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Quantification of attenuation 
and speckle features 
from endoscopic OCT images 
for the diagnosis of human brain 
glioma
P. V. Aleksandrova 1*, K. I. Zaytsev 1, P. V. Nikitin 2,3, A. I. Alekseeva 4, V. Y. Zaitsev 5,  
K. B. Dolganov 1, I. V. Reshetov 6, P. A. Karalkin 6, V. N. Kurlov 7, V. V. Tuchin 8,9,10 & 
I. N. Dolganova 7*

Application of optical coherence tomography (OCT) in neurosurgery mostly includes the discrimination 
between intact and malignant tissues aimed at the detection of brain tumor margins. For particular 
tissue types, the existing approaches demonstrate low performance, which stimulates the further 
research for their improvement. The analysis of speckle patterns of brain OCT images is proposed to 
be taken into account for the discrimination between human brain glioma tissue and intact cortex and 
white matter. The speckle properties provide additional information of tissue structure, which could 
help to increase the efficiency of tissue differentiation. The wavelet analysis of OCT speckle patterns 
was applied to extract the power of local brightness fluctuations in speckle and its standard deviation. 
The speckle properties are analysed together with attenuation ones using a set of ex vivo brain tissue 
samples, including glioma of different grades. Various combinations of these features are considered 
to perform linear discriminant analysis for tissue differentiation. The results reveal that it is reasonable 
to include the local brightness fluctuations at first two wavelet decomposition levels in the analysis of 
OCT brain images aimed at neurosurgical diagnosis.

Optical coherence tomography (OCT) is recognized as a fast, noninvasive and label-free method for imaging of 
biological tissues, providing information about their internal structure and  properties1–5. Therefore, OCT has 
found its application in such areas as ophthalmology, oncology, dermatology, and vascular  surgery6–9. Recently, 
OCT has shown a high potential in experimental medicine and various clinical fields, including  neurosurgery10–13.

Beginning with the demonstration of the ability to visualize melanoma  metastasis14, the further studies 
revealed a huge potential of OCT to become a highly informative diagnostic technique in surgery of  glial15–24 
and meningioma brain  tumors25. It was shown that OCT allows distinguishing between normal brain tissue and 
tumor and detecting of the benign or malignant nature of the tumor. Kut et al.21 developed an OCT-based method 
of optical attenuation analysis for human brain tissues. This work demonstrated the differences between optical 
scattering properties of intact and tumorous tissues as well as between those of gray and white brain matter. 
Bohringer et al.19 showed the differences of attenuation properties extracted from OCT images of normal brain, 
areas of necrosis, solid tumor and tumor infiltration. The research of Yashin et al.22 involving 176 ex vivo human 
specimens from 30 patients with brain glioma and in vivo studies from 17 patients revealed the advantage of 
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cross-polarization OCT (CP-OCT) for differentiating tumor and non-tumor tissues using signal intensity. At the 
same time, OCT was successfully applied for imaging of the boundaries of epileptic focus on the experimental 
mice  model26. Meanwhile, a number of research involved animal models of brain tumor, such as orthotopic 
mouse model  G11218 and rat model 101.824,27,28, for study OCT potential for neurosurgery.

Most existing methods for OCT signal processing aimed at neurosurgical diagnosis are based on the analysis 
of signal intensity and extraction of the attenuation or scattering coefficients. The obtained experimental data 
indicate a decrease in the attenuation coefficient for glioma tissue compared to intact brain tissue, which is usually 
considered to be white matter and  cortex21,23,24. However, the presence of necrosis in such tissues as glioblastoma 
increases light scattering and the attenuation  coefficient23,24. Due to the morphological characteristics of white 
matter, namely, the presence of nerve fibers, which are covered with the myelin sheath, the attenuation coefficient 
is characterized by high  values29. On the contrary, cortex yields less intense and slowly attenuating OCT signal, 
which makes this type of tissue similar to  tumors30. Thus, considering the label-free nature of OCT along with 
the huge diversity of measurement conditions and tissue properties, there is a need for further development of 
OCT image processing algorithms, which would help to increase their current sensitivity and specificity.

One of the possible ways to improve the performance of OCT-based neurodiagnosis is the account of the 
speckle structures, appeared in OCT images due to the interference of a large number of elementary waves with 
random phases arising from spatially coherent light propagation through a turbid medium. Since most biologi-
cal tissues are heterogeneous, when illuminated with coherent light, there will always be a speckle structure 
that can both distort measurements and at the same time provides new information about the tissue structural 
 properties31–33.

Previously, the speckle-based analysis of OCT images has been applied for characterization of tissue prop-
erties, such as the dynamics of moving scatterers in a  sample34–36. Besides, it was used for tissue classification. 
Mcheik et al.37 proposed a comparative analysis of speckle structures in OCT images including several probability 
density functions (PDFs) to distinguish skin layers; the Nakagami distribution showed the best results. De Jesus 
et al.38 applied the same method to distinguish the groups of corneal data and demonstrated the potential of the 
Generalized Gamma distribution for the speckle statistics. Thus, assuming that speckle patterns are associated 
with tissue properties, their analysis could be included in the existing algorithms for OCT-based differentiation 
of brain tissues. Thereby, the main scope of our work is to investigate, whether speckle properties can provide 
benefit for brain glioma and intact tissues differentiation.

For this aim, we consider the OCT images of ex vivo intact and malignant human brain tissue specimens, 
obtained by the endoscopic OCT  system24. Data set includes human gliomas of the World Health Organization 
(WHO) 1–4 grades and intact cortex and white matter. We propose an extraction of the speckle-based features, 
i.e. the power of local brightness fluctuations in speckle patterns and its standard deviation, from OCT images 
using wavelet analysis (WA) and study their applicability for distinguishing between glioma and intact brain tis-
sues. Finally, we perform the tissue distinguishing by means of linear discriminant analysis (LDA) and different 
combinations of features, which are related to attenuation and speckle properties, assuming the maximization 
of sensitivity ( Se ) and specificity ( Sp ). We compare Se , Sp and precision ( Pr ) estimated for the considered com-
binations of features. The results of this study revealed the advantages and drawbacks of these combinations for 
OCT-aided brain glioma diagnosis.

Results
OCT of tissue samples
Gliomas are intracranial tumors that usually affect the functioning parts of the brain and cause higher mortality 
and morbidity rate than other forms of tumors of the central nervous system (CNS)39,40. It is one of the most 
common CNS tumor type. According to the 2021 revision, WHO classification of CNS tumors includes four 
 nosologies41:

• Grade 1 – benign tumor: pilocytic astrocytoma, subependymal giant cell astrocytoma;
• Grade 2 – highly differentiated gliomas including astrocytoma with a mutation in the isocitrate dehydroge-

nase 1 (IDH1) or 2 (IDH2) genes, oligodendroglioma with a mutation and codeletion 1p/19q;
• Grade 3 – diffuse astrocytoma and oligodendroglioma with mutation in the IDH1 or IDH2 genes;
• Grade 4 – glioblastoma without mutation in the IDH1 or IDH2 genes, astrocytoma with mutation.

In our study, we considered ex vivo samples of all glioma grades and perifocal brain tissue. For details see 
Table 1. The samples were excised during neurosurgery, according to the initial medical diagnosis. OCT imag-
ing was performed no later than 4 hours after surgery. For this aim, we used the time-domain common-path 
endoscopic OCT system OCT1300Y designed at IAP RAS and described in our previous  work24. It operates 
at 1.3 µ m central wavelength and is equipped with a flexible endoscopic probe. The average output power  
is 0.6 mW. OCT images have 400×256 pixels, that corresponds to the approximately 1.96-mm-width and 1-mm-
depth tissue sample scanned with the resolution 20 µ m in lateral direction and 24 µ m in axial direction (in air). 
To protect the samples from dehydration during transportation and imaging, they were covered with gelatin 
films. After OCT imaging, the samples were fixed with formalin for the further Hematoxylin and Eosin (H 
&E)-stained histology that confirmed the initial diagnosis. The representative OCT and histological images of 
glioma tissues are shown in Fig. 1.

The samples of freshly excised tumor tissue and histological preparations for research were obtained from 
the N.N. Burdenko National Medical Research Center for Neurosurgery after obtaining informed consents from 
patients and approval of the study protocol by the ethics committee of the N.N. Burdenko National Medical 
Research Center for Neurosurgery. The samples were excised during neurosurgery, performed in accordance 
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with the initial medical diagnosis. All experiments with thus excised ex vivo tissue samples were performed in 
accordance with the relevant guidelines and regulations.

Prior to perform the analysis of OCT images and extract tissue optical and speckle features, we applied a 
pre-processing procedure. At the first stage, we perform the calibration of our system using intralipid aqueous 
solution as described in Ref.24 It helped us to experimentally account the point spread function h(z) of the used 
OCT system, which has the influence on the measured reflected intensity as Im(z) = I0 exp (−µz) · h(z) , and 
adjust the measurement of tissue attenuation. After that the intensity was normalized using the averaged signal 
from the interface between the OCT probe and cover glass, on which the sample was fixed. Then we get and 
aligned the region of interest (ROI), which corresponded to the tissue layer (see Fig. 2a). The upper layers in 
OCT images, originated from the OCT probe and the glass, were cut off. Alignment by the tissue–glass interface 
helped to correct the possible uneven gap between the probe and the glass. Then we corrected the image distor-
tion by removing the side 15 pixels. After thus made correction, the depth distribution of I(z) differs from the 
measured one, as it can be noticed from Fig. 2b.

As it is clear from Table 1, within each set of OCT images referred to a certain tissue type, several B-scans 
correspond to the same patient. To eliminate the possible impact of inter-correlation between such images on 
the overall result of tissue differentiation, we checked the cross-correlation between all images from a certain 
set. The obtained values of cross-correlation coefficient for images received from each patient [0.55..0.86] do 

Table 1.  Human brain tissue samples.

# Tissue type Number of patients Gender/age WHO grade Number of B-scans

1 Perifocal cortex 2
M / 66

− 12
F / 69

2 Perifocal white matter 2
M / 45

− 15
M / 38

3 Pilocytic astrocytoma 3

F / 39

1 22F / 31

F / 25

4 Diffuse astrocytoma 5

M / 29

2 44

F / 63

M / 31

M / 43

F / 56

5 Oligodendroglioma

3 F / 47

3 17F / 26

M / 41

6 Glioblastoma

6 F / 69

4 103

M / 52

F / 64

F / 69

F / 55

F / 20

Glioma 1 Glioma 2 Glioma 3 Glioma 4

ega
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T
C

O
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&
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Figure 1.  Representative OCT images of the ex vivo human glioma tissue of 1–4 grades (a–d) and H&E 
histological images of the same tissue types (e–h).
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not exceed 0.9, which is the maximal value of this coefficient for images received from different patients. At the 
same time, the average coefficients for such combinations were comparable, both 0.77. Therefore, the result of 
thus made verification allowed us to use entire set of images for further extraction of features and perform tis-
sue differentiation.

Analysis of attenuation properties
From the prepared images, we estimated the attenuation coefficient µi of ith A-scan, that is the sum of scattering 
µs and absorption µa coefficients. Since in many biological tissues light scattering mostly determines the signal 
 attenuation42, it is often considered that µ ≃ µs.

In the single scattering  approximation24,43–45, the intensity of OCT signal exponentially decays with the sample 
optical depth z

where I0 is the maximum peak of the signal intensity received from the tissue upper interface for ith A-scan. To 
extract µi as a slope of the A-scan (2c), we exclude the part of the signal from znoise to zmax that corresponds to 
the noise level, determining znoise by the minimization of mean square error of fitting

where Ifit(z,µi) is the sloped fit line, Inoise = Ifit(znoise) is the horizontal fit line corresponding to noise level, 
Ndecay and Nnoise are the numbers of terms in two corresponding regions of the A-scan.

In addition to the attenuation coefficient, its diversity within the sample also yields the information about 
optical properties of the tissue, describing their heterogeneity originated due to the possible vascularization or 
the presence of hemorrhages, necrosis, and cysts in glioma tissue. Thus, we estimated the standard deviation of 
µi within the small region in the lateral direction, which includes several neighboring A-scans NA

where µ is the mean value of µi in the region of analysis, which was chosen to be equal to 150 µ m, so that 
NA = 30 , that is comparable with the typical size of vessel in a brain tissue. Finally, µi and σµ,i were averaged 
within each image (Fig. 2b) to get µ and σµ . These parameters form the space of optical properties, which we 
use in the analysis of difference between glioma and intact tissue.

The distribution of µ and σµ for our set of samples is shown in Fig. 3. The dots are colored in accordance with 
the H&E-stained histology of the corresponding tissue samples. Despite the limited number of patients and tissue 
samples, we can notice significant overlap between the dot clouds in some pairs of tissue types. It is clear that 
discrimination between intact brain tissue and high-grade glioma is problematic. This fact indirectly confirms 
the need for additional features, that can improve the OCT-based glioma diagnosis.

Wavelet‑based analysis of OCT speckle pattern
WA is widely used for enhancement and de-noising of OCT  images46, as well as for their background subtraction 
and object  recognition47. Its effectiveness is due to the fact that the basic functions of the wavelet transformation 
have properties similar to those of wave packets: zero mean value, limitation and high localization in both time 
and frequency domains. The feasibility of using WA in OCT stems from the ability to effectively suppress noise 
in multi-scale images, as well as the ability to suppress speckle noise and smooth the image without significant 
blurring the  details48.

(1)I(z) = I0 exp(−µiz),

(2)znoise = argminz

[
∑znoise

0 [I(z)− Ifit(z,µi)]
2
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+

∑zmax
z=znoise

[I(z)− Inoise]
2

Nnoise

]
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Figure 2.  OCT-images of the ex vivo human brain tissue; (a) a representative example of “raw” OCT image of 
glioma grade 1; (b) final image of ROI after cut and correction of the “raw” image; (c) extraction of µ from the 
normalized intensity of the A-scan I(z).
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Essock et al.49 studied the possibility of using WA of OCT images to identify glaucoma. Lingley-Papadopoulos 
et al.50 demonstrated for the first time the ability of applying a combination of wavelet and texture analysis of 
OCT images to detect cancer tissue. WA often helps to reduce speckle noise background and to enhance obscured 
patterns, improving signal to noise  ratio51. At the same time, applying wavelet-based image processing, the 
resolvable features of OCT image can be effectively separated from speckle  pattern52. Thus, WA is an effective 
instrument for extraction and characterization of speckle patterns from OCT images.

In this work, we applied discrete wavelet transformation, which is based on the decomposition of a signal 
into a weighted linear combination of wavelet functions and scaling functions. Both functions are orthogonal 
and divide the function space into high and low frequency spaces. Each level of decomposition yields two 
sets of coefficients, namely, a detail coefficient set and an approximation coefficient set. The detail coefficients, 
which are associated with wavelet function, capture high-frequency information. The approximation coefficients, 
which are associated with the scaling function, capture with low-frequency information. Since in this work it is 
necessary to analyse speckle distribution in OCT images and their ability to carry out valuable data, only detail 
coefficients are considered.

In our study, we applied the wavelet filter bior3.5 from the biorthogonal family to analyze OCT images of 
brain tissue. The biorthogonal basis function is used to avoid a possible distortion at the  edge53. The efficiency 
of the particular filter bior3.5 for the applied OCT system was demonstrated  previously54. However, it should be 
mentioned that the choice of the wavelet filter mainly depends on the OCT system type. Thus, another type of 
system may need to switch to another wavelet filter.

It was shown that the 1st and 2nd decomposition levels mostly yield the information about the speckle pat-
tern in OCT  images55, while higher levels reflect the noise data. Thus, in our work, the detail coefficients were 
collected for each OCT image at first two decomposition levels. Figure 4 illustrates the transformation of verti-
cal (VDC), horizontal (HDC) and diagonal (DDC) detail coefficients at first six levels for a representative OCT 
image of glioma grade 4.

Next, the power of local brightness fluctuations in the detail coefficients was introduced as a first parameter 
connected with a speckle pattern

where K = NX × NY is a factor which takes into account the number of pixels in two coordinates; nX and nY are 
current pixel number; IHDC

a  , IVDCa  , IDDCa  are the intensities of horizontal, vertical and diagonal detail coefficients 
after image decomposition at the level a = [1, 2] , respectively.

In addition to the power of local brightness fluctuations in speckle, the standard deviation of Pa within the 
final size of decomposed image N∗

X , N∗
Y in the lateral direction was obtained

where PXa (nX) is the mean power in Y direction for each pixel number nX

(4)Pa =
1

K

[

∑

nX,nY

|IHDC
a (nX, nY)|

2 +
∑

nX,nY

|IVDCa (nX, nY)|
2 +

∑

nX,nY

|IDDCa (nX, nY)|
2

]

,

(5)σPa =





N∗
X

�

nX=1

(PXa (nX)− Pa)
2/N∗

X





0.5

C vs Glioma 1 2 amoilG svCxetro ortex C vs Glioma 3ortex C vs Glioma 4ortex

White matter   vs Glioma 1σ μ
, 

m
m

-1

White matter   vs Glioma 2 White matter   vs Glioma 3 White matter   vs Glioma 4

.8 2

.4 2

2.0

.6 1

.2 1

0.8

2 3

.8 2

.4 2

2.0

.6 1

.2 1

0.8

2

3.0

.6 2

.2 2

.8 1

.4 1

1.0
4 5 6 7

.8 2

.4 2

2.0

.6 1

.2 1

0.8

2 4 5 6

.8 1

.2 1

0.8

2 3 4 5 6

1.0

2.0

.6 1

0.6
2 3 4 5 6

0.8

3.0

.6 2

.2 2

.8 1

1.4

.0 1

0.6
2 3 5 7 9

2.8

.4 2

2.0

.6 1

.2 1

0.8

4

μ, mm
-1

a)( b)( (с) d)(

e)( f)( g)( h)(

.4 1

.6 1

.0 2

.0 1

.2 1

.4 1

.8 1

3 7

4 5 6 7 8 9 4 6 8 10 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Figure 3.  Distribution of the attenuation properties µ and σµ of the analyzed set of ex vivo brain tissue samples. 
The dots are colored in accordance with the H&E-stained histology of the corresponding tissue samples.
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In the described way, similarly to the optical parameters, Pa and σPa form the space of speckle parameters, used 
further for tissue analysis.

The distributions of thus obtained properties using the 1st and 2nd decomposition levels are shown in Figs. 5 
and 6. It is obvious that in several pairs of tissue types, the application of the considered speckle features results in 
rather good localization of dot clouds. Meanwhile, there are also evident drawbacks. For example, one can notice 
the overlap of dot clouds when glioma grade 4 is considered. Nevertheless, these results make it reasonable to 
further consider speckle properties as the possible features for brain tissue differentiation. Thus, to combine the 
advantages of two analyzed approaches, they can be merged by formation of various feature spaces.

(6)PXa (nX) =
1

NY

[

∑
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|IHDC
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Figure 4.  An example of B-scan wavelet decomposition. (a) Detail coefficients DDC, HDC, VDC at different 
decomposition levels from 1 to 6; (b) approximation coefficients at the 6th level; (c) decomposition is shown for 
the corrected OCT image of glioma grade 4.
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Combinations of attenuation and speckle features for discrimination of glioma tissue
The combinations of features considered in this work are listed in Tables 2 and 3. We compare the performance 
of single features, namely µ , P1 , P2 , then consider combinations of them with the corresponding dispersion in 
2D feature space [µ, σµ] , [P1, σP1] , [P2, σP2] . Moreover, we combine the attenuation features with the speckle 
ones [µ, P1] , [µ, P2] , [µ, σµ, P1] , [µ, σµ, P2] , [µ, P1, P2] , [µ, σµ, P1, σP1] , [µ, σµ, P2, σP2] . Finally, we consider com-
binations of only speckle features [P1, P2] , [P1, σP1, P2, σP2] . To compare the feasibility of these combinations to 
distinguish brain glioma and intact tissue and study the applicability of speckle features, we apply LDA. It is 
worth noting that we choose LDA only as a suitable and convenient instrument for our studies, not aimed at 
finding the best approach and classification model for tissue distinguishing based on the suggested combination 
of features. We also admit that the sample set is limited and should be enlarged to perform accurate training and 
validation of models. However, we leave the problem of finding the best model beyond the scope of this study. 
Instead, we would like to investigate the advantages of speckle features and their combinations with attenua-
tion features obtained for OCT images of brain tissues as the possible way for improving diagnostic potential 
of endoscopic OCT system.
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Figure 6.  Distribution of the speckle properties P2 and σP2 of the analyzed set of ex vivo brain tissue samples. 
The dots are colored in accordance with the H&E-stained histology of the corresponding tissue samples.

Table 2.  The metrics of distinguishing between glioma of low grades and intact brain tissues. Significant 
values are in bold.

Features

Cortex – glioma 1 Cortex – glioma 2 White matter – glioma 1 White matter – glioma 2

Se Sp Pr Se Sp Pr Se Sp Pr Se Sp Pr

µ 0.929 0.850 0.932 1.000 0.900 0.958 1.000 1.000 1.000 1.000 1.000 1.000

[µ, σµ] 0.928 0.864 0.928 0.989 0.900 0.958 1.000 1.000 1.000 1.000 1.000 1.000

P1 1.000 1.000 1.000 0.796 0.946 0.968 0.875 0.812 0.906 0.693 0.516 0.619

[P1, σP1] 0.938 1.000 1.000 0.818 0.871 0.934 0.844 0.906 0.941 0.975 0.915 0.947

P2 0.938 1.000 1.000 0.954 0.946 0.968 0.938 1.000 1.000 0.954 1.000 1.000

[P2, σP2] 0.920 1.000 1.000 0.904 0.982 0.989 0.969 0.500 0.826 0.940 0.482 0.763

[µ, P1] 0.875 1.000 1.000 1.000 0.900 0.958 1.000 0.969 0.983 1.000 1.000 1.000

[µ, P2] 0.848 0.900 0.962 0.989 0.925 0.968 1.000 1.000 1.000 1.000 1.000 1.000

[P1, P2] 1.000 1.000 1.000 0.954 1.000 1.000 1.000 0.875 0.928 0.954 0.953 0.968

[µ, σµ , P1] 0.812 1.000 1.000 0.966 0.900 0.958 0.938 1.000 1.000 1.000 1.000 1.000

[µ, σµ , P2] 1.000 0.929 0.956 1.000 0.900 0.958 1.000 1.000 1.000 1.000 1.000 1.000

[µ, P1, P2] 1.000 1.000 1.000 0.954 0.975 0.989 1.000 1.000 1.000 1.000 1.000 1.000

[µ, σµ , P1, σP1] 0.719 1.000 1.000 0.989 0.900 0.958 0.906 0.969 0.983 1.000 1.000 1.000

[µ, σµ , P2, σP2] 1.000 0.964 0.972 1.000 0.900 0.958 1.000 1.000 1.000 1.000 1.000 1.000

[P1, σP1 , P2, σP2] 0.812 1.000 1.000 0.943 1.000 1.000 0.969 0.719 0.881 0.966 0.949 0.968
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Therefore, we briefly describe LDA approach used in this work. We consider x to be the feature vector. In 1D, 
2D, 3D or 4D space, we find a projection of data x from two classes of points in 1D that maximizes the criterion

where wT is the projection operator, mi is the mean vector for class i, SB and SW are between- and within-class 
scatterers, respectively. Then we find a predicted border in the obtained 1D probability density space that sepa-
rates two classes of points. Its position is conditioned with maximization of the sum of sensitivity and specificity 
(Se+ Sp) assuming the actual diagnosis of each tissue sample. Sensitivity, specificity and precision metrics are 
calculated as

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false negative errors of tissue 
discrimination, respectively. The k-fold cross validation of thus obtained LDA model is performed for each pair 
of tissue types; therefore, the metrics are finally averaged. We should note that during the sample splitting, the 
all images from a certain patient were used either for training or validation; thus, k depends on the number of 
patients in each pair of tissue types and is selected as much as possible.

The results of applying each feature combination for LDA are listed in Tables 2 and 3. For glioma grade 1 and 
2 several combinations of features provide rather good performance. If one tries to find a single combination 
with high metrics in each case, it is possible to choose [µ, P1, P2] . It is characterized by the metrics > 0.95 . Thus, 
a combination of attenuation coefficient with speckle features helps to increase to some extent the ability of solely 
attenuation properties to differentiate these tissues. Oppositely, for high grades, different combinations provide 
satisfactory results in each pair of tissues. Despite the metrics are lower for high grades comparing to low grades, 
it is clear that attenuation coefficient can be used only for white matter vs glioma grade 4 distinguishing, while 
in other cases P1 and [P1, P2] provide better results.

The histograms of calculated metrics of tissue distinguishing by the selected combinations µ , P1 , [P1, P2] 
and [µ, P1, P2] are shown in Fig. 7. This figure clearly demonstrates several drawbacks of using attenuation 

(7)J(w) =
w
TSBw

wTSWw
,

(8)SB =(m2 −m1)(m2 −m1)
T,

(9)SW =
∑

n1

(xn1 −m1)(xn1 −m1)
T +

∑

n2

(xn2 −m2)(xn2 −m2)
T,

(10)Se =
TP

TP+ FN
,

(11)Sp =
TN

TN+ FP
,

(12)Pr =
TP

TP+ FP
,

Table 3.  The metrics of distinguishing between glioma of high grades and intact brain tissues. Significant 
values are in bold.

Features

Cortex – glioma 3 Cortex – glioma 4 White matter – glioma 3 White matter – glioma 4

Se Sp Pr Se Sp Pr Se Sp Pr Se Sp Pr

µ 0.702 0.757 0.836 0.374 0.726 0.788 0.906 0.554 0.710 0.886 0.950 0.978

[µ, σµ] 0.764 0.622 0.781 0.469 0.469 0.734 0.854 0.683 0.804 0.876 0.938 0.973

P1 0.913 0.900 0.944 0.872 0.928 0.972 0.945 0.714 0.833 0.666 0.500 0.840

[P1, σP1] 0.757 0.928 0.938 0.880 0.700 0.905 0.882 0.714 0.833 0.763 0.164 0.697

P2 0.754 0.150 0.544 0.285 0.731 0.716 0.622 0.317 0.490 0.132 0.857 0.758

[P2, σP2] 0.507 0.479 0.566 0.238 0.649 0.633 0.833 0.536 0.783 0.749 0.500 0.869

[µ, P1] 0.882 0.700 0.566 0.869 0.914 0.967 0.945 0.750 0.848 0.876 0.631 0.856

[µ, P2] 0.802 0.679 0.820 0.345 0.606 0.746 0.875 0.518 0.692 0.936 0.866 0.948

[P1, P2] 0.945 0.928 0.950 0.852 0.928 0.972 0.913 0.785 0.863 0.611 0.498 0.805

[µ, σµ , P1] 0.820 0.657 0.789 0.856 0.871 0.961 0.945 0.750 0.848 0.863 0.616 0.859

[µ, σµ , P2] 0.826 0.614 0.771 0.528 0.360 0.734 0.792 0.692 0.762 0.926 0.866 0.947

[µ, P1, P2] 0.945 0.736 0.848 0.843 0.808 0.932 0.945 0.750 0.848 0.939 0.732 0.903

[µ, σµ , P1, σP1] 0.820 0.728 0.826 0.861 0.637 0.882 0.913 0.714 0.833 0.818 0.602 0.843

[µ, σµ , P2, σP2] 0.743 0.614 0.763 0.534 0.343 0.718 0.858 0.572 0.787 0.920 0.488 0.863

[P1, σP1 , P2, σP2] 0.820 0.764 0.864 0.863 0.643 0.888 0.882 0.607 0.800 0.854 0.362 0.802
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coefficient for OCT-based glioma detection, as well as advantages of including speckle features in the analysis of 
OCT images. The results of performing LDA by the selected combinations of features in each pair of tissues are 
shown in Fig. 8. Here, the projections of actual dot clouds on the 1D probability density axis and the predicted 
discrimination border averaged during cross validation are demonstrated. Figure 8 illustrates that there is still a 
big challenge of distinguishing between glioma grade 4 and intact tissues. While µ remains the most appropri-
ate feature among the considered combinations for the case white matter vs glioma grade 4, application of P1 
for cortex vs glioma grade 4 provides moderate overlap. This fact can be also discovered from Figs. 3d and 5d, 
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Figure 7.  The metrics of distinguishing between glioma and intact brain tissues by means of (a) attenuation 
coefficient µ ; (b) speckle feature P1 ; (c) combination [P1, P2] , (d) joint combination [µ, P1, P2] . Green boxes 
indicate the cases, where the selected set of features are most appropriate.
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Figure 8.  The distinguishing between glioma and intact tissues by means of LDA and the selected set of 
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percentiles, whiskers denote Q1 − 1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1).
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where localization of dot clouds belonging to glioma grade 4 is better for P1 than for µ . Meanwhile, application 
of speckle features are reasonable in other cases. Figure 9 shows ROC curves of LDA model performed with 
the features selected for each pair of tissues. The area under curve (AUC) values also justify high accuracy of 
using joint attenuation-speckle feature space for distinguishing between intact tissues and glioma grade 1 and 2.

Discussion
LDA of optical properties confirms the weakness of OCT to distinguish high-grade glioma tissue from intact 
cortex and white matter using attenuation-based approach. Sensitivity is extremely low for the case cortex vs 
glioma grade 4 (less than 0.5 for using both µ and [µ, σµ] ). The only case, where these features can be appropriate 
is white matter vs glioma grade 4. However, even for this pair of tissue types, sensitivity is less than 0.9. Combina-
tion of attenuation with its local dispersion helps to slightly improve some metrics in comparison with using µ 
in case of high grades; while for low grades, the performance is high for both µ and [µ, σµ].

In contrast, WA of OCT speckle properties allows us to enhance the performance of attenuation-based 
approach applied for brain glioma diagnosis. We have considered the first and second wavelet decomposition 
levels for acquisition of speckle properties and compare them between each other. When P1 and P2 are separately 
applied for tissue distinguishing, the results are more accurate for P2 in case of low grades and P1 – of high grades. 
Adding σP1 to P1 is reasonable for moderate improvement of Se for cortex vs glioma grade 2 and 4, Sp for cortex 
vs glioma grade 3, Sp and Pr for white matter vs glioma grade 1 and significant enhancement of all metrics for 
white matter vs glioma grade 2. At the same time, adding σP2 to P2 is beneficial for improvement of Sp and Pr for 
cortex vs glioma grade 2, Se and Pr for white matter vs glioma grade 3 and 4, Se for white matter vs glioma grade 
1. However, combination [P1, P2] can be also considered in several cases, namely cortex vs glioma grade 1, 2, 
and 3, while in other cases it reflects the contraversive performance of P1 and P2 . Combination [µ, P1, P2] can be 
used for differentiation between low grades and intact tissues, since it improves the performance of attenuation 
features in case of intact cortex and maintain high sensitivity and specificity in case of white matter. Meanwhile, 
it is also possible to consider other combinations of attenuation and speckle features for low grades, but they 
don’t provide high accuracy for all tissue pairs.

To discriminate glioma tissue of high grades from intact cortex and white matter, application of speckle fea-
tures is also reasonable, except for the case white matter vs glioma grade 4. However, the results are worse than 
obtained for low grades. The overall estimation of the sensitivity and specificity of the described attenuation, 
speckle and joint approaches shows that the diagnosis of high-grade glioma is still challenging for endoscopic 
OCT systems due to the infiltrative character and the presence of necrotic debris. To solve this problem it is pos-
sible to apply other features, but it may require additional instrumentation. For example, polarization-sensitive 
mode of  OCT23,56 can be used for more careful detection of white matter, cortex and tumorous tissue artefacts. 
Depth-resolved variance of attenuation properties, which stems from the tissue heterogeneity, might be also 
considered for tissue differentiation. From the other hand, recent studies of glioma classification based on texture 
features demonstrated rather high  performance57. This approach was applied for glioma grade 4 discrimination 
from intact brain tissues, but it might be useful to transfer it to grade 3. In this regard, recent development of 
machine learning  algorithms25,58,59 may enhance the existing and emerging OCT-based approaches of brain 
tumor diagnosis.

In the context of instrumentation utilized in the reported study, the use of a time-domain OCT system with 
a rather weak focusing can be mentioned as an advantage. Indeed, the time-domain principle did not introduce 
the signal decay caused by the roll-off effect, the distorting influence of which should be taken into account for 
spectral-domain OCT  setups60,61. Similarly, the fairly large length of the focus waist due to weak focusing also 
did not give appreciable distortions within the rather limited depth range used for quantification of attenuation.

In this paper, we illustrate the advantage of combining attenuation and speckle features for discrimination 
between intact and glioma tissues. For this purpose, a limited set of samples were considered. Obviously, an 
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extended data base of OCT images of brain tissues should be involved for further studies and more careful 
analysis. At the same time, the large dataset should be applied to train other possible classification models.

Since the above-presented results demonstrate the feasibility of brain tissue differentiation by includ-
ing speckle features in the analysis of OCT images, it is the scope of further study to extend the considered 
approaches for tissue mapping.

Conclusions
This paper concerns a problem of improving the discrimination between brain malignant glioma and intact tis-
sues by means of OCT. In particular, finding specific features from OCT images is one of the possible solutions. In 
this regard, we suggested extraction of speckle properties of images, solely or in the combination with commonly 
used attenuation properties. We have demonstrated the application of these features and their combinations 
for distinguishing between ex vivo human brain tissues – malignant glioma of WHO grades from 1 to 4 and 
intact white matter and cortex. These features included the attenuation coefficient, the power of local brightness 
fluctuations at the 1st and 2nd wavelet decomposition levels and standard deviations of these parameters. The 
feasibility of adding speckle information in the analysis was studied by performing LDA classification. The results 
of this study confirmed the drawbacks of using attenuation-based approach and demonstrated the possibility 
of increasing the OCT performance for neurosurgical purposes by additional analysis of speckle properties 
extracted from OCT images. We have shown that combination [µ, P1, P2] is reasonable for low-grade glioma, 
since it yields high values of Se, Sp, Pr for tissue distinguishing; while it is reasonable to apply P1 and [P1, P2] for 
glioma grade 4 distinguishing from cortex and glioma grade 3 – from cortex and white matter, respectively. Our 
work reveals the feasibility of applying such speckle information for neurosurgical diagnosis.

Data availibility
Data underlying the results of this paper are not publicly available at this time, but may be obtained from the 
corresponding authors PVA (aleksandrovapolina98@gmail.com) and IND (in.dolganova@gmail.com) upon 
reasonable request.
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