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Radiomic profiles improve 
prognostication and reveal targets 
for therapy in cervical cancer
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Kristine E. Fasmer 3,5, Hege F. Berg 1,2, Tomasz Stokowy 6,7, Aashish Srivastava 6,7, 
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Camilla Krakstad 1,2,10* & Ingfrid S. Haldorsen 3,5,10*

Cervical cancer (CC) is a major global health problem with 570,000 new cases and 266,000 deaths 
annually. Prognosis is poor for advanced stage disease, and few effective treatments exist. 
Preoperative diagnostic imaging is common in high‑income countries and MRI measured tumor size 
routinely guides treatment allocation of cervical cancer patients. Recently, the role of MRI radiomics 
has been recognized. However, its potential to independently predict survival and treatment response 
requires further clarification. This retrospective cohort study demonstrates how non‑invasive, 
preoperative, MRI radiomic profiling may improve prognostication and tailoring of treatments and 
follow‑ups for cervical cancer patients. By unsupervised clustering based on 293 radiomic features 
from 132 patients, we identify three distinct clusters comprising patients with significantly different 
risk profiles, also when adjusting for FIGO stage and age. By linking their radiomic profiles to 
genomic alterations, we identify putative treatment targets for the different patient clusters (e.g., 
immunotherapy, CDK4/6 and YAP‑TEAD inhibitors and p53 pathway targeting treatments).

Keywords Uterine cervical neoplasms, Magnetic resonance imaging, Imaging genomics, Molecular targeted 
treatment, Cluster analysis

Uterine cervical cancer (CC) is the fourth most common cancer type in women  globally1 and the second most 
common cancer in women aged 15 to 44  years2. Cervical cancer survival is closely linked to tumor extent at 
primary  diagnosis3 which has traditionally been based on clinical staging according to the International Fed-
eration of Gynecology and Obstetrics (FIGO) 2009  classification4. However, in 2018, the FIGO Gynecologic 
Oncology Committee revised their guidelines allowing staging based on imaging- and pathological findings, 
when  available5. Pelvic magnetic resonance imaging (MRI) is the preferred imaging modality for local and 
regional staging of macroscopically visible cervical  cancer6. MRI can accurately assess important prognostic 
indicators such as primary tumor size, tumor invasion to the parametrium or pelvic sidewall, and enlarged pelvic 
lymph  nodes7,8. As MRI is an established part of the diagnostic workup in cervical cancers in most high-income 
 countries9, MRI radiomic tumor profiling has become possible. Radiomics utilizes high-throughput feature 
extraction methods in images to unravel tumor patterns and -characteristics that are invisible to the human  eye10. 
The derived tumor radiomic signatures may, in addition to standard imaging findings and staging information, 
potentially aid in risk classification and personalizing patient treatment.

Although early detected disease is predominantly curable with surgery, treatment for late-stage or recurrent 
cervical cancer is heavily invasive, inferring severe short- and long-term side-effects and associates with poor 
survival. Hence, treatment schemes for late-stage and recurrent disease need to be refined and personalized to 
minimize side-effects and prolong survival. Personalized medicine in cancer treatments aims to identify and 
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individualize therapy based on the tumor’s genomic- or molecular aberrations using biomarkers to select patients 
to the most beneficial therapy. Yet, large-scale diagnostic profiling of cancer genomes detecting actionable aberra-
tions is currently unavailable, due to high costs, considerable time burden, and high complexity of data analyses 
and -interpretation11. Furthermore, genomic- and molecular characterization is hampered by representing only 
a fraction of the tumor and by biopsies being prone to selection biases. Whole-volume radiomic profiling allows 
assessment of the entire primary tumor volume that may contribute to the prediction model. Radiogenomics 
combines genomic- and radiomic  data12 and may play an important role in identifying imaging surrogates that 
correlate with genomic profiles, thus serving as a substitute for genomic  profiling13. The aim of this study was 
to perform a comprehensive radiogenomic characterization of primary tumors in cervical cancer and assess 
whether whole-volume MRI radiomic profiles can be linked to clinical phenotypes, patient outcome and potential 
molecular- or genomic therapeutic targets in CC.

Materials and methods
Patient cohort, biospecimen collection and ethical statements
This retrospective study was performed under Institutional Review Board (IRB)-approved protocols (2015/2333 
and 2018/591 Regional komité for forskningsetikk, Vest Norge (REK vest)) and in accordance with the Declara-
tion of Helsinki. Written informed consent was obtained from all patients at primary diagnosis. All consent-
ing patients admitted to Haukeland University Hospital between 2009 and 2017 with histologically confirmed 
cervical cancer and pretreatment pelvic MRI were initially enrolled (Fig. 1a, n = 437). All patients with (i) vis-
ible tumor (maximum tumor diameter range 8–207 mm) confirmed by two radiologists based on pelvic MRI 
including (ii) axial/axial oblique (relative to the long axis of the cervix) T2-weighted imaging (T2WI), and (iii) 
axial/axial oblique diffusion-weighted imaging (DWI) were included in the final study cohort (Fig. 1a, n = 132). 
As illustrated in Fig. 1b, mutational, transcriptomic and biomarker data were available for 65, 73 and 92 of these 
patients, respectively. As FIGO IA patients do not have visible tumors on MRI, the resulting study cohort consists 
of FIGO ≥ IB patients with higher age and more invasive primary treatment than the complete patient cohort 
(Supplementary Table 1). All patients were staged according to the FIGO 2018 criteria. Formalin fixed paraf-
fin embedded (FFPE) tissue with corresponding HE-stained sections were collected from hospital archives for 
histopathological revision and tissue microarray (TMA) construction. An expert pathologist revised histological 
type and grade and assessed inflammatory reaction as previously  described3,14. Disease-specific survival (DSS) 
was defined as time from primary treatment until death from cervical cancer or end of follow-up. Maximum 
tumor diameter was measured irrespective of plane on T2WI as previously  reported7.

Imaging protocol
Pretreatment pelvic MRI, performed as part of routine clinical workup, was acquired on scanners from differ-
ent vendors (GE Healthcare, USA, RRID:SCR_000004; Siemens Healthineers, Germany; Philips Healthcare, 
Netherlands, RRID:SCR_008656), comprising 1.5 T (95/132 patients) or 3.0 T (37/132 patients) systems at three 
different hospitals in Western Norway. Imaging protocols and scanning parameters differed across scanners 
and hospitals. MRI included T2WI and DWI with two, three or four b-values (lowest b-value of 0 or 50; highest 
b-value of 800 or 1000). The high b-value dataset is defined as the DWI with the highest b-value for a particular 
patient. Vendor-provided software at the scanner was utilized to obtain apparent diffusion coefficient (ADC) 
maps from mono-exponential fits to the DWI data (for more details, see Hodneland et al.15).

Tumor segmentation
The whole-volume of the cervical tumors was manually segmented on axial oblique (when available) or axial 
T2WI images (Fig. 1d and h), using the open-source software ITK-SNAP (v. 3.6.0; http:// www. itksn ap. org; 
RRID:SCR_002010). DWI series were available for visual inspection to verify tumor borders (Fig. 1e,f,I,j). 
The segmentations were performed by one of two experienced radiologists in 132 patients (K.W.L.: n = 67; 
N.L.: n = 65) with 12- and 7-years’ experience in pelvic MRI examination, respectively. The radiologists were 
blinded to clinicopathological patient information. The extracted 3D tumor mask was exported as a NifTI file 
(RRID:SCR_003141)16.

Extraction of radiomic profiles
MR images were loaded from DICOM file format (https:// dicom stand ard. org; RRID:SCR_008925) using the 
open-source, Python-based package Imagedata (RRID:SCR_008394)17. An in-house developed Python script 
spatially aligned the high b-value DWI and ADC images with the grid of the axial/axial oblique T2WI by linear 
interpolation (RRID:SCR_008394), and radiomic feature values of these series were extracted from the resam-
pled volumes. Radiomic features were extracted from the three imaging sequences (T2WI, high b-value DWI, 
and ADC) using the open-source software package Pyradiomics v3.0.1 (https:// pyrad iomics. readt hedocs. io/ 
en/ latest)18. Default settings were used for all parameters except for sigma = [1,2,3] and binWidth = 10. Prior 
to radiomic feature extraction, each 3D image stack was divided by its own mean, then multiplied with a fixed 
factor of 100 to ensure a standardized value range in the radiomic feature extraction. The normalization aimed 
to reduce the influence of various field strengths, vendors, and acquisition protocols used in the MRI scans. 
Tumor shape features (n = 14 including tumor volume) were extracted from the T2WI only, while the remaining 
radiomic features were extracted for all three image sequences (n = 3 × 93), resulting in a total of 293 radiomic 
tumor features. The radiomic features are labelled according to their respective feature group (glcm: Gray Level 
Co-occurrence Matrix, gldm: Gray Level Dependence Matrix, glrlm: Gray Level Run Length Matrix, glszm: Gray 
Level Size Zone Matrix, gtdm: Neighboring Gray Tone Difference Matrix), in agreement with naming conven-
tions in Pyradiomics.

http://www.itksnap.org
https://dicomstandard.org
https://pyradiomics.readthedocs.io/en/latest
https://pyradiomics.readthedocs.io/en/latest
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Figure 1.  Exclusion criteria, overlapping data in study cohort and examples of segmented tumors on MRI. 
(a) The study cohort is established from a patient cohort of consenting patients (participation rate > 95%) with 
histopathologically confirmed cervical cancer diagnosed from 2009 to 2017 at Haukeland University Hospital 
(Bergen, Norway). The included patients were diagnosed with FIGO 2018 stage ≥ 1B1, had visible tumor on 
MRI, and an imaging protocol comprising axial (oblique) T2-weighted imaging (T2WI) and diffusion-weighted 
imaging (DWI). (b) Within the study cohort, 92, 65 and 73 patients had available biomarker, mutational and 
transcriptomic data, respectively. Clinicopathological data including extensive follow up were available for all 
132 included patients. In total, 18 patients had no biomarker, mutational nor transcriptomic data available. 
Cervical cancer depicted on magnetic resonance imaging (MRI) by sagittal T2-weighted imaging (T2WI) (c,g), 
axial oblique (with manually segmented tumor mask) T2WI (d,h), and axial oblique/axial diffusion weighted 
imaging (DWI) (e,i) with corresponding apparent diffusion coefficient (ADC) maps (f,j) in two different 
patients allocated to Cluster 1 and Cluster 3, respectively. The tumor masks were drawn from T2WI supported 
by high b-value and ADC map. (c–f) (Cluster 1 patient): A 38-year-old woman diagnosed with a FIGO stage 
IIB (tumor invading the parametrium) squamous cell carcinoma with MRI assessed maximum tumor size of 
4.7 cm receiving radio-chemotherapy as primary treatment; the patient was alive without signs of recurrence 
5 years after diagnosis. (g–j) (Cluster 3 patient): A 67-year-old woman diagnosed with FIGO stage IIA2 
(tumor invading upper two thirds of the vagina and size > 4.0 cm) squamous cell carcinoma with MRI assessed 
maximum tumor size of 4.2 cm receiving radio-chemotherapy as primary treatment; the patient experienced 
recurrence and died from disease 88 days after primary diagnosis.
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Unsupervised clustering of radiomic features
Several phantom studies conducted under controlled environments have demonstrated that MR radiomic fea-
tures are sensitive to variations in MR scanning  protocol19,20. Also in our study, the algorithm tended to cluster 
patients based on MRI acquisition parameters, even after normalizing the image to its own average. To mitigate 
this undesirable effect, we assigned individual radiomic features as outcome variables in a linear regression model 
using the following explanatory parameters: MR voxel volume (slice thickness × pixel area), MR voxel anisotropy 
(slice thickness/pixel length), Repetition Time, Echo Time, Flip Angle, number of averages, field strength (1.5 T 
or 3.0 T), echo train length, and phase encoding direction. For DWI-derived features (high b-value features and 
ADC features) the highest b-value and the number of b-values were added to the list of explanatory variables. 
A fitted linear regression model provided a p-value suggesting whether the model had a significant explanatory 
effect. Adjusting for multiple testing using the false discovery rate (FDR)21 limited the normalization procedure 
to a list of radiomic features with statistically significant linear regression models. Assuming that data variation 
of scanner/protocol origin is incorporated within the linear model, we subtracted the linear prediction from the 
radiomic feature to obtain an unbiased radiomic feature estimate, independent of MRI acquisition parameters. 
Finally, we z-normalized each radiomic feature. Before normalization, 252/293 (86.0%) of the radiomic vari-
ables showed a significant linear relationship with MRI protocol parameters (multiple linear regression, FDR 
correction, α = 0.05). After normalization, none of the radiomic variables were associated with the MRI protocol 
parameters (multiple linear regression, FDR correction, α = 0.05). For reproducibility, the coefficients of the linear 
regression model are provided as Supplementary Table 2.

To minimize the amount of manually set parameters, we explored several automatic algorithms, i.e., the 
Calinski-Harabasz-, Davies-Bouldin-, and silhouette criterions as implemented in MATLAB (v R2022b; 
RRID:SCR_001622), to explore an optimal number of clusters (K) between 1 and 6. However, we encountered 
inconsistent results when using these three methods to determine the optimal number of clusters for our data-
set. Additionally, even repeated analyses using the same method yielded different optimal K values. Due to 
these inconsistencies, we decided to opt for a user-defined value of K. With relatively few patients available for 
clustering, we aimed for the lowest possible K, thus maximizing the number of patients in each cluster. K = 2 
yielded radiomic clusters with no difference in survival, whereas K = 3 yielded clusters exhibiting different patient 
outcomes, and patients were stratified into three radiomic clusters by K-medoids clustering (kmedoids in 
MATLAB) using a squared Euclidean distance measure and partitioning around medoids (PAM) to identify 
 medoids22. Clusters were re-tested for association with the MRI acquisition parameters either by Chi-square 
(categorical variables) or by ANOVA1 test (continuous variables).

Cluster order was rearranged based on frequency of death-by-disease, leading to high-risk clusters associating 
with increasing cluster number (C1, C2, C3). A feature ranking (FR) array with 293 elements was associated with 

the Euclidean distance between cluster centroids µ(Ci), i = 1, 2, 3 , FRk ≡

√

∑3
i=1

∑3
j=i+1

(

µk(Ci)− µk

(

Cj

))2
 . 

Higher values of FR indicate a larger separation of centroids between clusters, suggesting that a particular feature 
contributes significantly to the clustering. This assumption is legitimate only because of the previously acquired 
z-normalization. We sorted FR from high to low, representing more prominent features on the left side of the 
plots. Two intervals with particular contribution to the clustering were identified for thresholds FR > 1.85 (interval 
I) and 1.50 < FR < 1.85 (interval II). These intervals demonstrate the radiomic features that are most informative 
in distinguishing between patient clusters. Individual features were further labelled as shape features, or features 
uniquely originating from T2WI, high b-value DWI, and ADC maps.

DNA and RNA isolation
An expert pathologist evaluated tumor cellularity on hematoxylin-stained sections from fresh frozen tumor 
biopsies. Total RNA and DNA were extracted from the fresh frozen tissue using the All-Prep DNA/RNA Mini 
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA quality was measured by 
Bioanalyzer 2100 (Agilent, Santa Clara, USA) and yield by Nanodrop 1000, (ThermoFisher Scientific, Waltham, 
USA) standards for the L1000 gene expression approach (Fig. 1b)23 (detailed L1000 protocol included  in24).

Whole exome sequencing
Whole exome sequencing (WES) requires high quality fresh frozen tissue with tumor purity above 50%. Of the 
132 cervical tumors, 65 met this criterium and were subsequently selected for WES (Fig. 1b). The libraries were 
set up using KAPA Hyper Prep (100 ng input) and captured using the SeqCap EZ MedExome (Roche, Basel, 
Switzerland). The Illumina HiSeq 4000 (Twist: 100 × 2) was applied for sequencing. Bwa-mem (v.0.7.17) was 
used to align sequences to the human genome GRCh38, executed using the dockstore-cgpmap 3.3.0 pipeline. 
Raw read quality was assessed using the FASTQC and Picard software (v.2.17.0). The GATK (v4.2) was applied 
for depth and coverage analyses. MultiQC was used to generate data quality report and control factors such as 
duplicate and alignment rate. Total number of sequenced reads, unique reads, covered bases and coverage per 
base are summarized in Supplementary Table 3. Somatic variants were called using Mutect2 and Strelka. Mutect2 
is part of the GATK docker container 4.2. Strelka (executed via 2.9.10 container from biocontainers.pro reposi-
tory) was run using recommended default parameters for BWA aligned reads. Variant calling procedure included 
Panel of Normals generation, calculation of contamination tables and, finally, filtering using FilterMutectCalls 
function (GATK 4.2). In addition, the Mutect2 and Strelka variant overlap was limited to exome regions using 
MedExome hg38 bed files (Roche, Basel, Switzerland) and Bedtools intersect (v.2.27.1). Variants were annotated 
using Ensembl VEP following vcf2maf instructions (v.1.6.21).
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Transcriptomic analyses
In total, 73 of the 132 patients had available total RNA that met the quality (measured by Bioanalyzer 2100, 
RRID:SCR_019715, Agilent, Santa Clara, USA) and yield (measured by Nanodrop 1000, RRID:SCR_016517, 
ThermoFisher Scientific, Waltham, USA) standards for the L1000 gene expression approach (Fig. 1b)23 (detailed 
L1000 protocol included in:24). Differentially expressed genes were identified using the significance of microar-
rays (SAM) approach within the JExpress Software (http:// www. molmi ne. com)25. Gene set enrichment analyses 
(GSEA) (JExpress Software) were scored by the Golub (signal-to-noise) methods and permuted on genes. The 
gene set collections C2 (curated gene sets), C5 (gene ontology gene sets), and Hallmarks (Molecular Signature 
database v4.0; RRID:SCR_016863) were queried for enriched gene  sets26. The prognostic value of the 11 dif-
ferentially expressed genes was assessed in an independent cervical cancer cohort published by the TCGA 
 consortium27 within the Human Protein Atlas Database (https:// www. prote inatl as. org/) (RRID:SCR_006710). 
An immune infiltration score was calculated for each patient with available L1000 data by using R (v3.6.3) (Mas-
sachusetts, USA) with the ESTIMATE (Estimation of Stromal and Immune cells in MAlignant tumor tissue using 
Expression) package ve1.0.1328.

Immunohistochemistry for expression
Tissue microarrays (TMAs) were constructed, stained, and scored as previously  described14. Successful TMA con-
struction requires sufficient high-quality tissue and within the radiomic cohort, biomarker scores were available 
for 88, 92, 84 and 87 tumors for p53, PD-L1, HLA-DQB1 and LIMCH1,  respectively3,14. The sections were scored 
according to the staining index (SI) combing staining intensity (0–3) and cell area (0 = no staining, 1 =  < 10%, 
2 = 10–50%, 3 =  > 50%). For HLA-DQB1, a combined score of stroma and tumor staining intensity was applied. SI 
cut-off values defining high versus low protein expression for all antibodies are shown in Supplementary Table 4.

Clinicopathological statistical analyses
Statistical data analyses were performed using the software package SPSS Statistics (Statistical Package of Social 
Science) v27.0 (IBM, Armonk, USA). All probability values were two-sided and considered statistically significant 
if < 0.05. Correlation between groups was assessed using Pearson’s χ2 or Fisher’s exact test, as appropriate for 
categorical variables. For continuous variables, the Mann–Whitney U or the Kruskal–Wallis test was applied, as 
appropriate. The Kaplan–Meier (product-limit) method was applied for patient survival analyses, and survival 
differences were calculated using the log-rank test (Mantel–Cox). Multivariate survival analyses were performed 
using the Cox proportional regression hazard ratio (HR) method, adjusting for FIGO stage and age at primary 
diagnosis.

Results
Unsupervised clustering of radiomic features identifies patient clusters with distinct risk 
profiles
Whole-volume MRI radiomic profiling was performed in 132 patients with visible cervical primary tumor at 
MRI. A total of 293 radiomic features were extracted from the segmented primary tumors (for details, see “Mate-
rials and methods”). Unsupervised clustering of the radiomic features yielded three distinct clusters (Clusters C1 
[n = 52], C2 [n = 46] and C3 [n = 34]) exhibiting different radiomic tumor profiles (Fig. 2a). The clusters revealed 
no association with magnetic field strength or any of the other variables used in the normalization procedure 
by linear regression (FDR correction, chi-square test for categorical variables, ANOVA1 test for continuous 
variables, p > 0.052).

Patients in Cluster 2 and 3 had significantly poorer disease-specific survival than patients in Cluster 1, both 
when including all histologies (n = 132) (p = 0.009; Fig. 2b), and within the subgroup of squamous cell carcino-
mas (n = 103) (p = 0.02; Fig. 2c). Patients in Cluster 2/3 (combined) had an increased risk of death from cervical 
cancer with a hazard ratio (HR) of 3.33 (95% confidence interval [CI]: 1.37–8.07, p = 0.008; Table 1). Advanced 
FIGO 2018 stage (III/IV) and high age (years) also predict poor disease-specific survival with HRs of 4.52 (95% 
CI 2.04–10.03, p < 0.001) and 1.03 (95% CI 1.00–1.05, p = 0.02), respectively. In a multivariable analysis, includ-
ing Cluster (2/3 vs 1), age (years) and FIGO 2018 stage (III/IV vs I/II), Cluster 2/3 independently predicts poor 
outcome (adjusted HR of 2.51, 95% CI 1.02–6.16; p = 0.045; Table 1).

Radiomic patient clusters exhibit distinct clinicopathological characteristics
The three clusters represent patient groups exhibiting distinct differences in age, FIGO 2018 stage, MRI-derived 
maximum tumor diameter and histological subtype (Table 2). Patients in Cluster 1 (n = 52) are characterized 
by low FIGO 2018 stage (stages I/II in 69% [36/52]), small tumor diameters (≤ 4 cm in 65% [34/52]) and rare 
histological types (in 12% [6/51]). Patients in Cluster 2 (n = 46) were younger (median age of 40 years vs. 47 
and 54 years in Cluster 1 and 3, respectively) and more often diagnosed with adenocarcinomas (26% [12/43]). 
Cluster 3 patients (n = 34) were older (median age of 54 years) and more often presented with FIGO stage III/
IV (in 68% [23/34]), tumors > 4 cm (in 88% [30/34]) and squamous cell carcinoma (in 94% [32/34]) (Table 2). 
Patients within the three clusters had similar body mass index (BMI) and histological grade. Median tumor 
volume is significantly higher in Cluster 2 and 3 than in Cluster 1 (Cluster 1: 6.8 ml, Cluster 2: 22.1 ml, Cluster 
3: 58.8 ml; Kruskal–Wallis, p < 0.001; Supplementary Fig. 1a). Tumors in Cluster 3 have lower whole volume 
mean apparent diffusion coefficient (ADC) value (variable "firstorderMeanADC") compared to Cluster 1 tumors 
(p = 0.03, Supplementary Fig. 1b and Fig. 2a). Imaging findings in two different patients allocated to Cluster 1 
and Cluster 3 are presented in Fig. 1c–j.

http://www.molmine.com
https://www.proteinatlas.org/


6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11339  | https://doi.org/10.1038/s41598-024-61271-4

www.nature.com/scientificreports/

Radiomic variables

Cluster 1
n=52

Cluster 2
n=46

Cluster 3
n=34

Pa
tie

nt
s

Low

High

Tu
m

or
 v

ol
um

e
M

ea
n 

AD
C

Low

High

H
is

to
lo

gi
c 

ty
pe

FI
G

O

I
II
III
IV

SCC
AC
Other hist. type

Histologic 
type

FIGO stage

Tumor volume
Mean-ADC

Radiomic 
features

a

Shape T2 ADC High b-value

fir
st

or
de

r

gl
cm

gl
sz

m

ng
td

m

gl
rlm

gl
dm

fir
st

or
de

r

gl
cm

gl
sz

m

ng
td

m

gl
rlm

gl
dm

fir
st

or
de

r

gl
cm

gl
sz

m

ng
td

m

gl
rlm

gl
dm

All patients, n = 132, p = 0.009
Cluster 1 (52/6)
Cluster 2 (46/14)

p = 0.03
p = 0.002

p = 0.32Cluster 3 (34/13)

1.0

0.8

0.6

0.4

0.2

0.0

Follow up time (years)

D
is

ea
se

-s
pe

ci
fic

 s
ur

vi
va

l

D
is

ea
se

-s
pe

ci
fic

 s
ur

vi
va

l

0 2 3 4 51

b

Cluster 1 (38/4)
Cluster 2 (33/9)
Cluster 3 (32/12)

1.0

0.8

0.6

0.4

0.2

0.0

Follow up time (years)
0 2 3 4 51

Squamous cell carcinoma, n = 103, p = 0.02

c

p = 0.09
p = 0.005

p = 0.26

Figure 2.  Unsupervised clustering of 293 radiomic features in 132 cervical cancer patients yields three 
distinct patient clusters exhibiting significant different risk profiles. (a) Unsupervised k-medoid clustering of 
293 radiomic features identified three patient clusters exhibiting distinct radiomic profiles. Each vertical line 
(values along x-axis) represents one radiomic feature, and each horizontal line (values along y-axis) represents 
one patient. The tumor volumes, mean apparent diffusion coefficient (ADC) values, FIGO stage and histologic 
types for the same patients are displayed in right panels. The radiomic features extracted from T2-weighted 
images, apparent diffusion coefficient (ADC) maps and high b-value diffusion weighted images (DWI) are 
indicated by arrows. Similarly, radiomic feature groups (firstorder, glcm, glszm, ngtdm, glrlm, gldm) are shown 
by unique color codes. (b,c) Significantly different disease-specific survival (DSS) for patients within the three 
radiomic clusters was observed in the entire patient cohort (b) and for the subgroup of patients with squamous 
cell carcinoma (c). P-values of DSS differences between specific clusters are indicated in gray. Kaplan–Meier 
curves depict probability values from Mantel-Cox log-rank test comparing categories. Number of patients/
events for each category is given in parentheses. ADC: apparent diffusion coefficient, FIGO: International 
Federation of Gynaecology and Obstetrics, SCC: squamous cell carcinoma, AC: adenocarcinoma, glcm: gray 
level co-occurrence matrix, gldm: gray level dependence matrix, glrlm: gray level run length matrix, glszm: gray 
level size zone matrix, gtdm: neighboring gray tone difference matrix.
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Radiomic features from T2WI are most important for the radiomic clustering
The mean value (i.e., cluster centroid) for each radiomic feature within the clusters (C1, C2 & C3), ordered based 
on declining feature ranking (FR), is shown in Fig. 3 (for details, see “Materials and methods”). Eight single 
radiomic features (interval I, consecutively ranked from 1–8) with markedly elevated FRs (Fig. 3a, ranking 1–8) 
are all derived from the T2WI (Fig. 3b and Supplementary Table 5a and b). Among the next 47 radiomic features 
(interval II, consecutively ranking 9–55), T2WI features were also predominant (Fig. 3b, Supplementary Table 5a 
and b). No statistical difference in ranking across feature groups was found (Fig. 3c, Supplementary Table 5a). 
Extreme centroid values, either positive or negative, occurred most frequently in the high-risk Cluster 3 and 
least frequently in the low-risk Cluster 1 (Fig. 3a, Supplementary Table 6). A total of 189/293 (64.5%) radiomic 
features were statistically associated with tumor volume (Spearman correlation, FDR correction, α = 0.05). Fea-
tures statistically associated with tumor volume did not have higher FR values in terms of ranking compared to 
those that were not associated with tumor volume (Kruskal–Wallis, p = 0.37). Furthermore, tumor volume had 

Table 1.  Cox regression analyses for prediction of disease-specific survival in relation to patient age, FIGO 
stage, radiomic cluster and histological subtype in cervical cancer patients (n = 132). FIGO: International 
Federation of Gynaecology and Obstetrics. Significant values are in bold.

Variables Unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value

Age at primary treatment (years) 1.03 (1.00–1.05) 0.02 1.03 (1.00–1.05) 0.028

FIGO 2018 stage I/II vs. III/IV (n = 71 vs 61) 4.52 (2.04–10.03)  < 0.001 3.75 (1.66–8.43) 0.001

Radiomic clusters 1 vs. 2/3 (n = 52 vs 80) 3.33 (1.37–8.07) 0.008 2.51 (1.02–6.16) 0.045

Histological type

 SCC (n = 103) 1 0.56

 AC (n = 21) 0.90 (0.35–2.36) 0.84

 Other (n = 8) 1.87 (0.57–6.21) 0.30

Table 2.  Clinicopathological patient characteristics in the three radiomic clusters (using an unsupervised 
three-clustering approach). BSO: bilateral salpingo-oophorectomy, FIGO: International Federation of 
Gynaecology and Obstetrics, LA: lymphadenectomy. Missing info: Grade, n = 9. Significant values are in bold. 
a Chi-square test. b Kruskal–Wallis test.

Variables
Cluster 1 (n = 52)
n (%)

Cluster 2 (n = 46)
n (%)

Cluster 3 (n = 34)
n (%) P-valuea

Median (range) age (years) 47 (29–95) 40 (23–85) 54 (28–85) 0.002b

BMI (kg/m2) 0.16

 < 25 30 (58) 18 (39) 15 (44)

 ≥ 25 22 (42) 28 (61) 19 (56)

FIGO 2018 stage 0.005

 IB 23 (44) 14 (30) 4 (12)

 II 13 (25) 10 (22) 7 (21)

 III 14 (27) 18 (39) 14 (41)

 IV 2 (4) 4 (9) 9 (26)

Maximum tumor diameter (MRI)  < 0.001

 ≤ 4 cm 34 (65) 18 (39) 4 (12)

 > 4 cm 18 (35) 28 (61) 30 (88)

Histologic type 0.015

 Squamous cell carcinoma 38 (73) 33 (71) 32 (94)

 Adenocarcinoma 8 (15) 12 (26) 1 (3)

 Other histologic type 6 (12) 1 (2) 1 (3)

Histologic grade 0.76

 Grade 1/2 38 (79) 35 (83) 29 (85)

 Grade 3 10 (21) 7 (17) 5 (15)

Primary treatment 0.004

 Primary radiation ± chemotherapy 21 (40) 28 (61) 29 (85)

 Radical hysterectomy ± BSO/LA 26 (50) 15 (33) 3 (9)

 Simple hysterectomy ± BSO/LA 0 (0) 1 (2) 0 (0)

 Trachelectomy/conization ± LA 2 (4) 0 (0) 0 (0)

 Palliative treatment ± chemotherapy 3 (6) 2 (4) 2 (6)
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low feature ranking (280 out of 293) (Fig. 3b; Supplementary Table 5b), and the three clusters had similar mean 
tumor volumes (ANOVA test for differences in means p = 0.13; Supplementary Table 5b), all supporting that the 
clustering was not primarily driven by differences in mean tumor volume.

Mutational analyses comparing the radiomic patient clusters reveal druggable targets
To gain insight into the genomic landscape and reveal potential targets for treatment in the different clusters, 
mutations in known significantly mutated genes (SMGs) in  CC29 were compared between clusters (Fig. 4a). Clus-
ter 1 tumors had the lowest mutational frequencies within these genes as compared to Cluster 2 and 3 tumors. In 
a broader analysis including mutational data for all genes, FIZ1 and ZNF275 had significantly higher- and RYR1 
lower mutational frequency in Cluster 1 compared to those in Cluster 2 and 3 tumors (Supplementary Fig. 2). 
The burden of significantly mutated cervical cancer genes including KMT2D and KRAS was highest in Cluster 2. 
Interestingly, five of six patients in Cluster 2 who died from disease, had mutations in druggable targets (Fig. 4a, 
Supplementary Table 7). Cluster 2 also contained one ultra-mutated tumor with 17,647 non-silent mutations. In 
total, 32 genes with significantly higher mutation frequencies were detected in Cluster 2 tumors (Supplementary 
Fig. 2). Among Cluster 3 tumors, druggable alterations (e.g., PIK3CA, ERBB2, DDX3X and CREBBP mutations) 
were detected in three of five patients who died from CC. The mutational frequency of NEDD4L, B3GNT8, 
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Figure 3.  T2-derived radiomic features are most important for the radiomic clustering and extreme feature 
values associate with the high-risk cluster (Cluster 3). (a) Radiomic variables and their importance for the 
generated clusters, sorted according to descending feature ranking (FR) (from left to right). Higher Euclidean 
centroid distance (red dots) indicates larger separation of centroids and hence larger effect on the clustering. 
Orange, light blue and blue dots indicate centroid position of Cluster 1, 2 and 3, respectively, for each radiomic 
feature. Bar (b) indicates which MR series and (c) which feature group each radiomic feature is derived from. 
Two highest ranking feature intervals (shaded in pink) were recognized with characteristic profiles: (1) Features 
ranked from 1 to 8 have markedly elevated FRs and all features are derived from T2WI. (2) Features ranked 
9–55, are also predominated by T2WI. (3) In both intervals, Cluster 3 (blue dots) associates with extreme (both 
positive and negative) centroid values. The number of features (n) derived from the respective MR series (b) and 
radiomic feature groups (c) is given in the plot. Tumor volume (plotted value highlighted in red) was ranked 
as 280 (out of the 293 features) for feature importance for the derived clustering (b). A detailed description of 
all 293 radiomic features and their contribution to the radiomic clustering is presented in Supplementary Note 
1 and Supplementary Fig. 2, respectively. FR: feature ranking, glcm: gray level co-occurrence matrix, gldm: 
gray level dependence matrix, glrlm: gray level run length matrix, glszm: gray level size zone matrix, ngtdm: 
neighboring gray tone difference matrix.
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CDHR5, CNGC3 and NDUFS2 was significantly higher in Cluster 3 tumors than in Cluster 1 and 2 tumors. A 
broader analysis of oncogenic pathway alterations according to clusters revealed that the distribution of cell cycle 
pathway mutations was significantly associated with radiomic clusters (Fig. 4b). Specifically, Cluster 2 had higher 
levels of cell cycle and Hippo pathway mutations, whereas Cluster 3 had higher levels of TGF-beta and PI3K 
pathway mutations. In Cluster 1, a low or intermediate number of oncogenic pathway mutations were detected.

Transcriptomic analyses reveal distinct pathway activation within clusters
One gene was significantly differentially expressed (EPS8L3) between Cluster 2 and 3 and ten genes (FGR*, 
SEC31B*, MLH1*, P2RY6, PLCB2*, QRICH1, CARD9, KCTD14, STAT5A* and BCL2L14*) between Cluster 1 
and 3 (FDR < 0.01, Fold Change >  ± 1.75, Fig. 4c), six of which (*) associated with better survival in the TCGA 
cervical cancer cohort (n = 304, p < 0.02, https:// www. prote inatl as. org/). Gene set enrichment analyses (GSEA), 
revealed that Cluster 1 tumors associate with immune cell (e.g. interferon gamma signaling, antigen presentation, 
granules, leukocytes, adaptive immune response) and granule membrane activity (Supplementary Tables 8/9a 
and b), Cluster 2 tumors associate with DNA replication, protein translation, membrane transport and cell cycle 
(Supplementary Tables 8/9a and c), and Cluster 3 tumors with metabolism, squamous histology, translation 
and hypoxia (Supplementary Tables 8/9b and c). Overall, these gene expression analyses indicate that Cluster 
1 tumors have higher immune activation and that Cluster 2 and 3 tumors express genes related to increased 
proliferation and metabolism.

The high‑risk radiomic Cluster 3 associates with abnormal p53 and high LIMCH1 protein 
expression
To further characterize the distinct clusters, the expression of known molecular biomarkers in  CC3,14, that is, p53, 
PD-L1, HLA-DQB1, and LIMCH1, was investigated (Fig. 4d and Supplementary Table 4). p53 overexpressing 
tumors indicate TP53 mutation and p53 negative tumors indicate TP53  deletion3,30. For Cluster 1 and 2 tumors, 
p53 was overexpressed or negative in 26% (16/61) and 5% (3/61), respectively, whereas for Cluster 3 tumors, 
63% (17/27) were overexpressed (13/29) or negative (4/29). The immune activation markers HLA-DQB1 and 
the immune checkpoint inhibitor response marker PD-L1 were evenly distributed between clusters; however, the 
marker LIMCH1, indicating poor prognosis, was highly expressed in Cluster 3 tumors (96%; (25/26) compared 
with Cluster 1 (76%: 22/29) and Cluster 2 (81%, 26/32) tumors (p = 0.06, Supplementary Table 4).

Discussion
This study demonstrates that whole-volume magnetic resonance imaging (MRI) radiomic tumor profiling cap-
tures microstructural tumor features that are closely linked to clinical characteristics and outcomes in patients 
with uterine cervical cancer. Based on radiomic features only, unsupervised clustering yielded three distinct 
patient groups exhibiting highly different clinicopathological characteristics and phenotypes, which were also 
reflected in survival. Importantly, the same radiomic clusters associated with specific genomic alterations and 
transcriptional programs. This suggests that the radiogenomic approach presented herein may be used to non-
invasively identify specific cell signaling profiles that can be targeted by novel treatments in cervical cancer.

Several studies have reported a potential value of MRI based radiomic tumor profiling for assessing thera-
peutic  response31,32 and for predicting  survival33–35 and recurrence/metastatic  spread36–38 in cervical cancer. 
Unfortunately, poor reproducibility is a major general challenge with radiomics, which may be due to variability 
in image acquisitions, scanner model/manufacturer and protocol  settings39,40, image analyses (e.g. manual versus 
machine learning based tumor  segmentations41) and the statistical modelling  employed42,43. Hence, an important 
step when assessing the value of radiomics in cervical cancer is to develop and employ robust and standardized 
methodologies to increase the reproducibility and transferability of findings to independent patient cohorts. 
Therefore, in this study, we extracted and reported radiomic features following the recommendations by the 
Image Biomarker Standardization Initiative (IBSI; https:// theib si. github. io/). We also made extensive efforts 
to reduce protocol/scanner-induced bias by fitting a linear model to each of the radiomic features using scan-
ner protocol as predictive variables. Subtracting this model from the radiomic feature values yielded a linearly 
unbiased data estimate leading to clusters that were not associated with MRI protocol. By using this approach, 
the observed cluster distribution is more likely to capture radiomic features reflecting biologic variation rather 
than scanner-variations.

Large MRI-measured tumor size is known to predict high-risk cervical cancer  disease5,8. Interestingly, we 
found no overrepresentation of tumor-volume-associated radiomic features among the high-ranked cluster-
driving features. We have also demonstrated that clustering based on the full radiomic profile provides clusters 
with substantially different composition than clustering based on tumor volume alone. This suggests that volume-
independent radiomic features may capture microstructural tumor characteristics relevant to the clinical pheno-
type. Furthermore, we found that within the top-ranked cluster-driving features, the absolute feature values in 
Cluster 1 were lower than in Cluster 2 and Cluster 3. Interestingly, this suggests that at least for the top-ranked 
radiomic features, high-risk patients presented more extreme values than low-risk patients.

Both T2-weighted imaging (T2WI) and DWI are recommended MRI sequences used for initial cervical 
cancer  staging6, with T2WI considered the mainstay for detecting and assessing the extent of cervical tumors. 
Interestingly, T2WI predominated among the top-ranked cluster-driving features in this study. This may be due 
to T2WI yielding superior soft-tissue resolution, that may be important for the retrieval of radiomic profiles. In 
comparison, DWI yields lower soft-tissue resolution with less detailed anatomic information. Thus, in spite of 
DWI putatively being closely linked to tumor microstructure, -cellularity and -cellular membrane integrity by 
its quantification of water mobility within the  tumor44, the DWI radiomic profiles may be less able to capture 
phenotypic information.

https://www.proteinatlas.org/
https://theibsi.github.io/
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Unsupervised clustering of 293 radiomic features in 132 cervical carcinomas yielded three distinct radiomic 
clusters comprising patients with significantly different survival rates. Cluster 1 patients were characterized by 
favorable survival and had small tumors with enriched immune cell signaling. Consistent with this, immune 
signaling has previously been linked to favorable survival in cervical  cancer14,45. Cluster 2 patients were character-
ized by intermediate-risk, low age, and adenocarcinoma histology. Transcriptional analyses revealed upregulated 
proliferation- and cell cycle signaling, and genomic analyses identified accumulation of cell cycle- and Hippo 
pathway mutations. Aberrant Hippo signaling may lead to hyperproliferation, cellular invasion, metastasis, and 
chemotherapeutic  resistance46. Taken together, Cluster 2 tumors appear to be characterized by aberrant cell cycle 
regulation which leads to high proliferation enabling cellular invasion and metastasis. This together with chemo-
therapy resistance could partly explain the poorer survival rate in this group. Furthermore, this finding suggests 
that switching from chemotherapy-based treatments to cell cycle targeting compounds (e.g., CDK4/6  inhibitors47) 
and Hippo pathways (e.g., YAP-TEAD  inhibitors46) could prove beneficial in several Cluster 2 patients.

Cluster 3 patients were characterized by high-risk features including older age, advanced stage, and large 
tumor size. Surprisingly, a higher proportion of squamous cell carcinomas (SCC) was seen in Cluster 3, even 
though the SCC subtype allegedly indicates a more favorable prognosis. However, a significant proportion of SCC 
patients in Cluster 3 (12/32: 38%) died from CC. Thus, radiomic profiling may aid in predicting poor outcomes 
in patients with SCC. Our genomic and transcriptomic analyses indicate that Cluster 3 tumors exhibit aberrant 
p53-, MYC- and MTORC1 signaling caused by mutations, some of which may be responsible for the aggressive 
phenotype. Aberrant p53 signaling was confirmed by IHC where we found aberrant p53 expression (negative 
or overexpressed protein level) in 68% of Cluster 3 tumors as opposed to only 30% in Cluster 1/2 tumors com-
bined. Whether effective drugs that target these aberrations could be developed for Cluster 3 tumors, warrants 
further investigation.

This study has some limitations. For radiomic profiling we used tumor masks drawn on T2WI only; these 
masks were placed on interpolated DWI resampled to the same slice thickness and voxel size as those of the cor-
responding T2WI. This process of pixel resampling and interpolation may have slightly influenced the accuracy 
of the tumor masks on the DWI and the corresponding DWI radiomic profiles. However, manual tumor seg-
mentations of all series would be highly time consuming and was thus considered unfeasible. Furthermore, only 
half of the included patients had overlapping genomic- and transcriptomic- data, thus hampering the genomic 
profiling of the clusters. Currently, such genomic profiling requires high quality fresh tissue which is challenging 
to obtain in retrospective studies. Future improvements in tissue sampling and DNA/RNA extraction protocols 
will enable comprehensive genomic profiling in prospective cancer cohorts. Finally, ideally the described MRI 
radiomic model needs to be validated in independent and prospective cervical cancer patient series, and this is 
planned in future follow-up studies.

In conclusion, this study shows how non-invasive preoperative MRI radiomic profiling yields distinct radi-
omic patient clusters with different risk-profiles and prevalence of molecular- and genetic tumor aberrations in 
cervical cancer. Altogether, this information may inform the selection of patients for more individualized and 
targeted treatment schemes (e.g., tailored surgery, radio-chemotherapy, immunotherapy, CDK4/6 and YAP-
TEAD inhibitors, and p53 pathway-targeting treatments). However, the described MRI radiomic prognostic 
and predictive model needs to be validated in independent cervical cancer patient series to prove its role as a 
clinically useful tool.

Data availability
The datasets generated during and/or analyzed during the current study are provided within the supplementary 
information files or from the corresponding author on reasonable request.
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