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Country‑report pattern corrections 
of new cases allow accurate 2‑week 
predictions of COVID‑19 evolution 
with the Gompertz model
I. Villanueva 1,2,10, D. Conesa 1,10, M. Català 3, C. López Cano 1, A. Perramon‑Malavez 1, 
D. Molinuevo 4, V. L. de Rioja 1, D. López 1, S. Alonso  1, P. J. Cardona 5,6,7, 
C. Montañola‑Sales 8, C. Prats 1,9 & E. Alvarez‑Lacalle  1*

Accurate short-term predictions of COVID-19 cases with empirical models allow Health Officials 
to prepare for hospital contingencies in a two–three week window given the delay between case 
reporting and the admission of patients in a hospital. We investigate the ability of Gompertz-type 
empiric models to provide accurate prediction up to two and three weeks to give a large window of 
preparation in case of a surge in virus transmission. We investigate the stability of the prediction and 
its accuracy using bi-weekly predictions during the last trimester of 2020 and 2021. Using data from 
2020, we show that understanding and correcting for the daily reporting structure of cases in the 
different countries is key to accomplish accurate predictions. Furthermore, we found that filtering out 
predictions that are highly unstable to changes in the parameters of the model, which are roughly 
20%, reduces strongly the number of predictions that are way-off. The method is then tested for 
robustness with data from 2021. We found that, for this data, only 1–2% of the one-week predictions 
were off by more than 50%. This increased to 3% for two-week predictions, and only for three-week 
predictions it reached 10%.

The appearance of SARS-CoV-2 in 2019 in the Wuhan region of China1–3 has presented an enormous chal-
lenge for hospitals and Intensive Care Units (ICUs) around the world4,5. A significant number of asymptomatic 
and pre-symptomatic cases have helped to propagate the COVID-19 disease6,7 with high hospitalizations and 
assisted support requirements4,8, unless large vaccination coverage is achieved. This situation has specifically 
affected elder people and susceptible population9,10. Significant increases in COVID-19 cases lead to a high rate 
of hospitalization and ICU’s use, which require long-term support11. This condition has led to the collapse of 
the standard hospital function in regions where the incidence reached high values (typically 2% fourteen-day 
incidence values or higher) until the arrival of the omicron variant and vaccination campaigns12,13. Therefore, it 
is important to develop predictive tools that can forewarn increases in demand for services due to COVID-19. In 
these circumstances, hospitals need to mobilize resources from both within and, if needed, outside the hospital. 
Personal time shifts, the opening of new areas for COVID-19 treatment, reduction of non-urgent activities, 
among others, need to be planned, preferably 2 weeks in advance.

The development of these predictive tools requires two fundamental analyses. First, regions establish a pat-
tern of hospitalization charge and discharge from the number of detected cases, vaccination coverage, and the 
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local characteristics of the therapeutic effort. Health authorities have very accurate data on the ratio of detected 
cases that need hospitalization and, eventually, ICUs14, except for the very first stages of a new variant with 
higher transmission. They also have exact and local values for the structural delay between the development of 
COVID-19 symptoms and hospitalization needs15. Given the typical uncertainty between a reported case and 
hospitalization, around 2–10 days16, health authorities need the number of symptomatic cases today to predict 
the hospital situation in the following days. Unfortunately, PCR tests require time to be requested, performed 
and introduced in the information system (IS)15. Even in the case of fast antigen tests, there are delays between 
symptoms and physician visits. These delays in consolidating data prevent proper hospital utilization prediction 
unless the number of issues can be known accurately some days in advance.

The need for highly accurate one-week prediction tools for COVID-19 cases from consolidated reported 
cases has triggered the development of highly calibrated short-term prediction models. They can be divided into 
mechanistic, artificial intelligence (AI), and empirical growth models.

In the first category, mechanistic models (SEIR-type models) are typically compartment models that divide 
a population into Susceptible, Exposed, Infectious and Recovered. The transitions between these compartments 
are governed by differential equations describing how individuals move from one state to another over time. The 
model parameters include the transmission rate, the incubation period, and the recovery rate, among others. 
These models provide insights into the potential course of an outbreak, the impact of interventions (such as vac-
cination or social distancing), and the overall dynamics of the disease within a population. In addition, they are 
employed for direct short-term prediction17 with the incorporation of quarantined individuals18 or to evaluate 
the role of social distancing19 or different local legislative and social environments20–22.

In the second category, AI-driven time series analysis of disease cases allows for short-term predictions 
on the number of cases23,24 or derived hospitalizations because they do not depend on the susceptibility of the 
individuals. The Autoregressive Integrated Moving Average (ARIMA) or Long Short-Term Memory (LSTM) 
algorithms are broadly used in that matter. Usually, machine learning strategies can be employed to improve 
the short-term predictions developed with time series analysis25,26, offering a robust framework for forecasting 
disease cases or hospitalizations and refining public health decision-making processes.

Finally, growth models are typically used to describe growth processes of different types, particularly 
epidemics27. They have been particularly applied to the short-term prediction of COVID-19 cases or hospitali-
zations because their dynamics do not depend on the susceptibility of the individuals and can account for any 
non-pharmacological intervention. Examples of growth models are the logistic model28 or the model employed 
in this report, the Gompertz model29. The Gompertz model, successfully fitted to data from different countries, 
provides reasonably accurate forecasts 5–10 days ahead30,31. Different versions of these models, including the one 
presented here, have been employed during the pandemic to perform short-term predictions from the evolu-
tion of the number of daily cases. For example, 28 and 29 independent models have been employed to forecast 
the evolution of cases, respectively, in the different states of the United States of America32 and in the different 
countries in Europe33. A key feature of all these models is that the ground truth data they must fit entail only 
daily diagnoses. In this way, there is a more general split between models that aim to predict multiple countries 
from only case count cases from models that can integrate different inputs in a given country or region. For 
example, the mobility data can explain much of the growth rate34. Furthermore, climate35, social interactions36 
wastewater37, or a combination of them together with hospitalization, prevalence, or past deaths have been 
employed to enhance the performance of the predictions38. One of the main problems previous approaches face 
is the unreliable weekly dynamics of daily reported cases. They present notable differences between labor days 
and weekends in most countries39–41. It is commonly associated with different activities in primary care, where 
most cases are detected nowadays42, and laboratory or Information System delays due to the weekend break. We 
will show, however, that daily patterns are more extensive and complicated. We will show that unveiling them 
provides valuable information useful for producing accurate data that can not be directly obtained with weekly 
averages. The basic idea is that, once the patterns are known, the last data of a given weekday provides informa-
tion for the future that is diluted when performing weekly averages.

In the present paper, we perform predictions using case counts after analyzing European patterns of reported 
cases and correcting them. We focus on the daily patterns observed during the European waves at the end of 
2020 and 2021. We will use 2020 as the testing ground of the method to make it self-contained, and then we 
update the reporting pattern for 2021 to test the method’s robustness. We show that direct empirical data on 
the reporting patterns of each country increases the short-term accuracy of the predictions. We also show that 
prediction must be tested for local robustness. Predictions that change significantly when the model’s internal 
parameters are changed should be considered unstable. They have worse prediction accuracy. Allowing for a 
30% error in the number of new cases, we show a success rate for the last trimester of 2021 higher than 90% 
with one-week predictions and close to 80% for two-week predictions once unstable predictions are filtered out. 
More importantly, one or two-week predictions that are off by more than 50% are rare (less than 3%). Finally, 
we compare the model’s prediction for different European countries against the performance of other models 
participating in the European Hub of forecasters33 over one and two-week horizons.

Methods
Data source and pre‑processing
We obtain the historical data series of new daily cases for European countries with more than 1 million inhab-
itants from the WHO database43. We analyze two batches of data. First, we use European data from the 1st of 
September to the end of November 2020, encompassing the second and third waves, depending on the country. 
We fully analyse our prediction methods with these data from 2020. Then, we use the same dates for 2021 to 
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check that the best prediction method analyzed and developed for 2020 is also reliable in 2021, in a different 
stage of the European pandemic associated with different dominant variants.

To assess the reliability of the data series, we checked the number of days where cases reported were zero for 
each country. We have found that the daily cases in Denmark, Norway, Sweden, and Cyprus are unreliable due 
to significant gaps in the data. These gaps include extended periods of null entries on various dates rather than 
occasional interruptions. As a result, we have concluded that the most appropriate course of action is to disregard 
this data. A full description is provided in Supplementary Table S1.

We group the other countries as those providing systematic data (see Supplementary Table S1) and those 
having a one or two-day gap, generally related to a given holiday. Countries with only one gap in data present 
cases reported the next day of the missing data. It is relatively straightforward that the cases accumulated due to 
holidays, so the series can be easily corrected by distributing those extra cases to the previous day. Nevertheless, 
they still fail to provide accurate data for some days, and it is challenging to redistribute cases properly. Therefore, 
we do not include predictions for holidays.

Countries present a characteristic pattern of weekly oscillations. We must stress here that the data series of 
each country does not correspond to the day the cases were detected, but the day the cases were reported. In other 
words, if fewer cases are detected during the weekend but countries report them with a one or two-day delay, the 
data series will tend to present fewer cases on Monday or Tuesday and not during the weekends.

Finally, as discussed in the introduction, Gompertz-type predictions are macroscopic models30 that can not 
consider the effect of small fluctuations as individual-based modelling or spatially extended models of SEIR can 
address44. Whenever the cases are very low in a country, the evolution can be determined by the local characteris-
tics of the particular outbreak. This is outside of the model’s scope. Therefore, we take a minimum weekly average 
of 100 daily cases. In the first batch, we find two countries, Estonia and Latvia, in which most days analyzed do 
not exceed our daily case limit, so they are excluded from the study of this batch.

Gompertz‑like prediction models
The time series of new cases has been used to forecast the epidemics in the short term using a global Gompertz fit.

where K corresponds to the final number of cases, Nb is the initial number of cases for time to, and parameter a 
is the rate of decrease in the initial exponential growth30. Note that K, Nb, and a are related through the initial 
exponential growth of the number of cases30. The idea behind the prediction is to use the Gompertz function 
to obtain parameters K, Go, Nb, to, and a that minimize the global fit of the time series. A different Gj,tf (t) is 
associated for each country j using data for the fit from t f −N until date t f . This function is then used to obtain 
the prediction for t > tf.

The study considers only the daily cases which allows for obtaining the accumulated number of cases. Due 
to this limitation, we fit first the accumulated cases and then the daily cases. The accumulated number of cases 
is more robust regarding fluctuations than the daily cases. However, the daily cases may provide more informa-
tion. Although there are different options regarding which penalty function to use to fit the parameters of the 
Gompertz function, here, we analyze two simple penalization methods, studying how they impact the accuracy 
of the predictions. Notice that both methods are used to validate that predictions are improved when the daily 
pattern is considered.

In the first method (A), we minimize the deviation of the Gompertz-fit in terms of cumulative cases (CC). 
This is, we minimize the following error:

where Npred is the number of days for which a prediction is obtained and CCpred are the predicted cumulative cases.
In the second method (B), we minimize the deviation in the number of new cases (C) in addition to the 

deviation in accumulated cases. The error function to minimize reads:

We then have two minimization methods and we can activate and deactivate the daily pattern correction—all 
in all, we consider four different possibilities in the manuscript. We name them: model B (Baseline) for the one 
using the raw data without correction and the cumulative minimization; model I (Introduction of Patterns) 
when we also use the minimization of the cumulative function but introduce the weighted time series where the 
daily patterns of the data reports are introduced; model F (Fallback) when we use the minimization of the new 
cases but without introducing the daily pattern correction to the case data; and finally, model H (our Hallmark) 
where we use minimization of the new cases reported with the cases count data corrected using the daily report-
ing pattern in each country. A graphical description of the complete pipeline, including a representation of the 
curve-fitting, the minimization, and the prediction evaluation processes, is shown in Fig. 1.

It is important to note that the number of days N we include in our predictions is critical. The value of N 
must be long enough to detect the tendency of epidemics, but not so long that it includes the effects of previous 
waves. In the manuscript, we use first the value of two weeks (N = 14) because it seemed like a good compromise 
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between these two constraints. However, testing that the model predictions do not change significantly if we 
take N to be slightly more or less than two weeks is essential. In other words, predictions must not change much 
if we take between one week and a half weeks and close to three weeks of previous data. We address this issue in 
the “Results” section, showing that taking N = 14 provides the best overall prediction.

Pattern analysis
To unveil clearly the weekly pattern of detection and reporting, we compute the seven-day moving average of 
the series at a given day t: n7(t) =

∑t+3
i=t−3 n(i)/7 , where n(i) is the data point of new cases on day i following 

the same idea presented in. We assess the ratio between new cases in a certain day, n(t), and the corresponding 
7-day moving average value, n7(t), as this day’s ratio w(t) = n(t)/n7(t) . If we group these ratios by each day of the 
week, we can identify if a daily pattern exists and evaluate it. The closer to 1, the less deviation from the average. 
The further from 1, the higher the deviation from the average.

Figure 2 presents examples of these ratios for each day of the week in three representative countries plus the 
aggregated data for all UE + EFTA + UK countries for the 2020 data. The horizontal line indicates the average 
value of the ratio, while discrete points show the different ratios obtained depending on the week being analyzed. 
We can observe that the weekend effect in the European aggregate data is reflected in a drop in Mondays and 
Tuesdays reported cases. We observe roughly 20% under-reporting each day. Switzerland and Germany present 
different lags in reporting, so the affected days are different. In Switzerland, reported cases to WHO drop on 
Sundays and Mondays. The figure also shows the significant differences in the dispersion of the data. In Finland, 
there are substantial fluctuations in the ratio from week to week. Figure 2 also shows the ratio’s weekly average 
standard deviation σw as a measure of this dispersion. As expected, we observe a clear correlation between less 
population and more fluctuations. Finally, we scatter plot the difference between the maximum and minimum 
average daily weight ∆w as a function of the population. We can observe that this difference does not depend 
on the population but on the reporting idiosyncrasies of each country. The daily pattern of all countries under 
study is in Supplementary Fig. S1.

Corrected series of new cases
The unveiling of clear daily patterns allows us to give a global weight W to each weekday d (such as Monday) 
depending on the country j:

(4)Wj,d =
1

Nw

∑

t∈Td

wj(t)

Figure 1.   Pipeline of the process using the example of the Spanish prediction of cases on October 20th 2020. 
The top panels show the case data in a cumulative format, while the bottom row shows the data in a new cases 
format. (A) and (D) Portrait the real evolution of COVID-19 cases, in bars, and the same data with pattern 
correction applied, in a line. (B) and (E) Show the data that is represented in the first column, as well as the 
fitting period, delimited by vertical black dashed lines, and the actual fitting curves, both for real data and 
corrected data, in colored dashed lines. Panels (C) and (E) show the prediction curves for each model, in 
colored dashed lines. In panel (E), the yellow shadow shows the difference between the actual real data and the 
prediction data for model Hallmark (H) model H. The new cases prediction curve is obtained transforming the 
accumulated fitting curve to new cases by subtracting the data from date t to the data from date t−1. Legend 
indicates the specific color meaning and association with our four different models.
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where NW is the number of weeks in the series, Td  is the set of days in the series that correspond to a certain 
weekday d, and wj(t) the day’s ratio for a certain country j.

From these global weights, we can construct a corrected series of new cases for each country. If we call n j(t) 
the number of new cases in a country j for a given day t, we construct the series cases Cj as:

where d is the day of the week associated with day t. So we now have the original series of new cases n j(t) and 
the corrected series of new cases Cj(t), which is different in each country j according to their particular report-
ing pattern.

Methodological summary
We give here a more step-by-step general description of the methods used. We first consider the daily case counts 
in European countries from the WHO database that do not present important gaps in the data. We divide the 
daily reported cases by the corresponding 7-day moving average and then compute the mean of these ratios for 
each weekday to derive a global weight for every day of the week. Using these global weights, we construct a 
corrected series of new cases for each country, dividing the number of new cases by their corresponding weights. 
In this way, we correct the weekly reporting pattern of each country, as it has been recently done to monitor 
the flu45. Subsequently, we fit each country’s reported data to a Gompertz function to generate the prediction of 
new cases. Finally, we evaluate the performance of the 4 possible models that can be created by combining the 
following options: First, using the non-corrected series or the weekly pattern-corrected series as the series of 
daily cases. Second, minimizing the deviation of the Gompertz-fit in terms of cumulative cases (computed as 
the cumulative sum of daily cases) or both cumulative and daily cases.

Results
Performance analysis of the prediction models
We produce three-week predictions of new cases for European countries from 1st September until 28th of 
November 2020 on a bi-weekly basis (Saturdays and Tuesdays). We do these predictions using a first method 
to minimize the cumulative error before the prediction date to compute the best Gompertz fit, and a second 

(5)C
(

j
)

=
nj(t)

Wj,d

Figure 2.   Weekly reporting pattern for Finland, Germany, Switzerland, and Europe computed between 
September 1, 2020, and November 30, 2020. The weekly standard deviation of the pattern σw is presented in 
panel (E). Panel (F) shows the difference between the maximum and minimum average daily weight ∆w for 
each country, identified with its flag.
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method where we add the minimization of the error of new cases before the prediction date (see “Methods”). 
We also perform each one using the bare list of cases obtained from the database and the corrected list of cases 
where daily report patterns are detected and corrected (see “Methods”). Therefore, we use a total of four different 
models to perform the predictions.

Figure 3 shows the average deviation (MSE) of our prediction of new cases from reality as a function of the 
number of days from the prediction date for different key representative countries and for the prediction includ-
ing all countries (see the last panel). Globally, the best performance, as observed in the MSE averaged across the 
list of European countries, is for our Hallmark model. The second best also uses the correction of daily patterns 
but a different minimization method. We observe how introducing the daily pattern correction improves the 
predictions. Typical one-week errors are around 20%, increasing to 25–40% when predictions are two to three 
weeks ahead.

Correcting the daily pattern of cases described in the methodology significantly improves the predictions, 
especially within a one-week horizon. Without them, errors typically have a minimum after one week, once the 
effect of the pattern is less significant. However, correcting the implicit bias generated by the reporting clarifies 
the tendency of infections. The daily pattern correction does eliminate not only this minimum but also improves 
the prediction across the board. Correcting this bias improves predictions in most but not all countries.

Figure 3.   Accumulated relative error of each model for Spain (A), Portugal (B), Austria (C), Czech Republic 
(D), and the Netherlands (E), presented along with the reporting pattern of each of the countries. Panel (F) 
shows the averaged accumulated relative error for all considered European countries together with its standard 
deviation, shown in shades. Model B considers the minimization for accumulated cases and no daily pattern 
correction, model F minimizes new cases and no daily pattern correction, model H minimizes accumulated 
cases and daily pattern correction, and model I minimizes new cases and daily pattern correction. The 
accumulated relative error is calculated by accumulating the relative error each day; that is, the accumulated 
relative error for the xth day is the sum of relative errors from day 0 up to day x−1.
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The selected countries in Fig. 3 show some exciting characteristics depending on the particular country. 
Countries like Spain and the Czech Republic improve dramatically when the daily pattern corrects the case data 
series. Predictions are highly inaccurate when the bare case count is used, no matter the minimization procedure. 
On the other hand, for some countries like the Netherlands, all models produce similarly good predictions. A 
small subset of countries have slightly better results with a different model than our Hallmark model. The few 
countries for which the best model is clearly not the Hallmark (model H) are Austria, Belgium, Finland, Ireland, 
Lithuania, Slovakia, and Slovenia (see Supplementary Fig. S2 to check all countries). Typically, the second best 
model overall, model I (Introduction of patterns), is the best model in these countries. There is only one country 
where the introduction of the daily patterns worsens the prediction: Finland.

In any case, the daily pattern correction is particularly relevant for one-week predictions. We further analyze 
the accuracy of predictions by checking the presence of outliers. We want to analyze how many predictions were 
accurate using 10% intervals. Figure 4 shows for the four models how many of the predictions were accurate 
within 10%, 20%, 30%, 40%, and 50% to the actual number of new cases reported during 7 days, 14 days, and 
21 days after the prediction date. Notice that predictions at 7 days are always more accurate than at 14 and 21. 
Model F is the worst across the board. The Hallmark (H) model markedly improves the number of predictions 
with errors below 20%.

Figure 4 shows the number of predictions that were off by a large margin. That means it visualizes how many 
times the prediction was off by more than 50%. For example, model H had roughly a 95–96% success rate in 
making predictions with errors below 50%. This result means slightly more than 4–5% of our one-week predic-
tions using model H had a huge mistake. With 4–5% of predictions markedly off, we can call these predictions 
outliers since they represent a minority of our predictions. However, Fig. 4 shows that the number of predictions 
that fail substantially increases when we go to a 2-week or 3-week prediction. For 2-week predictions, predictions 
failing to have below 50% error are close to 15%, while for 3-week they increase markedly to 30%.

We notice that both models H and I have a similar number of outliers. They make a similar number of very 
wrong predictions. Model F is particularly lacking, with more than 40% predictions off. In this sense, large mis-
takes of the predictions at the three-week horizon using model F are really not outliers but a common feature.

In order to make reasonable predictions useful for the healthcare system, is more important to avoid outliers 
than to increase the accuracy of the most precise predictions. In other words, the penalty for making one big mis-
take in the prediction is high. In this sense, model H is also the best one in having high accuracy in cases. It also 
has lower number of predictions with large errors. Given that we have detected this relevance of the daily pattern 
in the correction of outliers, we proceed to analyze if we can detect the reasons behind the outliers that remain 
present in using method H. We aim to understand the robustness of model H. In other words, we want to check 
if this small set of 4–5% erroneous predictions could have been captured and some pre-screening filter applied.

Figure 4.   The success rate for each model when allowing a certain error (see x-axis) for the averaged 
accumulated relative error among all the considered European countries (23). This metric has been computed 
by only considering the accumulated relative error of the 7th, 14th, and 21st predictions. For each model, the 
lightest shade shows the results for prediction at three weeks, while the darkest shade shows the results for one-
week prediction.
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Bias and robustness analysis of model Hallmark. Reduction of the prediction outliers
We first check if our predictions are biased in the sense that a previously accelerating or decelerating growth in 
the epidemics would make our predictions over or underestimate the tangible outcome. To test if this is the case, 
we use the effective growth rate as

following the same procedure to describe the epidemics empirically as found in46 and we can compute if the 
epidemics are accelerating or decelerating using the change of this growth rate:

In each of our predictions, we compute its ∆ρ to check for any correlation between the acceleration of the 
epidemics and the sign of our error to test for possible bias. Figure 5 shows the 7-day relative cumulative error for 
all our predictions as a function of ∆ρ. The correlation coefficient is 0.16, indicating our model does not present 
an important bias. We cannot improve our prediction by minimizing this type of bias in our prediction model.

However, we find that a small set of our predictions is highly susceptible to changes in the number of past 
days used to make the prediction. We find a subset of our predictions that changes enormously depending on the 
parameter N. We show in Fig. 6 that the lowest errors in our predictions are obtained using a two-week window 
in the past. However, some of these predictions change abruptly when N is changed by just one day. In panel B of 
Fig. 6, we show as an example all our predictions for Slovenia with those for N = 14 normalized at one to observe 
the relative change in our prediction as we modify N. As we can see, most of our predictions are robust within 
10%, but one of them shows an abrupt change, by more than 40%, just by changing from N = 14 to N = 15. It is 
thus clear that choosing a past history of N = 14 is a very good option for the model’s prediction, as long as the 
prediction outcome is not extremely sensitive to selecting precisely this value.

We now proceed to analyze if those highly unstable predictions have a worse prediction profile than the 
average. We consider those predictions that change by more than 25% when a day is included or removed in our 
data (i.e., N increases or decreases by one day) to be highly unreliable. Similarly, some predictions clearly tend 
to increase and decrease strongly as N increases. They are not stable either. We take any prediction that changes 
more than 35% upon changes in the value of N from 12 to 18 as having a clear non-stable tendency. Normally, 
this tendency continues up to N = 21 making the outcome too sensitive to the criteria used to incorporate 
information from the past. We select both of them as unreliable predictions and analyze if they provide worse 
accuracy than stable predictions.

Panels (C) and (D) of Fig. 6 show that this is indeed the case. In panel (C), the distribution of all errors is 
indicated together with how many are unstable in each bracket, while panel (D) shows the percentage of the 
predictions in each error bracket belonging to the unstable predictions. From our sample of 480 predictions, 
unstable predictions represent 20% of the total percentage, but they overpopulate our worst predictions being 
30–40% of those predictions. They are indeed more unreliable across the board.

We proceed to check if removing this 20% of our prediction has a powerful effect on our accuracy to check 
if the penalty of missing some of our predictions is worth it. Figure 7 shows the differences between the success 
rates both considering and disregarding those unstable predictions. As expected, there is no significant improve-
ment in the accuracy of the predictions done with less than a 30% error, the real change in percentage terms, 

(6)ρ(t) =
Cj(t + 1)+ Cj(t + 2)+ Cj(t + 3)

Cj(t − 2)+ Cj(t − 3)+ Cj(t − 4)

(7)�ρ(t) = ρ(t + 4)− ρ(t − 6)

Figure 5.   Difference between the primary reproduction number (ρ) obtained 4 days after prediction and 6 days 
before as a function of the 7-day cumulative relative error for all countries and dates considered.
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comes in the outliers for one and two-week predictions. The success rate for a one-week prediction goes from 
96 to 98%. With this filter, only 2% of the total predictions are outliers. This gives very huge confidence level to 
our prediction model in the one-week forecast framework. This fact is a rather impressive result because half of 
the outliers in one-week predictions are eliminated. Similarly, the improvement is remarkable in the two-week 
prediction where the elimination of the unstable predictions eliminates one third of the total outliers. The success 
rate moves from below 86% to 89%. For a three-week prediction, the improvement is only marginal.

Reliability. Predictions in 2021
We checked that the process we have developed with data from 2020 works properly with data from 2021. Fig-
ure 8 compares the best model H with data from 2020 already presented and the same dates for the end of 2021. 
The average relative error in the biweekly predictions across all countries is systematically lower for the different 
predictions horizon from 1 day to 3 weeks. This reduction in errors is pretty consistent across all countries (see 
Supplementary Fig. S3) for all prediction horizons.

We proceed to analyze if this reduction in the average errors also reduces the number of prediction outliers, 
this is, the number of predictions that are off by more than 50%. We analyze again one, two and three-weeks 
predictions. The right panel of Fig. 8 shows how the ratio of successful predictions below a given error is system-
atically larger in 2021 predictions. Especially relevant is the increase in the low level of 2-week predictions that 
were off by less than 50% going up from 11% (89% success rate) to only 3% (97% success rate). The Supplement 
Material shows that a lot of countries do not present any predictions far-off. Some countries, like Germany, 
Romania, or Portugal have highly accurate two-week predictions with typical errors around 10%. It is also very 
remarkable the large increase in the success rate in three-week predictions in 2021. While in 2020, only 60% of 

Figure 6.   Evaluation of the instability of the model. (A) Variation of the mean cumulative relative error for the 
next 7 (blue), 14 (green) and 21 (red) days predicted cases for all countries and dates analyzed. (B) Normalized 
sum of the cases predicted for the next 7 days in Slovenia, obtained using a different number of days to fit the 
model. Different colors correspond to different predictions. (C) 14-day cumulative relative error distribution 
for all countries and dates predicted (blue) and only unstable predictions (red). (D) Percentage of unstable 
predictions present in each 14-day cumulative error band for all countries and dates predicted.
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the three-week predictions had an error below 40%, the same number for 2021, jumped to close to 80% render-
ing 4 in 5 predictions reasonable accurate three weeks in advance.

Comparative performance of the model
We compare the average error of our model in the context of the hub of European pedictions33, to which we 
contributed by submitting weekly predictions elaborated with the model described above. These predictions were 
done with daily cases and deaths separately, being each one an independent prediction. Here, we only describe 

Figure 7.   The success rate for the 7th, 14th, and 21st predictions given allowed an accumulated relative error 
for model H (Hallmark) for 2020 data. Panel (A) considers all of our predictions, whether they are stable or 
unstable, while in panel (B) unstable predictions are disregarded.

Figure 8.   Left: Average relative error accumulated up to the number of days indicated in the x-axis from all 
European data in 2020 and in 2021. Right: Success rate as the number of predictions that have an error below 
the indicated in the x-axis. For each allowed relative error, each bar represents predictions at 1, 2, and 3 weeks, 
respectively. The different colors indicate the prediction for 2020 (reds) and for 2021 (blue). Success rate is 
higher for 2021 than for 2020 in each one of the prediction horizons and in each one of the relative errors 
allowed. The numbers indicated are the success rates for 2021 (blue bars).
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the case count prediction. Given that the data came from different countries with different health care systems 
and protocols, the case count, in each country, represented a different unknown fraction of the real propagation 
of the disease. However, we could correct for the weekly underreported days, following the procedure described 
here so that we have a good signal preprocessing. We also checked the robustness of each prediction and did not 
submit a prediction in case it was unstable, following the protocol explained in the previous sections.

In Fig. 9, we show the distributions of absolute errors for all 1-week and 2-week predictions, comparing the 
ones obtained with our model with the predictions individually submitted by other contributing models. We 
observe how our model is indeed a good one, showing that our method had a lower error than the average of 
other models. However, all models were relevant and important since, globally, the ensemble prediction built 
from the median of all models beat any of the individual models. Although a particular model can behave better 
than the ensemble in a particular epidemiological context, evaluating the ensemble’s global performance provides 
more robust prediction results. As described in33, this is probably because different models capture different 
features given the various approaches. Our model focused on not giving outliers and being reliable, while oth-
ers focused more on accuracy in the different confidence intervals. In any case, our approach performed well 
compared with other models with the exact prediction purpose and using the same ground truth data.

Discussion
Two-week prediction of case numbers in European countries can be performed with a Gompertz model with a 
high accuracy level and a low number of important mistakes for different waves associated with different variants 
as long as a given set of criteria for the prediction is established. First, the number of cases must lead to general 
community transmission, otherwise, unpredictable chance plays a very important role. Second, accurate pattern 
recognition of the reporting structure of the country must be taken into account otherwise important errors are 
introduced in the prediction. And finally, the model can present instabilities in the prediction. Sometimes, the 
pattern of cases is highly ambiguous regarding its structure. This is detected by analyzing how the prediction 
changes when the number of data from the past is slightly changed.

Gompertz and Logistic models have been employed to describe and predict the cumulative cases of COVID-
1947,48, which have been compared with other predictive models like the Logistic and Artificial Neural Networks 
models49. Here, we have found that roughly 20% of our bi-weekly predictions present this kind of instability in 
the analysis of the second European COVID-19 in late 2020. These predictions are an important fraction of the 
overall large mistakes. Filtering these predictions out allows us to reduce the number of one-week predictions 
that are off by more than 50% to just 1 out of 50 predictions. More importantly, the two-week horizon prediction 
is only off in 1 out of 10 predictions.

We also observe that the accuracy of the predictions was higher in 2021 than in 2020. The rate of success in 
the three-week prediction was significantly higher in 2021 than in 2020, rendering this medium-term predic-
tion rather accurate. In 2021, nearly 80% of the three-week predictions had a relative error below 40% and more 
than half an error below 30%. The improvement is across the board in most countries. Given that the prediction 
method relies on an accurate assessment of the tendencies in the case count, the higher accuracy is necessarily 
related to a better evolutionary fit to a Gompertz-like evolution with fewer sudden changes. We should notice 
that the dominant variant in Europe was different at the end of 2020 than in 2021, and the level of non-phar-
macological measures was different. This might lead to different persistence in the dynamics. Analyzing which 
one was more relevant is out of the scope of this manuscript, but it is worth pointing out that, as the evolution 
of the dynamics depends less on changes in non-pharmacological interventions, the short and medium-term 
dynamics can become more predictable.

We have estimated the mean absolute error, equivalent to the mean absolute percentage error (MAPE) but 
from 0 to 1, and quantified the error rate below a certain threshold. Such results can be compared with the MAPE 

Figure 9.   Left: Average relative absolute error in the subsets of predictions done for the European Hub of 
models (See Sherratt et al.33) for our 1-week horizon in comparison with all the other 28 models from the 6th of 
September 2021 to the 26th of December 2022. We use our H model using the protocol to disregard predictions 
that are not robust. Right: same as left but for a two-week prediction horizon.
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error obtained from other techniques for evaluating other types of quantifications in COVID-19 predictions. For 
example, techniques commonly used are based on the approach of time series, like the Auto Regressive Integrated 
Moving Average (ARIMA) or the Nonlinear Autoregression Neural Network (NARNN)50 or, based on deep learn-
ing models such as multi-head attention Long-short term memory (LSTM), or convolutional neural network 
(CNN) with the Bayesian optimization algorithm51. Such methods have been employed during the pandemic to 
estimate the number of cumulative cases with similar error levels in the predictions.

This remarkable fact allows for very good predictions for health officials since the model does not take into 
account any other information than the past structure of cases. This makes the prediction very robust to smooth 
changes in the behavior of the epidemics. It also allows the model to be applied to a wide range of different coun-
tries, as long as there is a sufficiently long history of data cases, showing a good performance when compared with 
other models used in the European Hub of models33 developed to predict reported cases during the epidemic. In 
this sense, our model performed actually better in 2021 than in 2020 despite important differences in the level of 
non-pharmacological interventions. Changes in mobility or social interactions due to seasonality in behavioral 
patterns, or seasonality in terms of weather are not incorporated in the model, but, as long as changes are not 
abrupt, the model captures its effects in the structure of cases. We have shown that the best way to make predic-
tions is to use roughly two-weeks of past data, and that the model must be robust when incorporating three 
weeks of data from the past. So, as long as interaction or new variant introduction changes have a time scale of 
a couple of weeks, our model should capture it and make reasonable predictions.

Our approach makes an important tool for health officials when deciding future healthcare needs in hos-
pitalization. Since the severity of the disease manifests roughly one week after diagnosis, predicting cases with 
reasonable accuracy two weeks in advance, allows a three-week window for preparation. There is an important 
limitation. New variants can render past relationships between cases and hospitalizations obsolete, as the com-
parisons between Omicron and Delta severity show52. This predictive approach has been continuously used in 
the group for predictions at the European level and for Catalan Health authorities. However, its effects on hospi-
talization do need a constant update since the severity of the disease changes as the number of susceptible drops.

Furthermore, another limitation of our model should be specified. Whenever the protocols for detecting cases 
change our data is not homogeneous and the prediction necessarily fails. Whenever a drastic change of criteria 
for counting cases is introduced, as has happened in the past once the level of susceptible population decreased 
a lot after the Omicron wave, our model must be discontinued for some weeks. Once the data is again systematic 
and there are some weeks with common criteria across time for detection, it can be used again.

Data availability
Case count data is open and provided by WHO. These data and all the codes for prediction elaboration and 
filtering are in https://​github.​com/​InmaV/​COVID-​19-​predi​ctions.
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