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Quantitative microbiome profiling 
of honey bee (Apis mellifera) guts 
is predictive of winter colony loss 
in northern Virginia (USA)
David B. Carlini 1*, Sundre K. Winslow 1, Katja Cloppenborg‑Schmidt 2 & John F. Baines 2,3*

For the past 15 years, the proportion of honey bee hives that fail to survive winter has averaged ~ 30% 
in the United States. Winter hive loss has significant negative impacts on agriculture, the economy, 
and ecosystems. Compared to other factors, the role of honey bee gut microbial communities in 
driving winter hive loss has received little attention. We investigate the relationship between winter 
survival and honey bee gut microbiome composition of 168 honey bees from 23 hives, nine of 
which failed to survive through winter 2022. We found that there was a substantial difference in the 
abundance and community composition of honey bee gut microbiomes based on hive condition, i.e., 
winter survival or failure. The overall microbial abundance, as assessed using Quantitative Microbiome 
Profiling (QMP), was significantly greater in hives that survived winter 2022 than in those that failed, 
and the average overall abundance of each of ten bacterial genera was also greater in surviving hives. 
There were no significant differences in alpha diversity based on hive condition, but there was a highly 
significant difference in beta diversity. The bacterial genera Commensalibacter and Snodgrassella 
were positively associated with winter hive survival. Logistic regression and random forest machine 
learning models on pooled ASV counts for the genus data were highly predictive of winter outcome, 
although model performance decreased when samples from the location with no hive failures were 
excluded from analysis. As a whole, our results show that the abundance and community composition 
of honey bee gut microbiota is associated with winter hive loss, and can potentially be used as a 
diagnostic tool in evaluating hive health prior to the onset of winter. Future work on the functional 
characterization of the honey bee gut microbiome’s role in winter survival is warranted.

The honey bee is one of the most important species in domestic agriculture: one-third of the food eaten in the 
United States is derived from honey bee pollinated  crops1. In addition to agricultural crops, a large number of 
ecologically important plant species are pollinated by honey  bees2. Since 2006–2007, the proportion of honey 
bee hives that do not survive through the winter months has averaged roughly 30% in the United  States3. Winter 
colony loss can be attributed to many factors, but when the worker bees suddenly depart from the hive and leave 
behind a queen, some nurse bees, immature bees, brood, and ample food, the phenomenon is termed Colony 
Collapse Disorder (CCD). CCD first appeared in the United States and Europe during the winter of 2006–2007 
and was responsible for roughly 50% of hive loss that year. Fortunately, rates of CCD have decreased somewhat 
over the past five years, accounting for 15–25% of all winter hive  loss4.

Regardless of the reason, hive loss is a serious threat to agriculture and ecosystem function, and any research 
that increases our understanding of contributing factors will help in developing approaches to reduce its fre-
quency of occurrence. Winter hive loss has been attributed to abiotic factors, biotic factors, nutrition, beekeep-
ing practices, or some combination thereof. Abiotic factors include pesticide  use5 as well as temperature and 
 precipitation6. Biotic factors include  viral7,  bacterial8, or fungal  pathogens9, mite  infestation10, or hive invasions 
by small hive  beetles11, wax  moths12, or  wasps13. Relative to mite loads and pathogens, one biotic factor that has 
received comparatively little attention is the composition of honey bee gut microbiomes.
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The first large scale study to exam microbiome composition in relation to hive loss did not find any clear-cut 
differences in microbial abundance related to hive  loss14. However, this early study revealed that, across geo-
graphically diverse populations, the honey bee gut microbiome composition is simple, consisting of a core group 
of less than a dozen taxa. Subsequent studies characterized the microbiota of the honey bee gut community in 
more detail and established honey bees as a model for gut microbiome  research15–18. The eusocial behavior of 
honey bees is an important determinant of their gut microbiome since the microbiota are transmitted vertically 
between the generations rather than by seeding from the  environment15. While a core group of microbial taxa are 
common to honey bees from diverse environments, the proportional composition of each taxon can vary from 
one colony to the  next19, and differences in microbial composition might impact colony health through a variety 
of mechanisms (endocrine signaling and behavior, metabolism, and immune function). Antibiotic-induced 
alteration of honey bee gut microbiota negatively impacted survival and increased susceptibility to opportunis-
tic pathogens and Nosema ceranae20,21. Thus, given that experimentally induced changes in the composition of 
the honey bee gut microbiome can negatively impact hive health, additional research is required to determine 
the extent to which natural variation in gut microbiomes contributes to colony loss. Toward that end, here we 
investigate the relationship between winter hive loss, the most common time for hives to  fail22, and honey bee 
gut microbiome composition.

Methods
Hive sampling
Adult forager bees were collected in July 2021 from 23 hives in three geographically proximate locations in 
northern Virginia, twelve hives from Gainesville, VA (38.82° N, 77.60° W), nine hives from Upperville, VA 
(38.97° N, 77.85° W), and two hives from Vienna, VA (38.92° N, 77.25° W) (Table S1). Between 5 and 8 foragers 
(average 7.3 bees per hive) were collected from the front entrance of each hive, immediately placed in conical 
tubes containing 50 mL of 100% ethanol (one 50 mL conical tube per hive), transported back to laboratory, and 
stored at 4 °C until further processing. Hive condition was classified as “survived” or “failed” according to the 
status of the hive on March 31, 2022, with all hive failures having occurred during the period between December 
2021 and March 2022. Eight of the twelve hives sampled from the Gainesville location failed, none of the nine 
hives sampled from the Upperville location failed, and one of the two hives sampled from the Vienna location 
failed. All hives had been treated for mites in the spring and fall prior to sampling, and all hives had received 
supplementary feeding of sugar syrup during the late autumn and winter months; none of the 23 hives had ever 
been treated with antibiotics, and no visible pathogens such as chalkbrood, foulbrood, or symptoms of Nosema 
infection were detected.

DNA extraction
Prior to dissection of the gastrointestinal tract, each bee was rinsed with 100% ethanol and then placed in its own 
sterile disposable petri dish for dissection. The entire intestinal tract was removed from each bee using sterile 
dissection tools and placed in an individual microcentrifuge tube containing 100% ethanol, and the remaining 
carcass of each bee, to be used for RNA extractions, was placed in a separate microcentrifuge tube containing 
100% ethanol. Prior to DNA extraction, the ethanol was removed, and the intestinal tract was washed twice in 
sterile PBS. The PBS wash was then removed, and 100 μL of sterile PBS added prior to homogenization with 
a sterile micropestle. Following homogenization, an additional 900 μL of sterile PBS was added and the tubes 
were gently mixed and centrifuged at 10,000 × g for one minute. Microbial genomic DNA was extracted from the 
supernatant using the DNeasy® UltraClean® Microbial Kit (Qiagen) following the manufacter’s protocol using 
a final elution volume of 50 μL EB buffer. DNA was quantified with a NanoVue™ Plus spectrophotometer (GE 
Healthcare), and stored at − 80 °C.

16S rRNA gene sequencing and sequence processing
The hypervariable V1-V2 region of the 16S rRNA gene from each sample was amplified using 27F and 338R prim-
ers barcoded with unique octameric multiplex identifiers using a dual indexing approach on an Illumina MiSeq 
sequencing platform, as previously  described23. Eight negative extraction controls and three ZymoBIOMICS 
Microbial Community DNA Standards (Zymo Research) were also sequenced. DADA2 v 1.2224 was employed 
to quality filter sequencing reads, infer amplicon sequence variants (ASVs), and determine taxonomic classifica-
tion based on the Silva Project v138.1 reference  database25. The ratio of microbe DNA to honey bee host DNA 
was determined via quantitative PCR using eubacterial 16S rRNA primers Eub338F and  Eub518R26 and honey 
bee acetylcholinesterase 2  primers27 Total bacterial load estimates, obtained from the qPCR data, along with the 
negative extraction controls, were used as input to  identify and remove contaminants using the decontam R 
software package (v1.10.0)28 using the “prevalence” method with a threshold of 0.05. Rare ASVs not detected in 
more than 3 reads in at least 20% of the samples were also excluded from analysis, resulting in 77 retained ASVs. 
The 16S rRNA gene copy number for each ASV was obtained based on genus assignment using the Ribosomal 
RNA  Database29. Sixty-four of the 77 ASVs had a 16S rRNA gene copy number of four. Of the remaining 13 
ASVs, ten had a 16S rRNA copy number of two, one had a copy number of three, and two had a copy number of 
five. ASV counts were weighted by copy number (i.e., counts from high copy number ASVs were reduced, and 
counts from low copy number ASVs were increased), and the values scaled so that the sum of the scaled counts 
for each bee sample were the same after copy number correction.

Quantitative microbiome profiling and microbial community analysis
The qPCR-based bacterial load estimates were used to determine the relative abundance of each sample for 
quantitative microbiome profiling (QMP)30. The sampling depth of reads from each bee gut was calculated as the 
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total number sequencing reads divided by the sample relative abundance. Pooled reads from each bee gut were 
then rarefied to the sampling depth of the bee gut with minimal sampling depth (bee gut 21-116S-2, sampling 
depth = 25,348), which rarefied all to an even sampling depth, the ratio between sequencing depth and bacterial 
 load30. Sampling depth rarefaction was repeated 1000 times, and the average of the 1000 replicates was used for 
relative total abundance of each ASV for each bee gut.

Microbial community analysis was conducted in R (v4.2.3)31 using the following software packages. Phyloseq 
(v.1.42.0)32 was used to conduct sampling depth rarefaction, and to calculate pairwise distances. DECIPHER 
(v2.0)33 was used to align sequences and Phangorn (v2.11.1)34 employed to calculate distances and construct 
neighbor-joining phylogenetic trees for use in Phyloseq. The Shannon (H), Simpson (D), and Pielou’s Evenness 
(J) alpha diversity metrics were calculated with the software package vegan (v2.6.4)35, which was also used to 
conduct Permutational Multivariate Analysis of Variance (PERMANOVA) tests on beta diversity, as well as 
to perform ordination using non-metric multidimensional scaling (NMDS). The software packages DESeq2 
(v.1.38.3)36 and indicspecies (v1.7.13)37 were used to conduct differential abundance analyses on ASVs. Two-way 
ANOVAs were performed in base R. Two-way ANOVAs were performed using both hive condition and hive 
location as categorical factors, allowing us to determine how both factors in combination relate to microbial 
abundance and diversity, and also whether there is any interaction between those factors. For all tests involving 
multiple comparisons, P values were corrected using a Benjamini and Hochberg adjustment for a type I error 
rate of 0.0538. MikropML (v1.6.0)39 was employed to conduct supervised machine learning for classification of 
the hive condition of individual honey bee samples using L2 logistic regression and random forest algorithms 
based on the ASVs annotated to the genus level, as fine resolution ASV level analysis has been found to be too 
individualized for accurate  classification40.

RNA extraction and deformed wing virus quantitative PCR
Deformed wing virus (DWV), vectored by the ectoparasitic mite Varroa destructor, has been identified as a 
major biological causative agent of colony loss, and the most regularly detected virus in western honey  bees41,42. 
We quantified viral loads of the three main DWV strains via qPCR. Total RNA was extracted from the same 
bees from which the gut microbiome 16S rRNA gene sequence data was obtained. RNA was extracted using the 
RNeasy® Plus Universal Mini Kit (Qiagen) and stored at − 80 °C. cDNA was synthesized from extracted RNA 
using the oligo(dT) primer supplied with the AffinityScript qPCR cDNA Synthesis Kit (Agilent), and qPCR was 
performed using the Brilliant III Ultra-Fast SYBR Green qPCR Master Mix (Agilent) on the Mx3005P qPCR 
System (Agilent). To characterize deformed wing virus (DWV) viral loads we used the DWV strain specific A, 
B, and C primer sequences developed by Kevill et al.42 along with GAPDH primers as the control  gene43. All four 
genes were assayed in triplicate on the same qPCR run for each sample, along with triplicate negative controls 
(with water as template for cDNA synthesis) for each gene. The relative abundances of DWV-A, DWV-B, and 
DWV-C were calculated as  DCT  (CT GAPDH−CT DWV), the difference between the GAPDH threshold cycle and that 
of the DWV-A, DWV-B, or DWV-C threshold cycle. Two-way nested ANOVAs, with hive condition and location 
as factors, were used to assess the statistical significance of  DCT values for each DWV strain.

Results
Gut microbial composition and abundance
The microbial gut communities of 168 bees from 23 hives were sequenced, yielding an average of 36,178 reads 
(range: 9461–73,402) and 62 ASVs (range: 13–333) per sample after error correction, quality filtering, and 
removal of potential contaminants. After removal of rare ASVs, a total of 77 ASVs were retained, with an average 
of 28,098 reads (range: 4148–63,441) and 35 ASVs (range: 10–52) per sample. After adjusting for differences due 
to different 16S rRNA gene copy number among different taxa and rarefying samples to an even sampling depth 
(the ratio between sequencing depth and bacterial load), overall QMP abundance was significantly greater in 
samples from hives that survived winter 2022 than in those that failed (P = 0.0136, nested two-way ANOVA), 
whereas hive location and hive condition × location interaction effects were not statistically significant. Each of 
the nine hives in the Upperville location survived Winter 2022, and the average QMP sampling abundance of 
those hives (307 ± 33) was over twofold greater than the average QMP abundance of the eight hives that failed 
in the Gainesville location (109 ± 38), which was also less than the average of the four hives that survived in the 
Gaineville location (184 ± 94) (Fig. 1A). The average QMP abundance of the single failed hive in the Vienna 
location (142 ± 31) was less than the average of the surviving hives from both other locations, but greater than 
that of the single surviving hive from the Vienna location (103 ± 25). However, there was substantial variation 
in QMP abundance among hives within each sampling location and hive condition category, particularly at the 
Gainesville location (Fig. 1B).

The honey bee gut microbiome is dominated by five core genera, Bifidobacterium, Bombilactobacillus, Gil-
liamella, Lactobacillus, and Snodgrassella, which have high abundance and prevalence, and four to five noncore 
genera which are typically found at lower frequencies and prevalence than the core  genera19. Each of the five core 
genera had high prevalence, being present in at least 98% of the 168 individual honey bee samples. The noncore 
genera Apilactobacillus, Bartonella, Bombella, Commensalibacter, and Frischella had prevalences in individual 
bees of 58, 71, 42, 89, and 68%, respectively. For each of these ten bacterial genera, the average quantitative 
sampling abundance was greater in honey bees from surviving hives than in those from failed hives (Fig. 2). In 
addition to these ten bacterial genera, most hives contained 16rRNA gene hits to “Cyanobacteria”, sequences that 
are likely derived from the chloroplasts of consumed  pollen15,44. Sequences of Paenibacillus larvae and Streptococ-
cus pluton, the causative agents of American and European foulbrood (diseases of bee larvae), were not detected 
among the 77 ASVs or among the inclusive set of 1465 ASVs recovered prior to filtering.
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Figure 1.  Community composition of honey bee gastrointestinal tracts deduced from quantitative microbiome 
profiling (QMP). Relative bacterial loads for QMP were obtained via qPCR, with the sampling depth of reads 
from each bee gut calculated as the total number sequencing reads divided by the sample relative abundance. 
Pooled reads from each bee gut were then rarefied to the sampling depth of the bee gut with minimal sampling 
depth, which rarefied all to an even sampling depth, the ratio between sequencing depth and bacterial load. (A) 
Average overall QMP sampling abundance of bacterial genera in hives that survived or failed in each sampling 
location. (B) Average QMP sampling abundance of bacterial genera in each of the 23 sampled hives. The 
number of bees sampled per hive is given above each stacked bar (5–8 bees per hive, average = 7.3).
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Microbial diversity
Within subject species diversity (alpha diversity) was not significantly different between hives that survived and 
those that failed for Shannon Diversity (P = 0.24, two-way ANOVA), Simpson Diversity (P = 0.53) or Pielou’s 
Evennness (P = 0.15) (Table S2). Alpha diversity based on hive location was not significant for Shannon or Simp-
son Diversity (P = 0.065, 0.17, respectively), but was significant for Pielou’s Evennness (P = 0.015). However, when 
samples from the Upperville location (where no winter hive loss occurred) were excluded from analysis of alpha 
diversity, the differences based on hive condition or hive location were not statistically significant for any of the 
three measures of alpha diversity (Table S2).

Next, we visualized the difference in bacterial species composition (beta diversity) by NMDS ordination 
(Fig. 3) based on the weighted UniFrac distance (ordination stress = 0.122). To compare community composi-
tion among hives, we conducted permutational multivariate analysis of variance (PERMANOVA) implemented 
with the adonis method with  106 permutations in the R vegan package (v.2.6.4)35. For all three distance metrics 
used (weighted UniFrac, Bray Curtis, and Jaccard), the effects of hive condition, as well as hive location, were 
highly significant (PERMANOVA test: P <  10–6), indicating that microbial community composition differed 
based on both hive condition and hive location (Table 1). Permutation tests for the assumption of homogeneity 
of  dispersions45 confirmed that the assumption was met for all three distance metrics (PERMDISP, adjusted 
P > 0.05). Since each of the hives in the Upperville location survived, it could be argued that most of that signal 
was due to hive location. We therefore conducted the PERMANOVA analysis after excluding the Upperville 
samples, but found that hive condition remained significant (P <  10–4, Table 2; Supplementary Fig. S1), indicating 
that the differences in bacterial community composition can be attributed to hive condition.

Differential abundance
Differential abundance analysis was conducted using DESeq2 and indicspecies on QMP ASV counts from all 
locations, as well as by performing nested two-way ANOVAs on genus QMP abundance. DESeq2 identified 
12 ASVs that were associated with hive condition, seven of which were positively associated and five of which 
were negatively associated with winter survival (Table 3). Indicspecies identified nine ASVs that were positively 
associated with hive survival (Table 4), six of which were also identified by DESeq2: ASV1 (Snodgrassella alvi), 
ASV2 (Lactobacillus apis), ASV3 (Giliamella apicola), ASV9 (Commensalibacter melissae), ASV13 (Bartonella 
apis), and ASV25 (Giliamella).

Nested two-way ANOVAs on pooled QMP ASV counts for each genus identified that two genera were 
positively associated with winter survival while accounting for location, Commensalibacter and Snodgrassella 
(Table 5).

Figure 2.  Pairwise comparisons of average QMP sampling abundance of ten most abundance bacterial genera 
of hives that survived (green) or failed to survive (blue) winter 2022. Error bars indicate standard error of the 
mean.
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Quantitative PCR assays on DWV levels
There were no significant differences in DWV loads based on hive condition (Table S3). For Gainesville and 
Vienna (the two locations containing both hives that survived and failed winter 2022), hives that failed win-
ter 2022 exhibited higher average DWV-A, DWV-B, and DWV-C loads than hives that survived winter 2022, 
although these differences were not statistically significant. There were also no significant differences in DWV-A 
and DWV-B loads based on hive location. DWV-C loads were significantly different among locations (P = 0.0087, 
two-way ANOVA), due to lower loads of DWV-C in the Gainesville location (average  DCT = − 0.94) compared 
to the Upperville (average  DCT = 0.55) and Vienna (average  DCT = 0.42) locations.

Machine learning classification of winter hive loss
To gain a better understanding of the relative importance of each factor contributing to hive loss, we employed 
supervised machine learning, as implemented in the R software package  MikropML39, using two machine learn-
ing (ML) models, L2 logistic regression and random forest. We performed a grid search for hyperparameter 
settings when training the L2 logistic regression models. For each model, we ran 100 iterations, with a split of 
80% of the data for the training and 20% for testing. The performance of the two methods, as measured by the 
area under the receiver operator characteristic curve (AUROC), illustrate the predictive power of a binary clas-
sifier, in this case whether a particular sample comes from a hive which failed or survived winter 2022 (Fig. 4). 

Figure 3.  NMDS ordination of honey bee gut microbiota from hives that survived (green) or hives that failed 
to survive (blue) winter 2022. Weighted UniFrac dissimilarity was calculated using the absolute abundance of 77 
ASVs. PERMANOVA performed on the weighted UniFrac distances showed significant effect of hive condition 
on beta-diversity (P <  10–6, stress = 0.122).

Table 1.  Summary of PERMANOVA tests of beta-diversity dissimilarity based on hive condition and location.

Weighted UniFrac distances

Factor R2 Pseudo-F P

Condition 0.15 37.03  <  10–6

Location 0.17 21.13  <  10–6

Condition × Location 0.012 2.96 0.036

Bray–Curtis distances

Factor R2 Pseudo-F P

Condition 0.047 8.98  <  10–6

Location 0.089 8.54  <  10–6

Condition × Location 0.0085 1.61 0.034

Jaccard distances

Factor R2 Pseudo-F P

Condition 0.031 5.69  <  10–6

Location 0.062 5.60  <  10–6

Condition × Location 0.0080 1.44 0.022
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The overall performance of the two methods was similar, where the median AUROC was 0.908 and 0.903 for the 
L2 logistic regression and random forest models, respectively. For comparison, we also employed a L2 logistic 
regression model excluding the samples from the Upperville location, where no hive failures occurred, which 
resulted in a substantial drop in performance (median AUROC = 0.673).

For L2 logistic regression, an intuitive way to evaluate the relative contributions of each feature (i.e., genus or 
location) to model performance is to compare the regression coefficients (i.e., weights) for each feature, where the 
magnitude is proportional to feature importance in the ML model. As expected, given that each of the hives from 

Table 2.  Summary of PERMANOVA tests of beta-diversity dissimilarity based on hive condition and location 
(Upperville excluded).

Weighted UniFrac distances

Factor R2 Pseudo-F P

Condition 0.062 9.74 3.40 ×  10–5

Location 0.26 41.16  <  10–6

Condition × Location 0.34 5.35 0.022

Bray–Curtis distances

Factor R2 Pseudo-F P

Condition 0.015 1.68 0.024

Location 0.073 8.23  <  10–6

Condition × Location 0.012 1.32 0.12

Jaccard distances

Factor R2 Pseudo-F P

Condition 0.013 1.41 0.0249

Location 0.051 5.59  <  10–6

Condition × Location 0.012 1.29 0.059

Table 3.  ASVs significantly associated with hive condition from DESeq2 analysis.

OTU Genus Survived:Failed ratio Adjusted P

ASV1 Snodgrassella 4.32 1.67 ×  10–8

ASV13 Bartonella 9.85 6.81 ×  10–8

ASV25 Gilliamella 7.41 2.42 ×  10–7

ASV3 Gilliamella 4.26 1.99 ×  10–6

ASV2 Gilliamella 2.50 5.05 ×  10–6

ASV16 Lactobacillus 0.37 7.94 ×  10–6

ASV9 Commensalibacter 4.11 1.43 ×  10–5

ASV57 Lactobacillus 0.38 6.74 ×  10–4

ASV65 Lactobacillus 0.30 6.74 ×  10–4

ASV76 Lactobacillus 0.24 1.04 ×  10–3

ASV15 Snodgrassella 6.77 1.32 ×  10–3

ASV73 Lactobacillus 0.28 1.32 ×  10–3

Table 4.  ASVs significantly associated with hive condition from indicspecies analysis.

OTU Genus Adjusted P

ASV1 Snodgrassella 0.0015

ASV2 Gilliamella 0.0015

ASV3 Gilliamella 0.0015

ASV9 Commensalibacter 0.0015

ASV25 Gilliamella 0.0015

ASV51 Bombilactobacillus 0.013

ASV35 Bartonella 0.032

ASV13 Bartonella 0.043

ASV44 Gilliamella 0.048
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the Upperville location survived and that two-thirds of the hives from the Gainesville location failed, the average 
regression coefficients of these two location features were of the greatest magnitude, 0.97 and − 0.93, respectively 
(Fig. 5). Of the 10 taxonomic features, four were positively associated (average regression coefficient > 0.1) with 
hive survival (Bartonella, Commensalibacter, Gilliamella, Snodgrassella), two were negatively associated (average 
regression coefficient < − 0.1) with hive survival (Apilactobacillus, Bfidobacterium), and four were weakly asso-
ciated (− 0.1 < average regression coefficient < 0.1) with hive survival (Bombella, Bombilactobacillus, Frischella, 
Lactobacillus). Another means of determining the relative importance of each feature is through permutation, 
where model performance is compared between the inclusive data and when each feature is omitted. As expected, 
exclusion of the Upperville and Gainesville location features had the greatest impact on model performance 
(~ 8.5–10% drop in median AUROC), followed by the taxonomic features Bfidobacterium, Commensalibacter, 
Snodgrassella, and Gilliamella (~ 2–5% drop in median AUROC), with the remaining taxonomic features having 
a lesser to negligible effect on model performance (< 2% drop in median AUROC).

Discussion
In this study, we compared the gut microbiota in honey bees from hives in three sampling locations that either 
survived or failed to survive through winter 2022. The bacterial taxa found in this study included the six Gram-
negative genera Bartonella, Bombella (formerly Parasaccharibacter), Commensalibacter, Frischella, Gilliamella, 
and Snodgrassella, as well as the four Gram-positive genera Apilactobacillus (formerly Lactobacillus), Bifidobac-
terium, Bombilactobacillus (formerly Lactobacillus), and Lactobacillus. These taxa are consistent with previous 
work demonstrating that the honey bee gut microbiome is simple and consists of less than a dozen species 
 clusters16,17,19,46.

Table 5.  Nested two-way ANOVA tests on genus abundance from pooled ASV counts.

Genus
Condition
(Adjusted P)

Location
(Adjusted P) Condition × Location (P)

Commensalibacter 9.3 ×  10–5 1.3 ×  10–5 0.68

Snodgrassella 4.5 ×  10–3 0.01 0.76

Bartonella 0.16 0.033 0.30

Gilliamella 0.21 0.11 0.98

Frischella 0.44 0.30 0.89

Lactobacillus 0.53 0.36 0.49

Apilactobacillus 0.55 0.34 0.43

Bombella 0.60 0.27 0.47

Bombilactobacillus 0.71 0.41 0.83

Bifidobacterium 0.82 0.54 0.71

Figure 4.  Model performance of machine learning methods, as measured by the area under the receiver 
operator characteristic curve (AUROC). Strip plots of AUROC values on the test data set for each of the 100 
seeds using a L2 logistic regression model (blue), random forest model (purple), or L2 logistic regression model 
with the Upperville samples excluded (orange), with the median AUROC values for each depicted as filled 
circles. An AUROC value of 0.5 corresponds to random classification, whereas an AUROC value of 0.9, the 
approximate median of the 100 seeds for both the L2 logistic regression and random forest ML models with all 
locations excluded, corresponds to a classification system that correctly identifies a sample as coming from a 
surviving or failed hive with 90% probability.
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The most salient difference between the bacteriomes of honey bees from hives that survived versus those that 
failed is in total bacterial abundance, where bacterial abundance of hives that survived consistently exceeded that 
of hives that failed. Importantly, for each of the ten bacterial genera the average QMP abundance was greater in 
honey bees from surviving hives (Fig. 2). Given that all 10 genera are well known commensals of honey bees, 
perhaps an overall dearth of gut commensals, which are critical for metabolism, endocrine signaling/growth, 
immune function, and pathogen  resistance47, led to various forms of stress (e.g., lack of nutrition, increased 
susceptibility to pathogens), contributing to winter hive failure. Consistent with the hypothesis that greater 
abundance of members of the core bee gut microbiome is protective, a survey of the gut microbiota of thriving 
versus non-thriving honey bees found higher relative abundances of Bartonella, Bifidobacterium, Bombella, 
Commensalibacter, and Snodgrassella in thriving  bees48. In another recent study, winter bees, which are crucial 
for colony survival, were found to have roughly tenfold higher total gut bacterial loads than summer  foragers49, 
which suggests a relationship between the health of winter hives and total bacterial abundance under a scenario 
in which hives with particularly low total bacterial abundance in their summer foragers are more likely to exhibit 
low bacterial abundance in the winter.

Whereas the difference wasn’t statistically significant for two-way ANOVAs performed on most genera, the 
pooled ASVs from two genera, Commensalibacter and Snodgrassella, exhibited significantly greater abundances 
based on hive condition. The average abundance of Commensalibacter, a member of the acetic acid bacteria 
(family Acetobacteraceae), among honey bees from hives that survived was, on average, over five-fold higher 
than that from those from hives that failed. In addition, the average regression coefficient for Commensalibacter 
as a feature in a logistic regression ML model was of greater magnitude (positive or negative) than that of any 
other genus, indicating that a greater abundance of the Commensalibacter was more predictive of hive success 
than any other gut commensal. In a comparative study of thriving versus non-thriving honey bees, Commensali-
bacter was found to be significantly more abundant in the gut of thriving bees compared to non-thriving  bees48, 
and Commensalibacter abundance has been found to increase in winter bees relative to summer  foragers49. In 
Drosophila, Commensalibacter suppresses the proliferation of a pathogenic commensal Gluconobacter morbifer50.

The average abundance of Snodgrassella among honey bees from hives that survived was, on average, almost 
four-fold higher than that from honey bees from failed hives and, similar to Commensalibacter, Snodgrassella 
abundance was predictive of hive success in a logistic regression ML model. Snodgressella alvi is a member of the 
core gut microbiome, it has been found in almost every adult honey bee worker worldwide, and is most abundant 
in the ileum region of the  hindgut19. S. alvi has been found to protect against E. coli hemolymph  infection51, and 
is known to play a very important role in maintaining anoxia in the gut, a condition required by the metabolism 
of other gut  symbionts52. After infection with E. coli, honey bees mono-inoculated with S. alvi cleared more E. 
coli from the hemolymph after infection, and they had higher levels of antimicrobial peptide, so it has been pro-
posed that S. alvi may have a role in immune  priming49. Consistent with this finding, recent studies determined 

Figure 5.  Boxplot of L2 regression model feature coefficients (i.e., weights) for each feature. Features associated 
with winter survival have positive regression coefficients (e.g., genera Commensalibacter and Snodgressella, 
location Upperville), and those associated with winter failure have negative regression coefficients (e.g. genus 
Bfidobacterium, locations Gainesville and Vienna), with the magnitude proportional to feature importance in 
the ML model. The medians and interquartile ranges of the 100 seeds are depicted as horizontal black lines and 
boxes, respectively.
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that S. alvi, which forms a dense biofilm in the ileum, triggered an immune response against the opportunistic 
and harmful microbial pathogen Serratia marescens, protecting them against  infection53,54. Serratia marescens 
infection is unlikely to be a factor influencing hive survival in our study given that Serratia was only detectable 
in three samples prior to filtering out rare ASVs. Serratia hits accounted for < 1% of the total reads from each of 
the three individual honey bee samples in which it was detected, and two of the three samples were from two 
different hives that survived winter 2022. S. alvi has also been shown to protect against Paenibacillus larvae55, 
the microbial pathogen responsible for American foulbrood, the most widespread disease affecting honey bee 
larvae. We did not detect any reads from American foulbrood prior to filtering out rare ASVs, therefore, similar 
to Serratia, any protection S. alvi conferred against P. larvae was probably not a factor influencing hive survival 
in our study. However, S. alvi may protect against a variety of pathogens, not all of which would be detectable 
using bacterial 16SrRNA gene sequencing. A seasonal shift in the abundance of S. alvi occurs in the midgut, 
where it becomes more abundant in summer, possibly due to changes in  diet56. It is possible that lower levels of 
S. alvi are indicative of poor nutrition, resulting in higher disease susceptibility and mortality.

Contrary to results from a previous  study48 that found higher alpha diversity in the gut microbiomes of thriv-
ing hives (rapid hive population growth, high honey production) compared to non-thriving hives (slow hive 
population growth, low honey production), we found no difference in the alpha diversity of hives that survived 
or failed winter 2022. Whether increased microbial diversity is a signature of hive health depends on which spe-
cies most contribute to increased diversity, e.g., the presence of rarer pathogenic bacteria could increase species 
richness but may have a detrimental effect on hive health. There was a marginally significant difference in species 
evenness based on hive location, with the Gainesville location having higher diversity (average Pielou’s even-
ness = 0.87) than the Upperville and Vienna locations (average Pielou’s evenness = 0.72 and 0.78, respectively). 
Given that the Gainesville location had the highest rates of hive failure, this is a case where higher gut microbial 
diversity is not necessarily a sign of hive health (average Shannon and Simpson diversity were highest for the 
Gainesville location as well, but the differences among locations were not statistically significant).

In contrast to some previous studies on colony  loss41,44,57, we did not find any evidence that any of the three 
DWV strains was a significant driver of colony failure. The lack of any significant differences in DWV levels 
based on hive condition may be attributed to the fact that each of the hives we sampled had been treated during 
the spring and fall for parasitic Varroa destructor mites, an important vector of DWV and other viruses. It is 
possible that, in the ensuing months between the fall mite treatment and winter, mite loads and the concomitant 
DWV levels accrued in some hives, perhaps contributing to some hive failures.

In addition to differences in specific taxa, the difference in overall composition of hives that survived versus 
those that failed was highly significant (P <  10–6) as determined from a PERMANOVA test of beta diversity 
differences based on hive condition. Although the effect of hive location was also highly significant (P <  10–6), 
the PERMANOVA test remained highly significant (P <  10–4) even after excluding samples from the Upperville 
location, where all hives survived winter 2022. These results indicate that there are consistent differences in the 
abundances of individual taxa in surviving versus failed hives, although the specific nature of these differences 
is difficult to discern due to the multidimensionality of the beta diversity data.

To aid in the interpretation of PERMANOVA results we used ML models to determine if the microbial com-
munity composition of honey bee guts were predictive of winter hive survival or failure, as well as to determine 
which taxonomic features were most strongly associated with survival or failure. Both the logistic regression 
and random forest ML models performed very well (median AUROC > 0.9) when all features were included, 
however, since all samples from the Upperville location were obtained from hives that survived the winter and 
two-thirds of the hives from the Gainesville location failed, the location features contributed significantly to ML 
performance. Despite the predictive importance of the Upperville location feature, when the Upperville samples 
were excluded the logistic regression ML model remained predictive of winter survival (median AUROC = 0.673), 
indicating that the taxonomic composition of the honey bee gut microbiome alone was an important determi-
nant of winter failure and could be used to correctly predict whether a particular honey bee sample came from 
a failed hive ~ 67% of the time. In accordance with the results from statistical analysis of individual genus abun-
dance data discussed above, the Commensalibacter and Snodgrassella genera were the taxonomic features that 
were most predictive of hive success, having the largest regression coefficients in the logistic regression model, 
and having the greatest impact on model performance when excluded as features in the logistic regression and 
random forest ML models.

Given that (1) most colony loss occurs during the winter months, that honey bee gut microbial communi-
ties undergo seasonal  fluctuations47, (2) there are clear differences in the gut microbial communities of thriving 
versus non-thriving bees during the  summer46, (3) there is a significant difference between the gut microbial 
communities of honey bees from hives that were destined for winter failure and those that survived (this study), 
and (4) that this difference has predictive power (this study), further analysis and a functional characterization 
of the honey bee gut microbiome’s role in winter survival is clearly warranted.

This study suggests that honey bee gut microbial abundance and community composition may play a signifi-
cant role in winter hive loss. Honey bees from hives that survived winter 2022 had significantly higher microbial 
loads, and there was a highly significant difference in the beta diversity based on hive condition. Two bacterial 
genera previously demonstrated to be beneficial, Commensalibacter and Snodgrassella, were also found to be 
positively associated with winter survival in our study. Machine learning models were predictive of hive outcome, 
indicating that in the future the community composition honey bee gut microbiota can potentially be used as a 
diagnostic tool in evaluating hive health prior to the onset of winter.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11021  | https://doi.org/10.1038/s41598-024-61199-9

www.nature.com/scientificreports/

Data availability
The 16S rRNA gene reads supporting the conclusions of this article are available in the NIH Sequence Read 
Archive repository (https:// www. ncbi. nlm. nih. gov/ sra) under the Bioproject ID PRJNA1010874. R scripts used 
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