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Uncertainty quantification 
in multivariable regression 
for material property prediction 
with Bayesian neural networks
Longze Li 1, Jiang Chang 1, Aleksandar Vakanski 1*, Yachun Wang 2, Tiankai Yao 3 & Min Xian 1

With the increased use of data-driven approaches and machine learning-based methods in material 
science, the importance of reliable uncertainty quantification (UQ) of the predicted variables for 
informed decision-making cannot be overstated. UQ in material property prediction poses unique 
challenges, including multi-scale and multi-physics nature of materials, intricate interactions between 
numerous factors, limited availability of large curated datasets, etc. In this work, we introduce a 
physics-informed Bayesian Neural Networks (BNNs) approach for UQ, which integrates knowledge 
from governing laws in materials to guide the models toward physically consistent predictions. To 
evaluate the approach, we present case studies for predicting the creep rupture life of steel alloys. 
Experimental validation with three datasets of creep tests demonstrates that this method produces 
point predictions and uncertainty estimations that are competitive or exceed the performance 
of conventional UQ methods such as Gaussian Process Regression. Additionally, we evaluate the 
suitability of employing UQ in an active learning scenario and report competitive performance. The 
most promising framework for creep life prediction is BNNs based on Markov Chain Monte Carlo 
approximation of the posterior distribution of network parameters, as it provided more reliable results 
in comparison to BNNs based on variational inference approximation or related NNs with probabilistic 
outputs.

Keywords  Uncertainty quantification, Bayesian neural networks, Active learning, Creep life, Physics-
informed machine learning

Uncertainty Quantification (UQ) plays a crucial role in various science and engineering disciplines. In the field of 
material science, the application of computational modeling methods has significantly accelerated the discovery 
of novel materials with enhanced properties. Determining the level of confidence in the predictions made by 
computational models is of high importance, as high levels of uncertainty can result in large deviations from the 
actual material behavior in practical applications1. With the increasing complexity of computational modeling, 
the computational cost associated with numerical UQ models has also increased, necessitating the development 
of computationally efficient methods for both prediction and uncertainty estimates2. In general, uncertainties 
can be categorized into two main types: aleatoric uncertainty, which arises due to the inherent process random-
ness (e.g., similarities in experimental data from the same experiment), and epistemic uncertainty, related to the 
discrepancies due to lack of training data or imperfections in the computational models3,4.

Recent advancements in Artificial Intelligence, particularly in Machine Learning (ML) and Neural Networks 
(NNs), ushered in a new era for design of experiments and materials modeling5. Among the conventional ML 
models with an inherent ability for UQ in regression tasks are Quantile Regression (QR)6, Gaussian Process 
Regression (GPR)7, and Natural Gradient Boosting (NGBoost)8. QR and NGBoost have shortcomings due to the 
lack of closed-form parameters estimation and are prone to overestimating the uncertainty level in data9. In most 
related works, GPR is generally reported as the state-of-the-art approach for UQ in multivariable regression and 
it stands out for its predictive accuracy and uncertainty estimates. On the other hand, GPR also has important 
limitations, since the commonly employed kernels, such as Gaussian and Matern kernels, have continuous sam-
ple paths, and are therefore less suitable for material properties prediction, where variations in microstructural 
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features can have significant impact on macroscopic material properties10. Although researchers have proposed 
advanced GPR alternatives (e.g., sparse additive GPR11), they typically introduce novel challenges and require 
finetuning of additional hyperparameters.

In recent years, NNs have demonstrated remarkable success in both classification and regression tasks dealing 
with high-dimensional non-linear data12. Whereas NNs for classification tasks inherently output the probabilities 
in the model’s prediction for each class, traditional NNs for regression tasks typically output only single-point 
predictions of the target variables (commonly referred to as point estimates). To provide uncertainty assessments, 
previous works proposed approaches such as Deep Ensembles13 or Monte Carlo (MC) Dropout14. These methods 
introduced modifications in the outputs of traditional NNs with deterministic parameters to generate probabil-
istic predictions, allowing for UQ. Importantly, NNs with stochastic parameters, referred to as Bayesian Neural 
Networks (BNNs)15–17, have emerged as a promising approach for UQ that provides a probabilistic framework 
for capturing uncertainties in data-driven models. In comparison to conventional ML approaches for UQ, BNNs 
offer substantial flexibility in terms of the model structure, size, and parameter settings, and have the potential 
for efficient and reliable UQ modeling18.

In this work, we propose a novel approach for predicting creep rupture life in steel alloys using physics-
informed BNNs. The approach incorporates physics-informed features based on governing creep laws into BNNs 
to estimate the uncertainties in the model’s prediction of rupture life. The effectiveness of the proposed approach 
is additionally evaluated in the context of active learning (AL)19. By combining the variance reduction technique 
with k-mean clustering for selecting the most uncertain and diverse data points for training a model, we introduce 
a trade-off between exploration and exploitation of the solution space in AL. We conducted experimental valida-
tion with three datasets, consisting of collected data from creep tests with Stainless-Steel 316 alloys, Nickel-based 
superalloys, and Titanium alloys. The considered implementations of BNNs include networks employing Vari-
ational Inference (VI) and Markov Chain Monte Carlo (MCMC) approximation of the posterior distribution of 
the network parameters. We also evaluated the performance of traditional UQ regression models QR, NGBoost, 
and GPR, as well as deterministic NNs with point estimates and probabilistic outputs (Deep Ensembles, MC 
Dropout). The experimental results with a set of predictive single-point and uncertainty metrics demonstrate 
that MCMC BNNs are the most promising UQ method for creep rupture life prediction, with performance that 
is competitive with the performance of GPR. The results also demonstrate that physics-informed knowledge 
leverages the models’ capacity for improved creel life prediction.

Although prior works have explored the application of ML approaches for predicting material properties20–26 
and uncertainty estimates in the predictions16,27–29, our proposed approach introduces novel concepts related 
to BNNs with incorporated physics priors for UQ in material property prediction. Specifically, the proposed 
work was inspired by Mamun et al.9, who proposed an approach for predicting the creep rupture life of ferritic 
steels using conventional ML methods. The authors employed GPR to calculate point estimates and uncertainty 
estimates in the predicted rupture lire. Differently from the work by Mamun et al.9, we develop approaches for 
point regression and UQ in predicting creep rupture life based on BNNs, and demonstrate that Bayesian deep 
learning models present a promising framework for this task.

A body of work in the literature utilized Physics-Informed ML (PIML) to integrate knowledge from governing 
physics laws and data-driven methods for obtaining more consistent predictions30–34. In the proposed approach, 
we drew inspiration from the work by Zhang et al.31, where the authors introduced physics-informed features 
and a physics-informed NN loss for predicting creep rupture life. However, the authors did not consider UQ in 
their work, as well as, their focus was on designing standard NNs with deterministic parameters for creep life 
prediction. In another related paper, Olivier et al.16 investigated the use of BNNs for UQ in the field of material 
science, and they developed VI-based ensemble methods for predicting the properties of composite materials. 
Differently from our work, the authors in 16 did not consider the integration of physics-informed knowledge in 
BNNs, and also they used simulated data as a proof-of-concept for the proposed approaches, whereas we used 
collected data from creep tests for experimental validation. Furthermore, researchers have proposed incorporat-
ing physics-informed priors into BNNs in prior works35,36, however, these works focus on other tasks, and to the 
best of our knowledge, this is the first work to apply such framework for material property prediction. Lastly, 
although many previous works have studied AL to prioritize the most informative sample for model training9,36–39, 
in this paper we show that physics-informed BNNs have the potential to accelerate the model training in AL for 
material property prediction.

The contributions of this paper include:

•	 Introduced a physics-informed BNNs approach for material property prediction, that incorporates physics 
knowledge for guiding the solutions of BNNs.

•	 Performed a comprehensive evaluation of the performance of conventional ML models, traditional NNs with 
probabilistic outputs, and BNNs for creep rupture life prediction and uncertainty estimation.

•	 Applied the UQ frameworks for an active learning task to iteratively select data points with the highest 
epistemic uncertainty and diversity for faster model training with fewer data points.

Data and experimental setup
Datasets
We use three datasets to validate the proposed UQ framework for creep rupture life prediction. The first creep 
dataset pertains to Stainless Steel (SS) 316 alloys, and it was obtained from the National Institute for Materials 
Science (NIMS) database40. The dataset contains 617 test samples with 20 features per sample. Specifically, the 
features provide information about the material composition related to the mass percent of the elements C, Si, 
Mn, P, S, Ni, Cr, Mo, Cu, Ti, Al, B, N, Nb, Ta and the material group of the alloy, testing conditions including 
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the applied stress (MPa) and temperature (°C), test measurements related to the percentage of elongation and 
percentage of area reduction, and the recorded creep rupture life (hours).

The second creep dataset is for Nickel-based superalloys and was adopted from the work by Han et al.41. The 
dataset includes 153 test samples with 15 features per sample. The features include material composition related 
to the weight percentage of the elements Ni, Al, Co, Cr, Mo, Re, Ru, Ta, W, Ti, Nb, and T, testing conditions 
including applied stress (MPa) and temperature (°C), and the recorded creep rupture life (hours).

The third creep dataset pertains to Titanium alloys and was adopted from Swetlana et al.42. It consists of 177 
test samples with 24 features per sample. The features provide information about the weight percentage of the 
elements Ti, Al, V, Fe, C, H, O, Sn, Mb, Mo, Zr, Si, B, and Cr, testing conditions including applied stress (MPa) 
and temperature (°C), finishing conditions related to the solution treated temperature (°C), solution treated time 
(hours), annealing temperature (°C), annealing time (hours), test measurements of the steady-state strain rate 
(1/s) and strain to rupture (%), and the recorded creep rupture life (hours).

The reader can also refer to Supplementary Figs. S.1 to S.3 in the Supplementary Material file, which provide 
the histograms for all features in the three datasets, respectively, as well as additional statistics related to the 
average, minimum, maximum, and standard deviation values for the input features.

Evaluation metrics
To evaluate the predictive accuracy of the models on unseen data samples, we used the following three met-
rics that are commonly used for regression models: coefficient of determination ( R2 ), root-mean-squared 
error (RMSE), and mean absolute error (MAE). In addition, we used the Pearson Correlation Coefficient (PCC) 
to quantify the magnitude and direction of the linear relationship between the predicted values by the models 
and the target values.

To evaluate the quality of UQ we employed the following metrics: coverage and mean interval width.
Coverage quantifies the proportion of target values that fall within the predicted uncertainty interval by a 

regression model. Values of the coverage metric that are close to the nominal confidence interval of 95% are 
preferred for reliable uncertainty quantification. In some statistical works, the coverage metric is referred to as 
validity, since it assesses whether the predicted uncertainty intervals are valid.

Mean interval width calculates the average size of the predicted interval around the point estimates, related 
to the upper and lower uncertainty bounds. I.e., this metric assesses how tight the uncertainty bounds are across 
all predicted values. Smaller values of the interval width are preferred, as they indicate more precise uncertainty 
estimates by a regression model. In some statistical works, this metric is also referred to as sharpness.

Methods
Preliminaries: frameworks for uncertainty quantification
The considered problem is a multivariable regression task, where based on a set of N  observed data samples 
X =

{

xi|xi ∈ R
d , i = 1, 2, . . . ,N

}

 , the goal is to estimate target values Y =
{

yi|yi ∈ R, i = 1, 2, . . . ,N
}

 . The 
observed data samples contain relevant material information, such as composition, known physical, mechani-
cal, or other properties, and experimental conditions (such as temperature, and stress level) that are important 
for estimating the target variable.

For a training dataset D =
{(

xi , yi
)}N

i=1
 and a new data point x∗ which does not belong to the previously 

observed dataset, the objective is to find a mapping function f  that estimates the target value, i.e., y∗ = f (x∗) . 
The value y∗ is referred to as single-point prediction or point estimate. In addition, the focus of this paper is on 
methods that provide uncertainty quantification for the predicted value y∗ , either through a quantified measure 
of the variance of y∗ , via confidence intervals, or by other means. The next sections provide an overview of 
conventional ML and DL frameworks for UQ in regression tasks.

Conventional machine learning methods for UQ
Whereas many ML models for classification tasks inherently output the probabilities in the model’s prediction 
for each class, most ML models for regression tasks typically provide only point estimates of the target value. 
Consequently, several approaches have been developed that employ or modify standard regression models in 
order to provide uncertainty estimates.

Quantile Regression (QR)6 is a non-parametric approach for estimating the conditional quantiles—and 
therefore, uncertainties—in prediction variables. For a quantile τ , the conditional quantile function of a target 
variable Y given observed data X , QY|X(τ ) , is calculated by minimizing a loss function. For a new data point x∗ , 
estimating the quantile functions Qy∗|x∗(τ = 0.025) and Qy∗|x∗(τ = 0.975) provides the 95% prediction interval 
of the target variable around the point estimate y∗ . Advantages of QR include robustness to outliers, there are 
no distributional assumptions, and it can be used with any base model by replacing the original loss function 
with the quantile loss function.

Natural Gradient Boosting (NGBoost) Regression8 is a probabilistic variant of the traditional Gradient Boost-
ing method43. NGBoost method comprises three key components: a collection of base learners, parametric form 
of the conditional distribution P(Y|X, θ) , and scoring mechanism that ensures that the predicted distribution 
closely aligns with the actual distribution. For a new data point x∗ , the point estimate of the target variable y∗ 
and the uncertainty quantified as the standard deviation σ ∗ are obtained from the conditional distribution 
P
(

y∗|x∗, θ
)

 . Advantages of NGBoost include the flexibility to be used with any base learners and any distribu-
tions with continuous parameters and scoring rules.

Gaussian Process Regression (GPR)7,44 is a non-parametric Bayesian approach suitable for performing 
both function approximation and uncertainty estimation. Accordingly, GPR represents a collection of random 
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variables as a multivariate Gaussian distribution over a set of data points. For a Gaussian Process N (Y|µ,K) , Y 
denotes a vector of function values estimated at n data points Y = [f (x1), . . . , f (xn)] , µ is the mean of the Gauss-
ian Process that by default is assigned to be zero, and K is a positive definite covariance matrix. The smoothness 
of the distribution across functions is determined by the covariance kernel Ki,j = k(xi , xj) that defines the covari-
ance between the function values f (xi) and f

(

xj
)

 . Various kernel functions are used in practice, parameterized 
by a set of hyperparameters.

Given a training dataset (X,Y) , for a new data point x∗ the posterior distribution of y∗ is Gaussian, i.e., 
P
(

y∗|x∗,X, y
)

= N
(

µ
∗,σ∗2

)

 . The mean of the predicted distribution µ∗ = K∗T (K + σ 2
n I)

−1
y is used as the 

point estimate of y∗ , where K∗ is the covariance matrix between x∗ and the data points in the training dataset 
X , and σ 2

n  is the variance of independent and identically distributed (i.i.d.) Gaussian noise representing the 
uncertainty in the training data. The covariance of the predicted distribution is given with σ∗2 = k(x∗, x∗)− 
K∗T (K + σ 2

n I)
−1

K∗ . GPR is among the most powerful and flexible methods for UQ in regression tasks. By using 
different kernel functions and hyperparameters, GPR allows introducing domain knowledge and adapting the 
predictive distribution to the specific patterns and trends in a dataset.

Neural networks with deterministic parameters
Standard NNs with deterministic values of the parameters (weight and biases) have been increasingly employed 
for UQ of predicted values.

Deep Ensembles (DE)13 involves training multiple NNs for a regression task, and aggregating their outputs 
to estimate the prediction uncertainties. The inherent randomness in the initializations of NN parameters and 
the associated training process drive the NNs to converge to different solutions in the hypothesis space. As a 
result, the DE approach results in samples of different network parameters that produce stochastic outputs45. 
For an ensemble of S NNs trained on the dataset 

(

xi , yi
)

∈ D and parameterized with parameters θi , θ2 . . . , θS , 
and for a new data point x∗ , the DE predictions are treated as a Gaussian distribution, where the predicted mean 
and standard deviation obtained by averaging the predictions of the ensemble are used as the target value and 
uncertainties estimates:

Monte Carlo (MC) Dropout14 is a simple extension of the standard dropout technique, which applies dropout 
during inference. For a new data point x∗ , MC Dropout performs M forward passes through the trained net-
work with the dropout enabled to obtain Monte Carlo samples, resulting in M different predictions f (x∗, θi) . 
Similarly to Eqs. (1) and (2), the point and uncertainty estimates are computed from the resulting distribution 
of predicted target values f (x∗, θi).

Neural networks with probabilistic parameters
Differently from standard NNs with deterministic parameters, Bayesian Neural Networks (BNNs) represent 
the network parameters with probability distributions, instead of fixed values. For a BNN model parameterized 
with parameters θ that form probability distributions, inference for a new data point x∗ is performed by using 
the posterior predictive distribution P

(

y∗|x∗,D
)

=
∫

P
(

y∗|x∗, θ
)

P(θ |D)dθ . Direct calculation of the posterior 
distribution of the parameters given observed data P(θ |D) is intractable (and hence, the same applies to the 
predictive distribution P

(

y∗|x∗,D
)

 ). Various approximations for P(θ |D) have been used in practice, among 
which the most popular methods are Variational Inference (VI) and Markov Chain Monte Carlo (MCMC).

Variational Inference BNNs: Variational Inference (VI) BNNs17 employ an optimization technique to approxi-
mate the intractable posterior distribution P(θ |D) (that is, P(θ |X ,Y) ) with a simpler parameterized distribution 
qφ(θ) (referred to as variational distribution) from a family of distributions Q . The VI optimization is as follows:

where the goal is to calculate the parameters of the variational distribution qφ(θ) that approximates the posterior 
distribution P(θ |D) . The Kullback–Leibler (KL) divergence is used as a measure of closeness between the two 
distributions. Directly calculating the KL divergence is also challenging, since it involves calculating the evidence 
P(Y|X) . To address this issue, an alternative approach has been developed, which utilizes the following Evidence 
Lower Bound (ELBO):

Since the KL divergence term DKL

[

qφ(θ)||P(θ |D)
]

 in (3) is always non-negative, the expected log-likelihood 
of the data logP(Y|X, θ) is always larger than ELBO. Therefore, using a loss function that maximizes ELBO in (4) 
minimizes the KL divergence between the variational distribution qφ(θ) and the posterior distribution P(θ |D).

The predictive uncertainty for new data point x∗ is estimated by sampling from the variational distribution 
qφ(θ) . Using Eqs. (1) and (2), the point estimate and uncertainty are calculated as the mean and standard devia-
tion of the drawn samples from qφ(θ).

(1)y∗ =
1

S

∑S

s=1
f
(

x∗, θs
)

(2)σ ∗ =

√

1

S

∑S

s=1

(

y∗ − f (x∗, θs)
)2

(3)φ∗ = arg min
qφ(θ)∈Q

DKL

[

qφ(θ)||P(θ |D)
]

,

(4)ELBO(φ) = Eθ∼qφ(θ)

[

logP(Y|X, θ)
]

− DKL

[

qφ(θ)||P(θ |D)
]

.
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Markov Chain Monte Carlo (MCMC) BNNs: MCMC BNNs46 approximate the posterior distribution of NN 
parameters θ given observational data P(θ |X ,Y) through Monte Carlo sampling. The approach employs a 
Markov Chain of model parameters, where each set of parameters θi is a sample from the posterior distribution. 
To approximate the posterior distribution, the chain iteratively explores the space of possible parameters θi . This 
exploration is guided by comparing the posterior probabilities, and as the Markov chain evolves, it effectively 
samples across the entire distribution space, allowing to converge to the target posterior distribution. After 
reaching a stationary distribution, for new input data point x∗ , the set of S generated samples {θ1, θ2, . . . , θS} from 
P(θ |X ,Y) is used to generate S predictions f (x∗, θs) . Point estimates and uncertainty estimates are calculated by 
averaging the predictions, as in Eqs. (1) and (2).

Several MCMC sampling methods are used for approximating the posterior distribution with BNNs for 
regression tasks. Metropolis-Hasting algorithm47 is often employed since it does not require exact knowledge 
about the probability distribution P(θ) to sample from, and a function that is proportional to the distribution 
is sufficient. Hamiltonian Monte Carlo (HMC) algorithm48 is a version of Metropolis-Hasting that introduces a 
momentum term for proposing new states similar to simulating a physical system with Hamiltonian dynamics. 
Likewise, the No-U-Turn Sampling (NUTS) algorithm49 is a sub-version of HMS that offers an approach for 
automatic selection of the hyperparameters.

Physics‑informed machine learning
Physics-Informed Machine Learning (PIML) integrates insights of the fundamental physics laws governing a 
process into ML models, in order to enhance the consistency of the predictions30–33,50,51. PIML can potentially 
address challenges associated with modeling material properties, as it leverages the demonstrated capability of 
ML methods—especially deep NNs—to capture intricate relationships within high-dimensional multi-scale and 
multi-physics data. Namely, accurately representing the dynamics and deformation mechanisms of materials 
with physics-based models (e.g., via partial differential equations) poses insurmountable difficulties, since it 
is exceptionally challenging to mathematically define all different underlying processes that change over time. 
Indeed, existing physics-based models capture only the most important factors that influence material proper-
ties, and are missing fine details of the underlying physics. PIML also can address the challenges posed by the 
limited availability of large curated datasets in materials science. Therefore, the fusion of historical experimen-
tally collected material property data and physics-based models within a PIML framework holds the potential 
to enhance long-term predictions of material behavior under different conditions and exceeds the capabilities 
of traditional physics-based models.

In the proposed approach, we developed a PIML framework for predicting creep rupture life in metal alloys by 
introducing physics-informed feature engineering to augment the set of input features to the regression models 
and by applying a physics-informed loss function that introduces physics constraints into the learning algorithm.

Physics‑informed feature engineering
We introduce two categories of physics-informed features based on estimations of the creep rupture life and 
stacking fault energy by using physics-based models.

Creep Rupture Life Estimation: Creep is a slow irreversible deformation process under the influence of stresses 
below the yield stress of a material. The prediction of creep rupture life, related to the time duration that a mate-
rial can sustain before undergoing rupture is essential for guiding design strategies, maintenance regimens, and 
safety protocols for systems and structures. Existing physics-based creep models are broadly classified into two 
major categories: time–temperature parametric (TTP) models and creep constitutive (CC) models.

TTP models derive equations of thermal creep in metal materials by assuming interdependence between 
the effects of time and temperature on creep rupture life. The relationship between creep rupture life tf  , tem-
perature T , and stress σ is established as P

(

tf ,T
)

= f (σ ) , where the function P combines the rupture time 
and temperature into a single parameter. Well-known TTP models include the Larson–Miller method52 
P
(

tf ,T
)

= T ·
(

CLM + logtf
)

 ,  Manson–Haferd method53 P
(

tf ,T
)

=
(

logtf − logtin
)

/(T − Tin) ,  and 
Orr–Sherby–Dorn method54 P

(

tf ,T
)

= logtf − (QC/2.3RT) . In these formulations, CLM is a constant, QC is 
the creep activation energy, R denotes the universal gas constant, and tin , Tin are constants that represent the 
point of intersection of the iso-stress lines in logtf  versus T plots. The stress function f (σ ) is typically repre-
sented as a cubic polynomial logarithmic function (σ ) = c0 + c1logσ + c2log

2σ + c3log
3σ , where the coefficients 

c0, c1, c2, c3 are obtained via least-square regression fit to short-term experimental data. For a given material, 
based on establishing the relationship between the stress f (σ ) versus the time–temperature parameter P

(

tf ,T
)

 
from available short-term creep measurements, TTP methods extrapolate the plots to longer times to estimate 
the creep rupture life tf .

Creep constitutive (CC) models are based on the Monkman–Grant (MG) conjecture55, which postulates 
that the product of the creep rupture life tf  and exponentiated minimum creep strain rate ε̇min for isothermal 
conditions is constant. That is, tf · ε̇nmin = CMG , where n is the creep strain rate exponent, and CMG is a constant. 
Researchers have proposed several CC models to enhance the creep life predictions. For instance, an alternative 
formulation of the creep strain rate is ε̇ = ae−

Qin
RT · sinh(be−

Qpw
RT σ)56, where the first term ae−

Qin
RT  describes the 

power-law creep mechanism in the high-stress range, and the term sinh(be−
Qpw
RT σ) describes the viscous creep 

under the diffusion mechanism in moderate and low-stress ranges. The coefficients a and b , and the activation 
energies Qin and Qpw are obtained by fitting to experimental data of creep strain rate ε̇ for given temperature T 
and stress σ . With the progress in material science, we can expect the development of novel models that more 
accurately predict creep behavior.
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In this work, we employed the Manson–Haferd method for estimating the creep rupture life. The motiva-
tion is because the Manson–Haferd method was used for modeling the creep rupture life in SS316 alloys in the 
NIMS database, and the values of the coefficients c0, c1, c2, c3 for the least-square regression fit are provided in 
the database. Accordingly, we used the Manson–Haferd method for estimating the creep rupture life for the 
Nickel-based superalloys and Titanium alloys datasets.

Stacking fault energy (SFE): SFE represents the energy difference between atoms within the regular lattice 
structure and those located in the stacking fault region. It defines how resistant a material is to deformation 
occurring along specific crystallographic planes. SFE is an important parameter that impacts the strength and 
deformation behavior of steel materials. To calculate SFE of stainless steels γSFE , we used the following equation57

where SFE is approximated as a function of the chemical composition of the material where Ni, Mn, Cr, Mo, Si, 
C, and N denote weight percentages of the alloying elements, and γ 0 is a constant equal to 39mJ/m2 representing 
the SFE of pure austenitic iron at room temperature.

Physics‑informed loss function
The PIML paradigm allows introducing initial, boundary conditions, and other types of physics constraints 
into the loss function of a learning algorithm. Motivated by the work of Zhang et al.31, we introduced two 
physics-informed boundary constraints regarding the predicted creep rupture life into the loss of NNs. The first 
introduced loss term is LPI−B1 =

∑N
i=1 ReLU

(

y∗i
)

 which imposes that the predicted creep rupture life by the 
model y∗ is non-negative. The second loss term is defined by  LPI−B2 =

1
N

∑N
i=1 ReLU

(

a− y∗i
)

 that enforces 
that the predicted creep rupture life is upper bounded by a constant a. For the constant a we adopted the value 
of 100,000 h, because it is the greatest creep rupture life value in the three datasets. In these loss terms, ReLU 
denotes Rectified Linear Unit activation function, defined as ReLU(x) = {0 for x < 0, x for x ≥ 0} . The two 
physics-informed terms regard negative and excessively large creep life values as physical violations that should 
be prevented from being output by the model. The two terms are added to the standard mean-squared error 
loss for regression tasks LNN = 1

N

∑N
i=1

(

y − y∗i
)2 , resulting in a composite physics-informed loss function of 

the model given by

where �1 and �2 are weighting coefficients, which are empirically determined to quantify the contributions of the 
terms LPI−B1 and LPI−B2 , respectively. Specifically, we varied the values of the weight coefficients �1 and �2 , and 
we adopted values that resulted in the best overall performance on the three datasets.

Application case: active learning
Supervised ML requires that for each input data sample, there is an associated target value. Generally, for a 
supervised ML model to perform well, it often needs to be trained with a large number of labeled data points. In 
reality, labeled data may be scarce and expensive to obtain since the labeling or annotation process is time- and 
cost-consuming, whereas unlabeled data could often be accessed easily. Additionally, among the labeled data 
points, some could carry similar information, thus, contributing less value compared to the data points that 
carry dissimilar information. The Active Learning (AL) method was developed to select the most informative 
data points that speed up the training process59.

In pool-based AL, the training dataset D comprises a pool of unlabeled data DU and labeled data DL . An 
initial ML model f  is first trained with a small, randomly selected labeled dataset C ∈ DL . Next, a query strategy 
is applied to select the most informative data DA ∈ DU by employing an acquisition function to measure and 
rank the informativeness of the data. An annotator is asked to label the data DA selected by the query strategy, 
which is added to the dataset C , and the model is re-trained with the updated dataset. These steps are iteratively 
repeated until the model f  converges37.

Two main types of query strategies are: uncertainty/informativeness-based strategies that ensure the infor-
mativeness of the unlabeled data, and representative-based/diversity-based strategies that measure the similarity 
of the instances and deal with issues such as sampling bias and inclusion of outliers. In addition, a hybrid query 
strategy combining these two strategies can also be applied37.

In this paper, we apply a hybrid query strategy that includes a Variance Reduction (VR) uncertainty-based 
method, and a k-means clustering diversity-based batch mode method to guide the selection of the newly added 
data9.

Variance reduction (VR) has been proven to be an effective AL method with regression tasks58, where the 
goal is to minimize the variance of the model. For a hypothesis f (C(i)) learned on C , and a true hypothesis f ∗ , 

the total expectation of the error Eout(f (J
(i))) = Ex[(f

(

C(i)
)

(x)− f ∗(x))]
2
 , and the average estimation of learned 

hypotheses is f ≈ 1
K

∑K
k=1 (f

(C(i)))  , where k is a data point in C. The expectation on the generalization error 
of the entire dataset is ED[Eout(f (C′))] = Ex[Variance(x)+ bias(x)] . It indicates that for a given model, if the 
bias of the model is fixed, minimizing the variance of the model results in minimal generalization60. Therefore, 
VR selects and annotates the samples with the highest prediction variances, i.e., for which the model is most 

(5)

γSFE = γ 0 + 1.59Ni − 1.34Mn+ 0.06Mn2 − 1.75Cr + 0.01Cr2 + 15.21Mo− 5.59Si

− 60.69(C + 1.2N)
1
2 + 26.27(C + 1.2N) ∗ (C + 1.2Cr +Mn+Mo)

1
2

+ 0.6[Ni ∗ (Cr +Mn)]1/2,

(6)L = LNN + �1LPI−B1 + �2LPI−B2
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uncertain of inferring with these samples. Adding these samples to the training dataset reduces the overall 
generalization error of the model36.

Conventional AL queries a single data point at each iteration, which is inefficient and leads to iterative training 
with small changes to the training dataset. To avoid these issues, we implemented Batch Mode Active Learn-
ing (BMAL)60. BMAL selects and annotates multiple samples B = {B(1),B(2), . . . ,B(m)} ∈ DU in each iteration 
and add these samples to the training dataset to re-train the model. On the other hand, an uncertainty-based 
BMAL query strategy may not be ideal since the most uncertain samples may be similar to each other. There-
fore, diversity-based query strategy is typically preferred in BMAL. Clustering methods are commonly used to 
group the unlabeled dataset by similarity, and the most dissimilar samples are added to the training dataset. In 
this paper, we used k-means clustering to group the unlabeled samples into K clusters, where each group will 
have the least feature correlation with each other, and in each cluster the sample with the highest variance will 
be selected. Therefore, K number of samples will be selected and annotated for training.

Experimental results
Uncertainty quantification
For the SS316 alloys dataset, Table 1 presents the average and the standard deviation (in the subscript) of the 
metrics for predictive accuracy and uncertainty estimations for eight regression models for UQ based on five-
fold cross-validation. High values of PCC indicate high correlations between the model predictions and the 
experimentally measured creep rupture life, and high values of R2 point to more consistent fit of the predicted 
values to the experimental creep rupture life. Similarly, low values of RMSE and MAE imply that the predicted 
creep rupture life more closely aligns with the experimentally measured creep rupture life. The results in Table 1 
show that the standard NN model and BNNs performed better than the traditional ML models that include 
QR, NGBoost, and GPR. BNN-MCMC approach achieved the best performance for all point accuracy metrics, 
including PCC, R2 , RMSE, and MAE. In addition, BNN-MCMC produced the best results for the Interval width, 
except for the Coverage for which BNN-VI had the highest coverage. As expected, GPR achieved comparable 
performance to BNN-MCMC and it was the second best-performing method.

Figure 1 shows the target creep life, predicted creep life, and uncertainty estimates by the eight methods 
for one fold of the test dataset. The plots indicate that the uncertainty estimates by QR and NGBoost are over-
estimated. On the other hand, GPR provides accurate uncertainty estimates, as well as the deterministic NNs 
and BNNs have generally good performance for both point predictions and uncertainty estimates.

The corresponding results for the Nickel-based superalloy dataset are shown in Table 2. Since this dataset 
is of smaller size and has only 153 data points, the performance decreased for all models. We can still note that 
BNN-MCMC, BNN-VI, and GPR have comparable predictions, and BNN-MCMC has a small advantage in point 
estimate predictions. The values of the uncertainty estimates indicate greater variability for all metrics due to the 
challenges associated with smaller datasets. The results for predicted creep rupture life and uncertainty estimates 
are shown in Fig. 2 only for the three best-performing models: GPR, BNN-VI, and BNN-MCMC.

Next, we evaluated the models on the Titanium alloy dataset, which similar to the Nickel superalloys dataset 
is also much smaller than the SS316 dataset. The overall performance is consistent with the results in Tables 1 
and 2, with the top performers being BNN-MCMC and GPR. The mean interval widths are wider for the top 
performers, indicating that the models are less confident about the uncertainty predictions. Figure 3 presents 
the predicted creep rupture life and uncertainty estimates for the three best-performing models: GPR, BNN-VI, 
and BNN-MCMC (Table 3).

Physics‑informed machine learning
Experimental validation encompasses standard NNs and three best-performing models from the previous sec-
tion: GPR, BNN-VI, and BNN-MCMC. The models are compared to physics-informed (PI) variants. We intro-
duced physics-informed features and a physics-informed loss function for the NN method. For the SS316 alloys 
dataset, the results are presented in Table 4. Noticeably, the PIML framework improves the points estimates 

Table 1.   Experimental results for the SS316 alloys dataset, including predictive accuracy metrics (PCC, R2, 
RMSE, MAE) and uncertainty quantification metrics (coverage, interval width) for 8 compared methods: NN 
(Neural Network), QR (Quantile Regression), NGBoost (Natural Gradient Boosting), GPR (Gaussian Process 
Regression), Deep Ensemble, MC Dropout, BNN-VI (Variational Inference), and BNN-MCMC (Markov 
Chain Monte Carlo). Significant values are in bold.

PCC ↑ R2 ↑ RMSE ↓ ( log
10
h) MAE ↓ ( log

10
h) Coverage ↑ Interval width ↓ ( log

10
h)

NN 0.988±0.004 0.973±0.011 0.145±0.031 1.027±0.039

QR 0.958±0.011 0.913±0.022 0.260±0.028 0.195±0.023 86.23±3.13 1.98±0.22

NGBoost 0.917±0.025 0.826±0.045 0.368±0.042 0.13±0.037 92.39±1.87 1.34±0.18

GPR 0.993±0.001 0.987±0.002 0.102±0.007 0.072±0.003 94.33±2.54 0.39±0.01

Deep Ensemble 0.991±0.003 0.983±0.006 0.115±0.021 0.084±0.018 87.20±3.92 0.39±0.08

MC Dropout 0.988±0.002 0.977±0.003 0.134±0.012 0.101±0.007 77.00±3.69 0.33±0.04

BNN-VI 0.984±0.006 0.962±0.014 0.172±0.030 0.130±0.017 95.46±2.49 0.69±0.04

BNN-MCMC 0.996±0.001 0.991±0.001 0.085±0.008 0.060±0.004 92.71±3.61 0.30±0.03
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Figure 1.   Experimental data points, predicted data points, and uncertainty estimates for Quantile regression 
(QR), Natural Gradient Boosting (NGBoost), Gaussian Process Regression (GPR), Deep Ensemble, MC 
Dropout, BNN-Variational Inference, and BNN-Markov Chain Monte Carlo (MCMC) for the SS316 alloys 
dataset. The logarithm values for the creep rupture life are shown on the vertical axis. The green shaded area 
represents the 95% confidence interval for the predictions by the models.
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Table 2.   Experimental results for the Nickel-based superalloys dataset, including predictive accuracy metrics 
(PCC, R2, RMSE, MAE) and uncertainty quantification metrics (coverage, interval width) for 8 compared 
methods: NN (Neural Network), QR (Quantile Regression), NGBoost (Natural Gradient Boosting), GPR 
(Gaussian Process Regression), Deep Ensemble, MC Dropout, BNN-VI (Variational Inference), and BNN-
MCMC (Markov Chain Monte Carlo). Significant values are in bold.

PCC ↑ R2 ↑ RMSE ↓ ( log
10
h) MAE ↓ ( log

10
h) Coverage ↑ Interval width ↓ ( log

10
h)

NN 0.806±0.113 0.620±0.190 0.241±0.030 0.427±0.060

QR 0.819±0.048 0.641±0.096 0.243±0.032 0.191±0.024 83.69±8.66 0.997±0.148

NGBoost 0.745±0.101 0.554±0.154 0.267±0.035 0.213±0.030 95.41±2.60 1.044±0.170

GPR 0.907±0.019 0.801±0.054 0.175±0.026 0.125±0.011 92.77±5.56 0.594±0.019

Deep Ensemble 0.875±0.074 0.748±0.126 0.196±0.032 0.143±0.028 69.27±10.6 0.414±0.098

MC Dropout 0.858±0.075 0.717±0.149 0.207±0.046 0.148±0.027 45.72±7.43 0.209±0.017

BNN-VI 0.909±0.032 0.791±0.069 0.185±0.030 0.147±0.025 87.52±5.80 0.534±0.029

BNN-MCMC 0.914±0.027 0.824±0.050 0.167±0.023 0.116±0.019 92.84±4.71 0.607±0.061

Figure 2.   Experimental data points, predicted data points, and uncertainty estimates for Gaussian Process 
Regression (GPR), BNN-Variational Inference, and BNN-Markov Chain Monte Carlo (MCMC) for the 
Ni-based superalloys dataset. The logarithm values for the creep rupture life are shown on the vertical axis. The 
green shaded area represents the 95% confidence interval for the predictions by the models.
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and uncertainty estimates for most regression models. Only for the PI-BNN-MCMC, the performance slightly 
decreased in comparison to the BNN-MCMC model without physics knowledge.

Table 5 presents the results for the Nickel-based superalloys dataset, and Table 6 shows the results for the 
Titanium alloys dataset. The incorporation of physics knowledge led to significant improvements in the predic-
tions for all models for these two datasets. The best-performing approach is PI-BB-MCMC for both datasets. 
As expected, PIML imparts greater benefits to tasks with smaller datasets, and we can see higher gains for these 
two datasets, compared to the physics-informed models with the larger SS316 alloys dataset.

Active learning
For the AL case study, we used a Batch Mode AL with a batch size B of 10 for the SS316 alloy dataset and a batch 
size B of 8 for the smaller Nickel-based superalloy and Titanium alloy datasets. Figure 4 plots the PCC values of 
the GPR, BNN-VI, and BNN-MCMC models. For the SS316 dataset, GPR achieves a higher PCC score with fewer 
data points. For Nickel and Titanium alloys, BNN MCMC achieves the best result, and it converges the fastest 

Figure 3.   Experimental data points, predicted data points, and uncertainty estimates for Gaussian Process 
Regression (GPR), BNN-Variational Inference, and BNN-Markov Chain Monte Carlo (MCMC) for the Ti-based 
alloys dataset. The logarithm values for the creep rupture life are shown on the vertical axis. The green shaded 
area represents the 95% confidence interval for the predictions by the models.
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with a small number of data samples. BNN-MCMC performed the best in 2 of the 3 tests, and GPR performed 
the best in 1 of the tests, whereas BNN-VI had the lowest performance overall.

Implementation details
In the experiments, creep rupture life is used as the target variable in the regression models, and the remaining 
features in the datasets are used as inputs to the models. The input features are normalized to the range between 
0 and 1, and base 10 logarithm transformation is applied to the values of the creep rupture life. Five-fold cross-
validation is used to report the performance of different models.

For the implementation of QR, NGBoost, and GPR, we adopted the same hyperparameters as in the work 
by Mamun et al.9. Following their work, we used CatBoost model with QR for calculating the quantiles, and we 

Table 3.   Experimental results for the Titanium alloys dataset, including predictive accuracy metrics (PCC, R2, 
RMSE, MAE) and uncertainty quantification metrics (coverage, interval width) for 8 compared methods: NN 
(Neural Network), QR (Quantile Regression), NGBoost (Natural Gradient Boosting), GPR (Gaussian Process 
Regression), Deep Ensemble, MC Dropout, BNN-VI (Variational Inference), and BNN-MCMC (Markov 
Chain Monte Carlo). Significant values are in bold.

PCC ↑ R2 ↑ RMSE ↓ ( log
10
h) MAE ↓ ( log

10
h) Coverage ↑ Interval width ↓ ( log

10
h)

NN 0.794±0.227 0.381±0.777 0.800±0.481 1.326±0.150

QR 0.584±0.263 0.348±0.320 0.396±0.350 1.33±0.099 81.98±6.67 0.43±0.19

NGBoost 0.510±0.208 0.39±0.395 0.453±0.277 1.92±0.073 94.90±2.15 0.24±0.75

GPR 0.921±0.034 0.839±0.066 0.471±0.081 0.309±0.044 93.24±2.22 1.99±0.20

Deep Ensemble 0.903±0.054 0.800±0.109 0.517±0.106 0.333±0.041 79.10±1.37 1.11±0.171

MC Dropout 0.883±0.101 0.641±0.423 0.623±0.345 0.348±0.110 54.84±5.62 0.51±0.05

BNN-VI 0.919±0.039 0.811±0.116 0.474±0.096 0.320±0.040 75.10±9.36 0.90±0.06

BNN-MCMC 0.922±0.029 0.843±0.061 0.449±0.050 0.336±0.023 94.87±4.21 1.77±0.14

Table 4.   Experimental results for the SS316 alloys dataset with physics-informed features, including predictive 
accuracy metrics (PCC, R2, RMSE, MAE) and uncertainty quantification metrics (coverage, interval width) for 
4 compared methods and their PI variants: NN (Neural Network), GPR (Gaussian Process Regression), BNN–
VI (Variational Inference), and BNN–MCMC (Markov Chain Monte Carlo). Significant values are in bold.

PCC ↑ R2 ↑ RMSE ↓ ( log
10
h) MAE ↓ ( log

10
h) Coverage ↑ Interval width ↓ ( log

10
h)

NN 0.988±0.004 0.973±0.011 0.145±0.031 1.027±0.039

PI-NN 0.992±0.001 0.982±0.002 0.120±0.004 1.046±0.037

GPR 0.993±0.001 0.987±0.002 0.102±0.007 0.072±0.003 94.33±2.54 0.39±0.01

PI-GPR 0.995±0.001 0.990±0.002 0.091±0.006 0.064±0.003 93.85±2.07 0.32±0.01

BNN-VI 0.984±0.006 0.962±0.014 0.172±0.030 0.130±0.017 95.46±2.49 0.69±0.04

PI-BNN-VI 0.993±0.001 0.984±0.003 0.113±0.008 0.087±0.006 95.95±1.01 0.49±0.02

BNN-MCMC 0.996±0.001 0.991±0.001 0.085±0.008 0.060±0.004 92.71±3.61 0.30±0.03

PI-BNN-MCMC 0.995±0.001 0.990±0.001 0.089±0.002 0.064±0.002 93.19±1.21 0.32±0.01

Table 5.   Experimental results for the Nickel-based superalloys dataset with physics-informed features, 
including predictive accuracy metrics (PCC, R2, RMSE, MAE) and uncertainty quantification metrics 
(coverage, interval width) for 4 compared methods and their PI variants: NN (Neural Network), GPR 
(Gaussian Process Regression), BNN-VI (Variational Inference), and BNN-MCMC (Markov Chain Monte 
Carlo). Significant values are in bold.

PCC ↑ R2 ↑ RMSE ↓ ( log
10
h) MAE ↓ ( log

10
h) Coverage ↑ Interval width ↓ ( log

10
h)

NN 0.806±0.113 0.620±0.190 0.241±0.030 0.427±0.060

PI-NN 0.905±0.042 0.130±0.470 0.356±0.139 0.556±0.081

GPR 0.907±0.019 0.801±0.054 0.175±0.026 0.125±0.011 92.77±5.56 0.594±0.019

PI-GPR 0.905±0.011 0.933±0.021 0.102±0.006 0.074±0.007 94.73±1.63 0.46±0.05

BNN-VI 0.909±0.032 0.791±0.069 0.185±0.030 0.147±0.025 87.52±5.80 0.534±0.029

PI-BNN-VI 0.972±0.009 0.936±0.015 0.101±0.011 0.071±0.007 97.38±2.43 0.52±0.02

BNN-MCMC 0.914±0.027 0.824±0.050 0.167±0.023 0.116±0.019 92.84±4.71 0.607±0.061

PI-BNN-MCMC 0.992±0.004 0.983±0.009 0.049±0.007 0.036±0.003 93.46±5.80 0.20±0.03
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applied the same kernel functions for GPR as in Mamun et al.9. We used the scikit-learn61, ngboost, and catboost 
libraries for model training and evaluation.

For the NN networks, we performed extensive fine-tuning of the hyperparameters of all models. We con-
ducted a random search over the hyperparameters of the different networks, which included search over the 
number of layers, number of neurons per layer, learning rate, batch size, number of epochs, dropout rate in 
dropout layers, and type of optimization algorithm. We used mutliple-fold cross-validation for hyperparameter 
finetuning and model selection.

For implementing the BNN-VI method, the architecture consists of two fully-connected layers with 100 
neurons in each layer. We applied Rectified Linear Unit (ReLU) activation function to the output of each layer. 
For the prior distribution of the network parameters, we adopted a normal distribution with a mean of 0 and a 
standard deviation of 0.06. The loss function is based on Eq. (6), with the weight coefficient for the KL divergence 
term set to 0.01. We used a Stochastic Gradient Descent (SGD) optimizer with Nesterov Momentum set to 0.95, 
and the learning rate was set to 0.001. After training the model, for inference we generated 1000 samples from 
the variational distribution. The point estimates and uncertainty estimates are calculated as the mean and ±3 
standard deviations of the drawn samples, according to Eqs. (1) and (2).

For the BNN-MCMC approach, we selected an architecture with three fully-connected layers with 10 neurons 
in each layer. For the prior distribution of the network parameters, we adopted a normal distribution with a mean 
of 0 and a standard deviation of 1. For approximating the posterior distribution we used the No-U-Turn Sampling 
(NUTS)49 algorithm for training the model. For inference, we drew 100 samples, and the point estimates and 
uncertainty estimates were calculated similarly to the BNN-VI methods by taking the arithmetic mean and ±3 
standard deviations of the generated samples.

For the Deep Ensemble method, we used an ensemble of 5 base learners, each of which is a standard NN 
with three fully-connected layers having 10 neurons in each layer. Each hidden layer is followed with a dropout 
layer with a rate of 0.5 and a ReLU activation layer. Mean-square error (MSE) loss function was used, and the 
Adaptive Moment Estimation (Adam) optimizer with a learning rate of 0.01 was selected for training the mod-
els. The final predictions were calculated by taking the arithmetic mean and ±3 standard deviations from the 
outputs of the base learners.

For the MC Dropout approach, we used an NN with three fully-connected layers having 100 neurons in each 
layer. Similar to the Deep Ensemble, we used a dropout rate of 0.5, ReLU activation function, MSE loss, and 
Adaptive Gradient Algorithm (Adagrad) optimizer with a learning rate of 0.01. For inference, we generated 1000 
predictions, which were used to calculate the point estimates and uncertainty estimates.

Table 6.   Experimental results for the Titanium alloys dataset with physics-informed features, including 
predictive accuracy metrics (PCC, R2, RMSE, MAE) and uncertainty quantification metrics (coverage, 
interval width) for 4 compared methods and their PI variants: NN (Neural Network), GPR (Gaussian Process 
Regression), BNN-VI (Variational Inference), and BNN-MCMC (Markov Chain Monte Carlo). Significant 
values are in bold.

PCC ↑ R2 ↑ RMSE ↓ ( log
10
h) MAE ↓ ( log

10
h) Coverage ↑ Interval width ↓ ( log

10
h)

NN 0.794±0.227 0.381±0.777 0.800±0.481 1.326±0.150

PI-NN 0.851±0.095 − 0.119± 1.079±1.723 1.606

GPR 0.921±0.034 0.839±0.066 0.471±0.081 0.309±0.044 93.24±2.22 1.99±0.20

PI-GPR 0.941±0.027 0.877±0.054 0.433±0.118 0.298±0.076 93.46±6.85 1.82±0.31

BNN-VI 0.919±0.039 0.811±0.116 0.474±0.096 0.320±0.040 75.10±9.36 0.90±0.06

PI-BNN-VI 0.934±0.015 0.836±0.051 0.503±0.063 0.353±0.027 73.16±5.37 0.96±0.05

BNN-MCMC 0.922±0.029 0.843±0.061 0.449±0.050 0.336±0.023 94.87±4.21 1.77±0.14

PI-BNN-MCMC 0.937±0.012 0.865±0.031 0.465±0.082 0.288±0.029 86.90±6.32 1.09±0.32

Figure 4.   PCC values for BMAL case with Gaussian Process Regression (GPR), BNN-Variational Inference, 
and BNN-Markov Chain Monte Carlo (MCMC) for SS316 alloys, Nickel-based superalloys, and Titanium alloys.
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For comparison, we implement standard NNs with deterministic parameters, consisting of three fully-con-
nected layers with 1000, 200, and 40 neurons, respectively. We used ReLU activation function after each hidden 
layer. The loss function was MSE, and the Root Mean Squared Propagation (RMSprop) optimizer was used with 
a learning rate of 0.01.

BNN-MCMC, BINN-VI, Deep Ensemble, and MC Dropout were implemented using the PyTorch library62. 
For building BNN-MCMC we used the Pyro library63, and BNN-VI was implemented with the torchbnn library. 
For the above models, we chose a batch size of 16 data points.

Discussion
The experimental results in Tables 1, 2 and 3 indicate that BNN models and GPR outperform the traditional 
ML models, and therefore they are more suitable for UQ in material property prediction. Overall, BNN-MCMC 
achieved comparable performance to GPR on most metrics, with a marginal increase in PCC of 0.004 and R2 of 
0.010 and a marginal decrease in RSME of 0.016 and in MAE of 0.002. The results in Tables 4, 5 and 6 demon-
strate that the PIML paradigm can improve the models’ performance for the smaller Nickel-based superalloy 
and Titanium alloy datasets, whereas it obtained smaller improvement for the larger SS316 alloys dataset. For 
the application of UQ in AL, BNN-MCMC and GPR performed comparatively well.

The experimental results demonstrate the potential of BNNs to provide accurate and reliable UQ. Bayesian 
NNs exhibit more consistent uncertainty estimates that align better with the observed deviations, reducing 
the likelihood of overconfidence or underconfidence. Additionally, the priors in BNNs can be regarded as soft 
constraints that act similar to the regularization techniques in traditional NNs. Likewise, physics-informed 
BNNs leverage physical knowledge to constrain and guide the learning process, and AL actively selects the most 
informative samples to ensure the models learn faster with fewer samples.

One major limitation of BNNs is their high computational cost, since both BNN-MCMC and BNN-VI require 
sampling from the posterior distribution over the network parameters. Furthermore, MCMC requires sufficient 
number of iterations to obtain accurate samples from the posterior distribution, which can take significantly 
longer than GPR and require increased computational resources. Also, hyperparameter tuning of BNNs can be 
challenging and requires a deeper understanding of the internal working of the models.

It is also worth noting that GPR primarily focuses on modeling structural uncertainty reflecting the inherent 
variability within the model structure, as the function space is modeled as a distribution over functions, and the 
predictions are made by considering the possible functions that are consistent with the observed data. On the 
other hand, BNNs are aimed at quantifying parametric uncertainty that arises from the variability in the model 
parameters, rather than uncertainty in the functional form of the model.

A limitation of this work is that the collected data from creep rupture tests do not comprise data from repeated 
experimental measurements that capture the variability in the measured creep life values. Consequently, the 
used datasets do not provide ground truth values to allow for truthful evaluation and comparison of the used 
methods for uncertainty quantification.

In future work, we will focus on the development of physics-informed loss functions and physics-informed 
layers in BNNs, and on the implementation of AL approaches based on hybrid query strategies, such as Query 
by Committee.

Conclusion
This work provides a study of uncertainty quantification in multivariable regression for material property pre-
diction with Bayesian Neural Networks. We employed the Bayesian framework for predicting creep rupture life 
in metal alloys. Our findings demonstrate the potential of BNNs to advance the field of materials science and 
engineering by enabling more accurate and reliable predictions with quantified uncertainties. The experimental 
validation indicates that the most promising NN approach for material property prediction is BNN-MCMC, 
which achieved performance that is competitive with the performance of GPR as the state-of-the-art method for 
UQ is multivariable regression. The case study on applying uncertainty estimates in an active learning scenario 
confirms that BNN is a promising approach for overcoming the challenges in modeling material properties 
related to sparse and noisy data.

Data availability
The data used in this study are available upon request to Aleksandar Vakanski (vakanski@uidaho.edu).
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