is done with the dataset. At the end of 30 iterations, the 
proposed model had an accuracy of 100.00%.

Table 1.  Training Data Splitting in BoT-IoT Dataset.

Category IoT-Domain1 IoT-Domain2 IoT-Domain3 IoT-Domain4 IoT-Domain5

DDoS 0 337,162 337,163 337,163 337,163

DoS 288,752 288,752 288,752 0 288,752

Normal 84 84 84 84 0

Reconnaissance 15,979 0 15,979 15,979 15,979

Information Theft 13 14 0 14 14

Table 2.  Testing Data Splitting in BoT-IoT Dataset.

Category IoT-Domain1 IoT-Domain2 IoT-Domain3 IoT-Domain4 IoT-Domain5

DDoS 115,413 115,382 115,459 115,570 115,406

DoS 99,090 99,303 99,193 99,016 99,354

Normal 31 26 34 32 26

Reconnaissance 5572 5398 5420 5490 5318

Information Theft 5 2 5 3 7
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In Fig 12, the analysis of centralized and localized deep learning models is compared with the proposed 
federated learning model. In this way, the precision of the proposed model is increased as the total number of 
iterations or rounds is extended up to 30 when the training is done with the dataset. At the end of 30 iterations, 
the proposed model had an accuracy of 99.99%.

In Fig 13, the analysis of centralized and localized deep learning models is compared with the proposed fed-
erated learning model. In this, the recall of the proposed model is increased as the total number of iterations or 
rounds is extended up to 30 when the training is done with the dataset. At the end of 30 iterations, the proposed 
model had an accuracy of 99.90%.

In Fig 14, the analysis of centralized and localized deep learning models is compared with the proposed 
federated learning model. In this way, the f1-score of the proposed model is increased as the total number of 
iterations or rounds is extended up to 30 when the training is done with the dataset. At the end of 30 iterations, 
the proposed model had an accuracy of 99.99%.

In Table 4, the comparison of the proposed model is made with the baseline models, and we have observed 
that the performance analysis of the proposed framework is relatively higher than the baseline models. The other 
models have significantly lower rates of detection of attacks and maximum false alarm rates. Because all of them 
are trained with insufficient network traffic and very few attack scenarios in IoT-based devices, the classification 

Table 3.  Based on Bot-IoT dataset performance classification of federated learning model.

Domains Metrics (%) DDoS DoS Reconnaissance Information Theft Normal Traffic

IoT-Domain1

Accuracy 99.89 99.85 99.99 99.99 99.99

Precision 99.91 99.65 94.10 99.95 99.99

Recall 99.80 99.99 88.20 99.99 85.00

F1-Score 99.85 99.85 91.25 99.95 89.90

IoT-Domain2

Accuracy 99.90 99.89 99.99 100.00 100.00

Precision 99.92 99.68 94.25 99.99 100.00

Recall 99.83 100 88.31 100.00 95.10

F1-Score 99.88 99.90 91.35 99.99 89.98

IoT-Domain3

Accuracy 99.92 99.90 100.00 100.00 100.00

Precision 99.95 99.75 94.25 99.99 99.99

Recall 99.89 100.00 88.35 100.00 85.80

F1-Score 99.90 99.90 91.50 99.99 89.98

IoT-Domain4

Accuracy 99.83 99.98 100.00 100.00 100.00

Precision 99.99 99.75 94.45 99.99 100.00

Recall 99.65 100.00 88.35 99.98 85.89

F1-Score 99.45 99.90 91.50 99.98 89.99

IoT-Domain5

Accuracy 99.83 99.88 100.00 100.00 99.00

Precision 99.91 99.68 94.15 100.00 100.00

Recall 99.78 99.98 88.45 99.90 100.00

F1-Score 99.84 99.83 91.40 99.98 99.98
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Figure 11.  Comparative analysis of Accuracy with baseline models for different five IoT domains.
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Figure 12.  Comparative analysis of Precision with baseline models for different five IoT domains.
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Figure 13.  Comparative analysis of Recall with baseline models for different five IoT domains.
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Figure 14.  Comparative analysis of F1-Score with baseline models for different five IoT-domains.
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performance of the localized deep learning model is lower. The centralized and localized deep learning models 
degrade the performance due to the updates of the local model to the server being less than one round of itera-
tion. That is why both of these models are not compatible to be implemented for attack detection in the proposed 
framework. The proposed framework can detect the attack with the highest classified performance while having 
the least communication cost and less memory to store the data. Therefore, it acquires maximum performance. 
The time required to train the proposed model is due to the complexity of the proposed method.

Conclusion
In this paper, a privacy-preserving attack detection model is introduced within the context of federated learn-
ing, specifically tailored for zero-touch networks across five distinct IoT domains. To validate the effectiveness 
of our proposed model, we leverage the BoT-IoT dataset, aiming to showcase its maximum performance. In 
the evaluation, our model is systematically compared against baseline models, namely centralized and local-
ized deep learning approaches. The centralized model, characterized by the aggregation of data, demonstrated 
superior performance. However, a significant drawback was its inability to secure the traffic (data) flowing into 
different domains, resulting in increased delays and extended training times. On the other hand, the localized 
model addressed the security concern associated with the centralized approach but suffered from diminished 
performance when compared to the centralized model. Our proposed model strategically overcomes the limita-
tions of both centralized and localized models, achieving not only maximum performance but also minimizing 
delays and enhancing accuracy, precision, recall, and F1-score. Consequently, our model emerges as an effective 
solution for attack detection across diverse IoT domains. Looking ahead, we envision further optimization of 
performance by incorporating advanced algorithms tailored for the detection of attacks in the evolving landscape 
of 6G networks. This continuous refinement will ensure our model remains at the forefront of safeguarding 
privacy and enhancing security in future network environments.

Data availability
All data generated or analyzed during this study are included in this published article.
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